Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

# Solid acetylene reagent with enhanced reactivity: Fluoride-mediated functionalization of alcohols and phenols

Georg Werner<sup>1</sup>, Konstantin S. Rodygin<sup>1</sup>, Anton A. Kostin<sup>1</sup>, Evgeniy G. Gordeev<sup>2</sup>, Alexey S. Kashin<sup>2</sup> and Valentine P. Ananikov<sup>\*1,2</sup>

<sup>1</sup>Saint Petersburg State University, Universitetsky pr. 26, Stary Petergof 198504, Russia <sup>2</sup>Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia

\* e-mail: val@ioc.ac.ru

## Contents

| S3  |
|-----|
| S3  |
| S4  |
| S14 |
| S20 |
| S43 |
| S45 |
|     |

### S1. Materials and methods

Calcium carbide was purchased from Acros (97+% purity) and was freshly powdered before the reaction. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded using a Bruker Avance 400 NMR spectrometer. The data were processed using MestReNova (version 6.0.2) desktop NMR data processing software. Microanalyses (C, H, N) were carried out on a Euro EA3028-HT analyzer. The FE-SEM observations were performed using a Hitachi SU8000 field-emission scanning electron microscope. Most of the studied vinyl ethers were not efficiently ionizable in the ESI-MS, in some cases, the addition of Ag<sup>+</sup> improved the ionization process.

Most of the products can be distilled in a vacuum if further purification is required. Purification via column chromatography on silica should be avoided due to the sensitivity of most of the vinyl ethers towards undergoing rapid polymerization or degradation. If purification via column chromatography is required for some reason, the silica should be neutralized with triethylamine. The products may be sensitive to light and should be stored in a dark place. Contact with acid or traces of metals may initiate polymerization and should be avoided.

Caution: The experimental procedures described in the present study involve the evolution of gaseous acetylene upon the reaction of water with calcium carbide – the necessary safety requirements for experiments with gases, acetylene and  $CaC_2$  should be implemented (see corresponding regulations).

#### S2. General procedures

Large scale procedure. KOH (29 mmol, 1.63 g), benzyl alcohol (29 mmol, 3.20 g, 3 mL), KF (116 mmol, 6.70 g) and calcium carbide (58 mmol, 3.70 g, small stones with a diameter of ca. 5 mm) were added to a Schlenk flask (25 mL) followed by addition of 10 mL of dry DMSO. The flask was sealed with a septum. After stirring at room temperature for 5 min water (120 mmol, 2.2 mL) was added through the valve, and the mixture was heated to 130 °C with vigorous stirring for 3 h. After cooling to 25 °C the mixture was extracted with hexane (3 x 50 mL), and the collected hexane layers were concentrated under vacuum. Benzyl vinyl ether (**2p**) was obtained as a colorless oil (2.72 g, 70 %).

**Sequential vinylation.** K<sub>2</sub>CO<sub>3</sub> (0.5 mmol, 69 mg), a phenol (1.0 mmol), KF (4.0 mmol, 232 mg) and freshly powdered calcium carbide (2.0 mmol, 128 mg) were added to a reaction tube (7 mL) with 1.5 mL of dry DMSO. After stirring at room temperature for 5 min, water (4.0 mmol, 72  $\mu$ L) was added, the tube was sealed, and the mixture was heated at 130 °C for 3 h with vigorous stirring. After cooling to 25 °C, the mixture was extracted with hexane (3 x 4 mL). New portion of calcium carbide and water were added to DMSO layer, the tube was sealed at 130 °C for 3 h with vigorous stirring. After cooling to 25 °C, the mixture was heated at 130 °C for 3 h with vigorous stirring. After cooling to 25 °C, the mixture was sealed and the mixture was heated at 130 °C for 3 h with vigorous stirring. After cooling to 25 °C, the mixture was extracted with hexane (3 x 4 mL). This action was repeated again and three collected hexane layers were combined and concentrated under a reduced pressure.

## S3. Crystal structures

## 3.1 X-ray crystallography data for cholesteryl vinyl ether (2t)

Figure S1. X-ray crystal structure of cholesteryl vinyl ether (CCDC 1444527).



Crystal structure determination of Cholesteryl vinyl ether (2t)

**Crystal Data** for C<sub>29</sub>H<sub>48</sub>O (*M*=412.67 g/mol): monoclinic, space group P2<sub>1</sub> (no. 4), *a* = 12.6051(8) Å, *b* = 8.5936(3) Å, *c* = 13.0034(8) Å,  $\beta$  = 117.576(8)°, *V* = 1248.56(14) Å<sup>3</sup>, *Z* = 2, *T* = 100(2) K,  $\mu$ (MoK $\alpha$ ) = 0.063 mm<sup>-1</sup>, *Dcalc* = 1.098 g/cm<sup>3</sup>, 10184 reflections measured (5.914° ≤ 2Θ ≤ 54.982°), 5695 unique ( $R_{int} = 0.0262$ ,  $R_{sigma} = 0.0568$ ) which were used in all calculations. The final  $R_1$  was 0.0426 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0929 (all data).

Table S1. Crystal data and structure refinement for CCDC 1444527.

| Identification code                   | CCDC 1444527                                    |
|---------------------------------------|-------------------------------------------------|
| Empirical formula                     | C <sub>29</sub> H <sub>48</sub> O               |
| Formula weight                        | 412.67                                          |
| Temperature/K                         | 100(2)                                          |
| Crystal system                        | monoclinic                                      |
| Space group                           | P2 <sub>1</sub>                                 |
| a/Å                                   | 12.6051(8)                                      |
| b/Å                                   | 8.5936(3)                                       |
| c/Å                                   | 13.0034(8)                                      |
| a/°                                   | 90                                              |
| β/°                                   | 117.576(8)                                      |
| γ/°                                   | 90                                              |
| Volume/Å <sup>3</sup>                 | 1248.56(14)                                     |
| Z                                     | 2                                               |
| $\rho_{calc}g/cm^3$                   | 1.098                                           |
| µ/mm <sup>-1</sup>                    | 0.063                                           |
| F(000)                                | 460.0                                           |
| Crystal size/mm <sup>3</sup>          | $0.3 \times 0.2 \times 0.2$                     |
| Radiation                             | ΜοΚα (λ = 0.71073)                              |
| $2\Theta$ range for data collection/° | 5.914 to 54.982                                 |
| Index ranges                          | -16 ≤ h ≤ 16, -11 ≤ k ≤ 11, -16 ≤ l ≤ 16        |
| Reflections collected                 | 10184                                           |
| Independent reflections               | 5695 [ $R_{int} = 0.0262, R_{sigma} = 0.0568$ ] |
| Data/restraints/parameters            | 5695/1/276                                      |
| Goodness-of-fit on F <sup>2</sup>     | 1.008                                           |
| Final R indexes [I>=2o (I)]           | $R_1 = 0.0426$ , $wR_2 = 0.0855$                |

| Final R indexes [all data]                  | $R_1 = 0.0555, wR_2 = 0.0929$ |
|---------------------------------------------|-------------------------------|
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.21/-0.24                    |
| Flack parameter                             | 0.5                           |

| able S2. Fractional Atomic Coordinates (x10 <sup>4</sup> ) and Equivalent Isotropic Displacement Parameters                                 | s |
|---------------------------------------------------------------------------------------------------------------------------------------------|---|
| $\lambda^2 \times 10^3$ ) for CCDC 1444527. U <sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U <sub>IJ</sub> tensor. |   |
|                                                                                                                                             |   |

| Atom | X          | У          | Z           | U(eq)   |
|------|------------|------------|-------------|---------|
| O1   | 212.6(13)  | 3128.5(19) | 5985.8(14)  | 24.3(4) |
| C1   | 1265.7(19) | 2286(3)    | 3785.9(19)  | 16.7(5) |
| C2   | 402.6(19)  | 2644(3)    | 4283.1(19)  | 20.6(5) |
| C3   | 1075.1(19) | 2711(3)    | 5592.1(19)  | 18.0(5) |
| C4   | 2075(2)    | 3918(2)    | 5992.4(19)  | 18.5(5) |
| C5   | 2906.1(19) | 3650(2)    | 5457.8(18)  | 14.3(4) |
| C6   | 4087.0(19) | 3623(2)    | 6114.2(18)  | 14.9(4) |
| C7   | 4981.3(18) | 3468(2)    | 5661.4(17)  | 14.2(4) |
| C8   | 4419.6(18) | 3713(2)    | 4349.4(17)  | 13.0(4) |
| C9   | 3217.9(18) | 2848(2)    | 3747.2(17)  | 12.8(4) |
| C10  | 2303.4(18) | 3470(2)    | 4139.3(17)  | 14.1(4) |
| C11  | 2714.3(19) | 2820(3)    | 2419.0(18)  | 16.3(4) |
| C12  | 3620.7(19) | 2334(2)    | 2000.4(18)  | 16.6(5) |
| C13  | 4750.6(18) | 3353(2)    | 2546.9(17)  | 13.5(4) |
| C14  | 5258.9(18) | 3172(2)    | 3873.6(17)  | 12.9(4) |
| C15  | 6500.6(19) | 3914(2)    | 4370.1(18)  | 15.8(5) |
| C16  | 6937.0(19) | 3499(3)    | 3472.8(18)  | 17.8(5) |
| C17  | 5844.8(18) | 2812(3)    | 2387.4(17)  | 14.4(4) |
| C18  | 4448(2)    | 5059(2)    | 2155.1(18)  | 16.6(5) |
| C19  | 1796(2)    | 5072(2)    | 3589(2)     | 20.1(5) |
| C20  | 5874.8(19) | 3251(3)    | 1255.4(18)  | 16.8(5) |
| C21  | 4804(2)    | 2610(3)    | 174(2)      | 29.2(6) |
| C22  | 7054(2)    | 2747(3)    | 1271.5(19)  | 20.2(5) |
| C23  | 7222(2)    | 3445(3)    | 271.6(19)   | 20.2(5) |
| C24  | 8495.9(19) | 3280(3)    | 426.6(18)   | 19.2(5) |
| C25  | 8701(2)    | 4101(3)    | -511.6(19)  | 16.4(5) |
| C26  | 7961(2)    | 3381(3)    | -1707.3(18) | 22.9(5) |
| C27  | 10021(2)   | 4100(3)    | -207(2)     | 24.2(5) |
| C28  | 518(2)     | 2867(3)    | 7124(2)     | 26.3(6) |
| C29  | 1473(2)    | 2203(3)    | 7942(2)     | 30.6(6) |
|      |            |            |             |         |

**Table S3.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for CCDC 1444527. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | <b>U</b> 11 | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------|-------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| O1   | 18.3(8)     | 36.5(10)        | 23.7(9)         | 1.0(7)          | 14.4(7)         | 3.2(8)                 |
| C1   | 12.7(11)    | 21.5(11)        | 14.6(10)        | -1.0(9)         | 5.1(9)          | -0.3(9)                |
| C2   | 14.3(11)    | 26.7(12)        | 21.3(12)        | 0.6(10)         | 8.6(10)         | -0.4(10)               |
| C3   | 15.9(11)    | 20.8(11)        | 21.2(11)        | 0.0(9)          | 11.8(10)        | 0.4(10)                |
| C4   | 18.0(12)    | 20.5(12)        | 19.2(11)        | -1.3(9)         | 10.6(11)        | 0.3(9)                 |
| C5   | 16.4(11)    | 11.6(10)        | 17(1)           | -0.4(8)         | 9.4(9)          | -0.4(9)                |
| C6   | 20.1(11)    | 12.7(10)        | 13.1(10)        | -0.8(8)         | 8.7(10)         | -1.4(9)                |
| C7   | 14.3(10)    | 14(1)           | 15.1(10)        | 0.8(9)          | 7.6(9)          | -0.9(9)                |
| C8   | 14.5(11)    | 12.6(10)        | 13.3(10)        | 0.5(8)          | 7.5(9)          | 0.4(8)                 |
| C9   | 13.7(10)    | 12.4(10)        | 11.8(10)        | 0.3(8)          | 5.3(9)          | 1.2(9)                 |
| C10  | 13(1)       | 15.1(10)        | 15(1)           | 0.6(9)          | 7.1(9)          | -0.1(9)                |
| C11  | 13(1)       | 21.5(11)        | 13.1(10)        | -2.7(9)         | 4.9(9)          | -3.6(9)                |

| C12 | 15.8(11) | 20.1(11) | 14.4(10) | -3.3(9)   | 7.4(10)  | -2.9(9)   |
|-----|----------|----------|----------|-----------|----------|-----------|
| C13 | 15.1(10) | 14(1)    | 12.5(10) | -1.5(9)   | 7.3(9)   | -0.7(9)   |
| C14 | 12.5(10) | 12.8(10) | 14.1(10) | 0.5(8)    | 6.7(9)   | -0.2(9)   |
| C15 | 12.9(11) | 18.2(11) | 16.1(11) | 0.2(9)    | 6.4(9)   | -1.7(9)   |
| C16 | 14.9(11) | 22.8(11) | 16.5(11) | 0.8(10)   | 7.9(9)   | -0.9(10)  |
| C17 | 15.1(11) | 14.6(10) | 13.7(10) | -0.2(9)   | 6.9(9)   | -0.2(9)   |
| C18 | 18.1(11) | 18.1(11) | 12.9(10) | 1.8(9)    | 6.4(10)  | 2.1(10)   |
| C19 | 20.7(12) | 19.4(11) | 21.9(12) | 5.4(9)    | 11.2(11) | 5.1(10)   |
| C20 | 18.1(11) | 19.1(11) | 16.2(11) | -2.0(9)   | 10.3(10) | -0.9(10)  |
| C21 | 27.2(14) | 45.9(16) | 19.7(12) | -11.7(11) | 15.3(11) | -11.7(13) |
| C22 | 22.6(12) | 19.0(11) | 23.8(12) | 0.9(9)    | 14.8(11) | 1(1)      |
| C23 | 20.6(12) | 24.0(12) | 19.7(11) | -1.3(10)  | 12.5(10) | -0.7(11)  |
| C24 | 19.0(11) | 22.1(11) | 18.0(11) | 2.2(9)    | 9.7(10)  | 3.5(10)   |
| C25 | 15.5(11) | 18.1(11) | 15.0(11) | 0.3(9)    | 6.7(10)  | 1.8(9)    |
| C26 | 21.7(12) | 30.4(13) | 17.6(11) | -3.7(11)  | 10(1)    | -3.2(11)  |
| C27 | 17.2(12) | 35.1(14) | 19.8(12) | 1.3(10)   | 8.2(11)  | -0.7(11)  |
| C28 | 25.4(13) | 35.4(14) | 26.6(13) | -6.5(11)  | 19.2(12) | -7.5(12)  |
| C29 | 33.2(15) | 41.2(15) | 24.2(13) | -0.2(12)  | 18.9(13) | -4.1(13)  |

## Table S4. Bond Lengths for CCDC 1444527.

| Atom | Length/Å                                                                                                           | Atom Atom                                            | Length/Å                                             |
|------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| C3   | 1.445(2)                                                                                                           | C12 C13                                              | 1.537(3)                                             |
| C28  | 1.364(3)                                                                                                           | C13 C14                                              | 1.545(3)                                             |
| C2   | 1.532(3)                                                                                                           | C13 C17                                              | 1.558(3)                                             |
| C10  | 1.549(3)                                                                                                           | C13 C18                                              | 1.542(3)                                             |
| C3   | 1.511(3)                                                                                                           | C14 C15                                              | 1.529(3)                                             |
| C4   | 1.526(3)                                                                                                           | C15 C16                                              | 1.545(3)                                             |
| C5   | 1.519(3)                                                                                                           | C16 C17                                              | 1.561(3)                                             |
| C6   | 1.330(3)                                                                                                           | C17 C20                                              | 1.537(3)                                             |
| C10  | 1.528(3)                                                                                                           | C20 C21                                              | 1.531(3)                                             |
| C7   | 1.500(3)                                                                                                           | C20 C22                                              | 1.539(3)                                             |
| C8   | 1.529(3)                                                                                                           | C22 C23                                              | 1.533(3)                                             |
| C9   | 1.537(3)                                                                                                           | C23 C24                                              | 1.530(3)                                             |
| C14  | 1.525(3)                                                                                                           | C24 C25                                              | 1.531(3)                                             |
| C10  | 1.555(3)                                                                                                           | C25 C26                                              | 1.525(3)                                             |
| C11  | 1.540(3)                                                                                                           | C25 C27                                              | 1.521(3)                                             |
| C19  | 1.547(3)                                                                                                           | C28 C29                                              | 1.312(3)                                             |
| C12  | 1.533(3)                                                                                                           |                                                      |                                                      |
|      | Atom<br>C3<br>C28<br>C2<br>C10<br>C3<br>C4<br>C5<br>C6<br>C10<br>C7<br>C8<br>C9<br>C14<br>C10<br>C11<br>C19<br>C12 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

## Table S5. Bond Angles for CCDC 1444527.

| Atom | Atom | Atom | Angle/°    | Atom Atom Atom |     |     | Angle/°    |
|------|------|------|------------|----------------|-----|-----|------------|
| C28  | 01   | C3   | 117.53(18) | C11            | C12 | C13 | 111.34(17) |
| C2   | C1   | C10  | 114.19(17) | C12            | C13 | C14 | 105.99(16) |
| C3   | C2   | C1   | 110.20(17) | C12            | C13 | C17 | 117.17(17) |
| 01   | C3   | C2   | 106.66(17) | C12            | C13 | C18 | 110.75(18) |
| 01   | C3   | C4   | 110.42(17) | C14            | C13 | C17 | 100.58(16) |
| C2   | C3   | C4   | 110.76(17) | C18            | C13 | C14 | 112.09(17) |
| C5   | C4   | C3   | 112.14(17) | C18            | C13 | C17 | 109.81(17) |
| C4   | C5   | C10  | 116.03(18) | C8             | C14 | C13 | 114.55(16) |
| C6   | C5   | C4   | 120.86(19) | C8             | C14 | C15 | 117.92(17) |
| C6   | C5   | C10  | 123.08(18) | C15            | C14 | C13 | 104.11(16) |

| C5  | C6  | C7  | 124.82(18) | C14 | C15 | C16 | 103.74(17) |
|-----|-----|-----|------------|-----|-----|-----|------------|
| C6  | C7  | C8  | 112.45(17) | C15 | C16 | C17 | 107.27(16) |
| C7  | C8  | C9  | 109.88(16) | C13 | C17 | C16 | 103.39(16) |
| C14 | C8  | C7  | 111.16(16) | C20 | C17 | C13 | 118.05(17) |
| C14 | C8  | C9  | 110.55(16) | C20 | C17 | C16 | 111.75(16) |
| C8  | C9  | C10 | 111.84(16) | C17 | C20 | C22 | 111.70(17) |
| C8  | C9  | C11 | 112.11(16) | C21 | C20 | C17 | 112.87(17) |
| C11 | C9  | C10 | 112.94(17) | C21 | C20 | C22 | 110.30(18) |
| C1  | C10 | C9  | 109.22(16) | C23 | C22 | C20 | 112.96(18) |
| C5  | C10 | C1  | 108.20(16) | C24 | C23 | C22 | 113.61(19) |
| C5  | C10 | C9  | 110.10(17) | C23 | C24 | C25 | 113.96(18) |
| C5  | C10 | C19 | 108.26(17) | C26 | C25 | C24 | 112.10(18) |
| C19 | C10 | C1  | 109.60(17) | C27 | C25 | C24 | 111.07(18) |
| C19 | C10 | C9  | 111.39(16) | C27 | C25 | C26 | 110.13(18) |
| C12 | C11 | C9  | 114.47(17) | C29 | C28 | 01  | 130.1(2)   |
|     |     |     |            |     |     |     |            |

## Table S6. Torsion Angles for CCDC 1444527.

| Α   | В   | С   | D   | Ang    | e/°           | Α   | В   | С   | D   | Angle/°    |   |
|-----|-----|-----|-----|--------|---------------|-----|-----|-----|-----|------------|---|
| O1  | C3  | C4  | C5  | -171.9 | 5(17)         | C11 | C9  | C10 | C5  | -173.21(17 | ) |
| C1  | C2  | C3  | O1  | 177.20 | )(17)         | C11 | C9  | C10 | C19 | -53.1(2    | ) |
| C1  | C2  | C3  | C4  | 57.0   | (2)           | C11 | C12 | C13 | C14 | 57.8(2)    | ) |
| C2  | C1  | C10 | C5  | 51.4   | (2)           | C11 | C12 | C13 | C17 | 169.01(17  | ) |
| C2  | C1  | C10 | C9  | 171.27 | <b>'</b> (17) | C11 | C12 | C13 | C18 | -64.0(2    | ) |
| C2  | C1  | C10 | C19 | -66.4  | (2)           | C12 | C13 | C14 | C8  | -61.2(2    | ) |
| C2  | C3  | C4  | C5  | -54.0  | (2)           | C12 | C13 | C14 | C15 | 168.62(16) | ) |
| C3  | O1  | C28 | C29 | -4.0   | (4)           | C12 | C13 | C17 | C16 | -152.59(17 | ) |
| C3  | C4  | C5  | C6  | -130.  | 5(2)          | C12 | C13 | C17 | C20 | 83.5(2)    | ) |
| C3  | C4  | C5  | C10 | 51.3   | (2)           | C13 | C14 | C15 | C16 | -35.2(2)   | ) |
| C4  | C5  | C6  | C7  | -175.9 | 5(19)         | C13 | C17 | C20 | C21 | -59.5(2)   | ) |
| C4  | C5  | C10 | C1  | -48.3  | (2)           | C13 | C17 | C20 | C22 | 175.49(19) | ) |
| C4  | C5  | C10 | C9  | -167.5 | 6(17)         | C14 | C8  | C9  | C10 | -175.28(16 | ) |
| C4  | C5  | C10 | C19 | 70.4   | (2)           | C14 | C8  | C9  | C11 | -47.3(2)   | ) |
| C5  | C6  | C7  | C8  | 13.1   | (3)           | C14 | C13 | C17 | C16 | -38.3(2)   | ) |
| C6  | C5  | C10 | C1  | 133.6  | δ(2)          | C14 | C13 | C17 | C20 | -162.28(17 | ) |
| C6  | C5  | C10 | C9  | 14.3   | (3)           | C14 | C15 | C16 | C17 | 10.5(2)    | ) |
| C6  | C5  | C10 | C19 | -107.  | 7(2)          | C15 | C16 | C17 | C13 | 17.6(2)    | ) |
| C6  | C7  | C8  | C9  | -43.6  | (2)           | C15 | C16 | C17 | C20 | 145.62(17) | ) |
| C6  | C7  | C8  | C14 | -166.2 | 9(17)         | C16 | C17 | C20 | C21 | -179.2(2)  | ) |
| C7  | C8  | C9  | C10 | 61.7   | (2)           | C16 | C17 | C20 | C22 | 55.8(2)    | ) |
| C7  | C8  | C9  | C11 | -170.3 | 2(16)         | C17 | C13 | C14 | C8  | 176.36(17) | ) |
| C7  | C8  | C14 | C13 | 179.02 | 2(17)         | C17 | C13 | C14 | C15 | 46.16(19)  | ) |
| C7  | C8  | C14 | C15 | -57.9  | (2)           | C17 | C20 | C22 | C23 | -168.52(17 | ) |
| C8  | C9  | C10 | C1  | -164.3 | 1(17)         | C18 | C13 | C14 | C8  | 59.8(2)    | ) |
| C8  | C9  | C10 | C5  | -45.6  | (2)           | C18 | C13 | C14 | C15 | -70.4(2    | ) |
| C8  | C9  | C10 | C19 | 74.5   | (2)           | C18 | C13 | C17 | C16 | 80.0(2     | ) |
| C8  | C9  | C11 | C12 | 48.0   | (2)           | C18 | C13 | C17 | C20 | -44.0(2    | ) |
| C8  | C14 | C15 | C16 | -163.4 | 1(17)         | C20 | C22 | C23 | C24 | 166.42(19) | ) |
| C9  | C8  | C14 | C13 | 56.7   | (2)           | C21 | C20 | C22 | C23 | 65.1(2)    | ) |
| C9  | C8  | C14 | C15 | 179.75 | 5(17)         | C22 | C23 | C24 | C25 | -174.79(18 | ) |
| C9  | C11 | C12 | C13 | -54.6  | (2)           | C23 | C24 | C25 | C26 | -65.0(3    | ) |
| C10 | C1  | C2  | C3  | -57.7  | (2)           | C23 | C24 | C25 | C27 | 171.36(19) | ) |
| C10 | C5  | C6  | C7  | 2.1(   | 3)            | C28 | 01  | C3  | C2  | 163.04(19) | ) |
| C10 | C9  | C11 | C12 | 175.48 | 8(18)         | C28 | 01  | C3  | C4  | -76.6(2    | ) |

|      | 144327. |      |       |       |
|------|---------|------|-------|-------|
| Atom | X       | У    | Z     | U(eq) |
| H1A  | 807     | 2261 | 2929  | 20    |
| H1B  | 1610    | 1237 | 4048  | 20    |
| H2A  | 2       | 3654 | 3977  | 25    |
| H2B  | -221    | 1827 | 4040  | 25    |
| H3   | 1421    | 1665 | 5906  | 22    |
| H4A  | 1719    | 4969 | 5778  | 22    |
| H4B  | 2545    | 3875 | 6848  | 22    |
| H6   | 4386    | 3708 | 6930  | 18    |
| H7A  | 5346    | 2419 | 5853  | 17    |
| H7B  | 5627    | 4241 | 6053  | 17    |
| H8   | 4265    | 4850 | 4186  | 16    |
| H9   | 3385    | 1741 | 4012  | 15    |
| H11A | 2028    | 2093 | 2089  | 20    |
| H11B | 2409    | 3871 | 2112  | 20    |
| H12A | 3247    | 2426 | 1145  | 20    |
| H12B | 3846    | 1232 | 2207  | 20    |
| H14  | 5389    | 2033 | 4042  | 16    |
| H15A | 7041    | 3475 | 5142  | 19    |
| H15B | 6453    | 5056 | 4442  | 19    |
| H16A | 7592    | 2725 | 3802  | 21    |
| H16B | 7240    | 4440 | 3255  | 21    |
| H17  | 5892    | 1652 | 2457  | 17    |
| H18A | 3899    | 5473 | 2430  | 25    |
| H18B | 4067    | 5112 | 1306  | 25    |
| H18C | 5184    | 5678 | 2480  | 25    |
| H19A | 2454    | 5754 | 3672  | 30    |
| H19B | 1373    | 5541 | 3982  | 30    |
| H19C | 1238    | 4935 | 2764  | 30    |
| H20  | 5834    | 4412 | 1196  | 20    |
| H21A | 4748    | 1483 | 256   | 44    |
| H21B | 4910    | 2828 | -512  | 44    |
| H21C | 4068    | 3109 | 88    | 44    |
| H22A | 7732    | 3069 | 2017  | 24    |
| H22B | 7069    | 1598 | 1226  | 24    |
| H23A | 6661    | 2929 | -461  | 24    |
| H23B | 7010    | 4564 | 200   | 24    |
| H24A | 8679    | 2160 | 426   | 23    |
| H24B | 9062    | 3709 | 1193  | 23    |
| H25  | 8443    | 5209 | -548  | 20    |
| H26A | 8212    | 2300 | -1701 | 34    |
| H26B | 8085    | 3974 | -2287 | 34    |
| H26C | 7112    | 3407 | -1902 | 34    |
| H27A | 10477   | 4669 | 521   | 36    |
| H27B | 10125   | 4606 | -829  | 36    |
| H27C | 10311   | 3026 | -115  | 36    |
| H28  | -49     | 3220 | 7360  | 32    |
| H29A | 2082    | 1819 | 7773  | 37    |
| H29B | 1556    | 2107 | 8703  | 37    |

**Table S7.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for CCDC 1444527.

#### Experimental

The suitable single crystal of cholesteryl vinyl ether (**2t**) was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystallographic data for the investigated compound have been deposited with the Cambridge Crystallographic Data Center, CCDC 1444527. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk

## 3.2 X-ray crystallography data for estradiol divinyl ether (2s)

Figure S2. X-ray crystal structure of estradiol divinyl ether (CCDC 1444530).



Crystal structure determination of estradiol divinyl ether (2s)

**Crystal Data** for  $C_{22}H_{28}O_2$  (M = 324.44 g/mol): orthorhombic, space group  $P2_12_12_1$  (no. 19), a = 7.7777(4) Å, b = 13.5678(7) Å, c = 16.7615(9) Å, V = 1768.78(16) Å<sup>3</sup>, Z = 4, T = 100(2) K,  $\mu$ (MoK $\alpha$ ) = 0.076 mm<sup>-1</sup>, *Dcalc* = 1.218 g/cm<sup>3</sup>, 15531 reflections measured ( $5.714^{\circ} \le 2\Theta \le 54.998^{\circ}$ ), 4056 unique ( $R_{int} = 0.0357$ ,  $R_{sigma} = 0.0390$ ) which were used in all calculations. The final  $R_1$  was 0.0393 (I >  $2\sigma$ (I)) and  $wR_2$  was 0.0950 (all data).

**Table S8.** Crystal data and structure refinement for CCDC 1444530.

| Identification code | CCDC 1444530       |
|---------------------|--------------------|
| Empirical formula   | $C_{22}H_{28}O_2$  |
| Formula weight      | 324.44             |
| Temperature/K       | 100(2)             |
| Crystal system      | orthorhombic       |
| Space group         | $P2_{1}2_{1}2_{1}$ |

| a/Å                                         | 7.7777(4)                                             |
|---------------------------------------------|-------------------------------------------------------|
| b/Å                                         | 13.5678(7)                                            |
| c/Å                                         | 16.7615(9)                                            |
| α/°                                         | 90                                                    |
| β/°                                         | 90                                                    |
| γ/°                                         | 90                                                    |
| Volume/Å <sup>3</sup>                       | 1768.78(16)                                           |
| Z                                           | 4                                                     |
| $\rho_{calc}g/cm^3$                         | 1.218                                                 |
| µ/mm⁻¹                                      | 0.076                                                 |
| F(000)                                      | 704.0                                                 |
| Crystal size/mm <sup>3</sup>                | 0.15 × 0.15 × 0.15                                    |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                    |
| 2O range for data collection/°              | 5.714 to 54.998                                       |
| Index ranges                                | $-10 \le h \le 9, -17 \le k \le 17, -21 \le l \le 19$ |
| Reflections collected                       | 15531                                                 |
| Independent reflections                     | 4056 [ $R_{int} = 0.0357$ , $R_{sigma} = 0.0390$ ]    |
| Data/restraints/parameters                  | 4056/0/218                                            |
| Goodness-of-fit on F <sup>2</sup>           | 1.035                                                 |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0393$ , $wR_2 = 0.0911$                      |
| Final R indexes [all data]                  | $R_1 = 0.0475$ , $wR_2 = 0.0950$                      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.26/-0.16                                            |
| Flack parameter                             | 0.5                                                   |

**Table S9.** Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup> $\times 10^3$ ) for CCDC 1444530. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X          | y           | z          | U(eq)   |
|------|------------|-------------|------------|---------|
| 01   | 666.3(18)  | 3812.9(10)  | 3234.1(9)  | 24.5(3) |
| O2   | 5735.8(17) | 11301.9(9)  | 4083.2(9)  | 23.2(3) |
| C1   | 1298(2)    | 6471.4(13)  | 3038.3(12) | 19.7(4) |
| C2   | 522(2)     | 5552.2(14)  | 3020.2(12) | 20.6(4) |
| C3   | 1442(2)    | 4733.7(13)  | 3278.1(12) | 19.4(4) |
| C4   | 3114(2)    | 4847.4(13)  | 3547.3(12) | 18.9(4) |
| C5   | 3891(2)    | 5775.2(13)  | 3571.6(12) | 17.4(4) |
| C6   | 5708(2)    | 5838.5(13)  | 3888.9(12) | 19.5(4) |
| C7   | 6596(2)    | 6802.4(13)  | 3671.3(12) | 19.6(4) |
| C8   | 5407(2)    | 7673.8(13)  | 3836.4(12) | 16.7(4) |
| C9   | 3852(2)    | 7620.6(13)  | 3267.9(12) | 17.5(4) |
| C10  | 2985(2)    | 6609.4(12)  | 3308.5(12) | 16.6(4) |
| C11  | 2630(2)    | 8501.4(13)  | 3384.1(13) | 21.3(4) |
| C12  | 3567(2)    | 9498.8(13)  | 3330.3(13) | 22.3(4) |
| C13  | 5097(2)    | 9548.3(13)  | 3901.6(12) | 17.8(4) |
| C14  | 6282(2)    | 8665.7(12)  | 3722.0(12) | 16.9(4) |
| C15  | 7929(2)    | 8893.9(14)  | 4198.7(13) | 23.0(4) |
| C16  | 8060(3)    | 10038.7(14) | 4156.3(13) | 22.7(4) |
| C17  | 6372(2)    | 10389.7(13) | 3758.2(12) | 18.8(4) |
| C18  | 4483(3)    | 9571.4(14)  | 4770.7(12) | 23.0(4) |
| C19  | 1198(3)    | 3145.4(14)  | 3809.8(13) | 25.5(4) |
| C20  | 1646(3)    | 2246.3(15)  | 3635.8(14) | 30.8(5) |
| C21  | 6741(3)    | 12104.0(14) | 3937.6(13) | 25.8(5) |
| C22  | 6387(3)    | 12983.4(15) | 4229.4(15) | 32.4(5) |

**Table S10.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 103-372-3282\_RKS-2. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> 12 |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|
| O1   | 23.8(7)         | 22.6(7)         | 27.0(8)         | 0.0(6)          | -5.7(6)         | -4.3(6)     |
| O2   | 22.6(7)         | 19.9(7)         | 27.2(8)         | -2.4(6)         | 2.4(6)          | -1.4(6)     |
| C1   | 16.7(9)         | 22.6(9)         | 19.8(10)        | -0.5(7)         | -0.8(8)         | 5.2(8)      |
| C2   | 14.1(9)         | 27.6(10)        | 20.0(11)        | -3.1(8)         | -0.6(8)         | -1.2(8)     |
| C3   | 19.6(9)         | 22.9(9)         | 15.8(10)        | -2.2(7)         | 1.6(8)          | -2.6(7)     |
| C4   | 19.2(9)         | 21.9(9)         | 15.7(10)        | 0.0(7)          | 0.2(8)          | 2.7(7)      |
| C5   | 16.2(9)         | 23.4(9)         | 12.7(9)         | -1.2(7)         | 1.4(7)          | 1.9(7)      |
| C6   | 15.8(9)         | 20.9(9)         | 21.6(11)        | 1.5(7)          | -1.7(8)         | 3.0(7)      |
| C7   | 13.0(9)         | 23.5(9)         | 22.4(11)        | 1.8(8)          | -1.3(8)         | 2.3(7)      |
| C8   | 13.1(9)         | 19.6(9)         | 17.4(10)        | 1.7(7)          | 0.3(7)          | 1.2(7)      |
| C9   | 14.4(9)         | 19.9(9)         | 18.1(10)        | 0.4(7)          | -1.3(8)         | 0.4(7)      |
| C10  | 14.4(8)         | 21.3(9)         | 14.2(10)        | -1.5(7)         | 1.2(7)          | -0.3(7)     |
| C11  | 14.0(9)         | 19.8(9)         | 30.2(12)        | -1.2(8)         | -5.2(8)         | 1.5(7)      |
| C12  | 18.7(9)         | 20.8(9)         | 27.5(12)        | 1.8(8)          | -4.0(8)         | 1.8(8)      |
| C13  | 15.3(8)         | 18.8(9)         | 19.2(11)        | 0.7(7)          | 0.7(7)          | 0.2(7)      |
| C14  | 14.4(8)         | 20.6(9)         | 15.6(10)        | 0.9(7)          | 0.4(7)          | 0.8(7)      |
| C15  | 14.7(9)         | 25.5(9)         | 28.7(12)        | 1.8(8)          | -3.0(8)         | -2.7(8)     |
| C16  | 18.5(10)        | 24.6(10)        | 25.0(12)        | 1.7(8)          | -1.2(8)         | -4.3(8)     |
| C17  | 17.7(9)         | 20.2(9)         | 18.5(10)        | -0.6(7)         | 0.9(8)          | -0.7(8)     |
| C18  | 22.1(10)        | 25(1)           | 21.9(11)        | -1.6(8)         | 5.8(8)          | -2.6(8)     |
| C19  | 24.5(10)        | 27.1(10)        | 24.7(11)        | 1.2(8)          | -2.5(9)         | -6.2(9)     |
| C20  | 33.0(13)        | 31.5(11)        | 28.0(13)        | -2.9(9)         | -3.8(10)        | 1.0(9)      |
| C21  | 26.2(11)        | 26.4(10)        | 24.7(12)        | 2.8(8)          | -2.1(9)         | -4.4(8)     |
| C22  | 34.8(12)        | 24.9(10)        | 37.6(14)        | 3.8(9)          | -6.7(11)        | -0.9(9)     |

## Table S11. Bond Lengths for CCDC 1444530.

| O1 C3 1.389(2) C8   | C14 1.520(2) |
|---------------------|--------------|
| O1 C19 1.387(2) C9  | C10 1.530(2) |
| O2 C17 1.440(2) C9  | C11 1.539(2) |
| O2 C21 1.362(2) C11 | C12 1.540(2) |
| C1 C2 1.386(2) C12  | C13 1.529(3) |
| C1 C10 1.400(3) C13 | C14 1.541(2) |
| C2 C3 1.390(3) C13  | C17 1.531(2) |
| C3 C4 1.385(3) C13  | C18 1.533(3) |
| C4 C5 1.397(2) C14  | C15 1.541(3) |
| C5 C6 1.512(3) C15  | C16 1.558(3) |
| C5 C10 1.404(2) C16 | C17 1.548(3) |
| C6 C7 1.523(2) C19  | C20 1.302(3) |
| C7 C8 1.526(2) C21  | C22 1.318(3) |
| C8 C9 1.541(2)      |              |

## Table S12. Bond Angles for CCDC 1444530.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C19  | O1   | C3   | 114.88(15) | C1   | C10  | C9   | 121.22(16) |
| C21  | O2   | C17  | 114.94(15) | C5   | C10  | C9   | 121.02(16) |
| C2   | C1   | C10  | 122.37(17) | C9   | C11  | C12  | 112.50(15) |
| C1   | C2   | C3   | 119.21(17) | C13  | C12  | C11  | 111.74(15) |

| 01  | C3  | C2  | 118.57(16) | C12 | C13 | C14 | 107.99(15) |
|-----|-----|-----|------------|-----|-----|-----|------------|
| C4  | C3  | 01  | 121.69(17) | C12 | C13 | C17 | 116.01(15) |
| C4  | C3  | C2  | 119.71(17) | C12 | C13 | C18 | 110.68(16) |
| C3  | C4  | C5  | 121.05(17) | C17 | C13 | C14 | 99.29(14)  |
| C4  | C5  | C6  | 117.74(15) | C17 | C13 | C18 | 109.63(15) |
| C4  | C5  | C10 | 120.02(16) | C18 | C13 | C14 | 112.83(15) |
| C10 | C5  | C6  | 122.24(16) | C8  | C14 | C13 | 113.30(14) |
| C5  | C6  | C7  | 112.85(15) | C8  | C14 | C15 | 118.99(15) |
| C6  | C7  | C8  | 110.30(14) | C13 | C14 | C15 | 103.86(14) |
| C7  | C8  | C9  | 109.10(15) | C14 | C15 | C16 | 103.37(15) |
| C14 | C8  | C7  | 113.05(14) | C17 | C16 | C15 | 105.70(15) |
| C14 | C8  | C9  | 108.35(14) | O2  | C17 | C13 | 111.03(15) |
| C10 | C9  | C8  | 111.12(15) | O2  | C17 | C16 | 113.13(16) |
| C10 | C9  | C11 | 114.73(15) | C13 | C17 | C16 | 104.61(14) |
| C11 | C9  | C8  | 111.71(15) | C20 | C19 | 01  | 122.4(2)   |
| C1  | C10 | C5  | 117.64(16) | C22 | C21 | 02  | 122.5(2)   |
|     |     |     |            |     |     |     |            |

**Table S13.** Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for CCDC 1444530.

| Atom | X    | У     | Z    | U(eq) |
|------|------|-------|------|-------|
| H1   | 663  | 7028  | 2861 | 24    |
| H2   | -625 | 5482  | 2834 | 25    |
| H4   | 3743 | 4285  | 3718 | 23    |
| H6A  | 6386 | 5282  | 3673 | 23    |
| H6B  | 5682 | 5772  | 4477 | 23    |
| H7A  | 6913 | 6794  | 3099 | 24    |
| H7B  | 7663 | 6874  | 3988 | 24    |
| H8   | 4984 | 7628  | 4399 | 20    |
| H9   | 4326 | 7683  | 2716 | 21    |
| H11A | 2069 | 8447  | 3912 | 26    |
| H11B | 1720 | 8477  | 2972 | 26    |
| H12A | 3977 | 9601  | 2777 | 27    |
| H12B | 2751 | 10035 | 3459 | 27    |
| H14  | 6596 | 8712  | 3145 | 20    |
| H15A | 8945 | 8578  | 3951 | 28    |
| H15B | 7824 | 8666  | 4758 | 28    |
| H16A | 8174 | 10323 | 4698 | 27    |
| H16B | 9068 | 10240 | 3834 | 27    |
| H17  | 6563 | 10469 | 3172 | 23    |
| H18A | 5480 | 9568  | 5128 | 35    |
| H18B | 3768 | 8991  | 4877 | 35    |
| H18C | 3806 | 10170 | 4862 | 35    |
| H19  | 1237 | 3352  | 4351 | 31    |
| H20A | 1615 | 2027  | 3098 | 37    |
| H20B | 2003 | 1810  | 4047 | 37    |
| H21  | 7734 | 12027 | 3614 | 31    |
| H22A | 5400 | 13075 | 4555 | 39    |
| H22B | 7120 | 13525 | 4114 | 39    |

## Experimental

The suitable single crystal of estradiol divinyl ether (**2s**) was kept at 100(2) K during data collection. Using Olex2 [4], the structure was solved with the Superflip [5] structure solution program using Charge Flipping and refined with the ShelXL [6] refinement package using Least Squares minimisation.

- 4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst., 40, 786-790; Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984; Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
- 6. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystallographic data for the investigated compound have been deposited with the Cambridge Crystallographic Data Center, CCDC 1444530. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; e-mail: <a href="mailto:deposit@ccdc.cam.ac.uk">deposit@ccdc.cam.ac.uk</a> or <a href="mailto:www.ccdc.cam.ac.uk">www.ccdc.cam.ac.uk</a>

## S4. Characterization and spectral data

#### 1,3-dimethyl-5-(vinyloxy)benzene (2a)



1,3-dimethyl-5-(vinyloxy)benzene was obtained as yellow oil (104 mg, 70 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.73 (s, 1H), 6.64 (s,2H), 6.63 (dd, 1H), 4.74 (dd, J = 13.7 Hz, 1.5 Hz, 1H), 4.40 (dd, J = 6.1 Hz, 1.5 Hz, 1H), 2.31 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  157.0, 148.6, 139.6, 125.0, 114.9, 94.7, 21.4; analysis (calcd., found for C<sub>10</sub>H<sub>12</sub>O): C (81.04, 81.09), H (8.16, 8.18).

#### Cyclohexyl vinyl ether (2b)



Cyclohexyl vinyl ether was obtained as colorless oil (115 mg, 91 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.33 (dd, J = 14.1 Hz, 6.6 Hz, 1H), 4.28 (dd, J = 14.1 Hz, 1.4 Hz, 1H), 3.97 (dd, J = 6.6 Hz, 1.4 Hz, 1H), 3.73 (tt, J = 9.1 Hz, 3.8 Hz, 1H), 1.92 – 1.88 (m, 2H), 1.77 – 1.72 (m, 2H), 1.44 – 1.23 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.7, 88.2, 77.7, 32.1, 25.7, 23.9; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>8</sub>H<sub>14</sub>AgO, 233.0096; found, 233.0091.

#### 1-isopropyl-4-methyl-2-(vinyloxy)cyclohexane (2c)



1-isopropyl-4-methyl-2-(vinyloxy)cyclohexane was obtained as colorless oil (166 mg, 91 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.32 (dd, J = 14.1 Hz, 6.5 Hz, 1H), 4.28 (dd, J = 14.1 Hz, 1.4 Hz, 1H), 3.94 (dd, J = 6.5 Hz, 1.4 Hz, 1H), 3.52 (td, J = 10.7 Hz, 4.3 Hz, 1H), 2.14 – 2.03 (m, 2H), 1.69 – 1.62 (m, 2H), 1.44 – 1.30 (m, 2H), 1.06 – 0.96 (m, 2H), 0.96-0.84 (m, 7H), 0.77 (d, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.5, 87.7, 80.0, 47.9, 41.0, 34.5, 31.6, 26.0, 23.7, 22.3, 20.9, 16.5; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>22</sub>AgO, 289.0722; found, 289.0721.

### 1,2,2,6,6-pentamethyl-4-(vinyloxy)piperidine (2d)



1,2,2,6,6-pentamethyl-4-(vinyloxy)piperidine was obtained as colorless oil (191 mg, 97 %). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  6.31 (dd, J = 14.2 Hz, 6.7 Hz, 1H), 4.46 (dd, J = 14.2 Hz, 1.3 Hz, 1H), 4.05 (dd, J = 6.7 Hz, 1.3 Hz, 1H), 3.98 (tt, J = 11.3 Hz, 4.0 Hz, 1H), 2.08 (s, 3H), 1.88 – 1.84 (m, 2H), 1.57 (t, J = 11.6 Hz, 2H), 1.05 (s, 6H), 0.84 (s, 6H); <sup>13</sup>C NMR (100 MHz,  $C_6D_6$ ):  $\delta$  151.0, 87.9, 71.6, 55.0, 46.7, 33.1, 28.1, 20.1; HRMS (m/z): [M]<sup>+</sup> calcd. for  $C_{12}H_{24}NO$ , 198.1858; found, 198.1851.



2,2,6,6-tetramethyl-4-(vinyloxy)piperidine was obtained as colorless oil (124 mg, 68 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.35 (dd, J = 14.2 Hz, 6.6 Hz, 1H), 4.29 (dd, J = 14.2 Hz, 1.6 Hz, 1H), 4.18 (tt, J = 11.3 Hz, 4.1 Hz, 1H), 4.01 (dd, J = 6.6 Hz, 1.6 Hz, 1H), 1.98 (dd, J = 1.9 Hz, 0.7 Hz, 2H), 1.20 (s, 6H), 1.15 (s, 6H), 1.13 – 1.07 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.3, 88.3, 72.9, 51.5, 44.4, 34.8, 29.1; HRMS (m/z): [M]<sup>+</sup> calcd. for C<sub>11</sub>H<sub>22</sub>NO, 184.1701; found, 184.1706.

#### 1,8-bis(vinyloxy)octane (2f)



1,8-Bis(vinyloxy)octane was obtained as colorless oil (166 mg, 84 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.46 (dd, J = 14.3 Hz, 6.8 Hz, 2H), 4.17 (dd, J = 14.3 Hz, 1.8 Hz, 2H), 3.97 (dd, J = 6.8 Hz, 1.8 Hz, 2H), 3.67 (t, J = 6.6 Hz, 4H), 1.65 (quint, J=7Hz, 4H), 1.41 – 1.31 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  152.1, 86.4, 68.2, 29.4, 29.2, 26.1; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>22</sub>AgO<sub>2</sub>, 305.0671; found, 305.0670. **2-(vinyloxy)octane (2g)** 



2-(vinyloxy)octane was obtained as yellow oil (131 mg, 84 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.31 (dd, J = 14.2 Hz, 6.6 Hz, 1H), 4.25 (dd, J = 14.2 Hz, 1.4 Hz, 1H), 3.96 (dd, J = 6.6 Hz, 1.4 Hz, 1H), 3.86 (m, 1H), 1.48 – 1.24 (m, 10H), 1.20 (d, J = 6.2 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.2, 87.9, 76.2, 36.6, 31.9, 29.4, 25.5, 22.7, 19.9, 14.2; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>20</sub>AgO, 263.0565; found, 263.0566.

#### 1-Hexyl vinyl ether (2h)



1-Hexyl vinyl ether was obtained as yellow oil (105 mg, 82 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.47 (dd, J = 14.3 Hz, 6.8 Hz, 1H), 4.17 (dd, J = 14.3 Hz, 1.9 Hz, 1H), 3.97 (dd, J = 6.8 Hz, 1.9 Hz, 1H), 3.67 (t, J = 6.6 Hz, 2H), 1.63 (quint, 2H), 1.41 – 1.28 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  152.2, 86.3, 68.3, 31.7, 29.2, 25.8, 22.7, 14.2; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>8</sub>H<sub>16</sub>AgO, 235.0252; found, 235.0247.

## Bornyl vinyl ether (2i)

Bornyl vinyl ether was obtained as a light oil (166 mg, 92%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.42 (dd, *J* = 14.3, 6.7 Hz, 1H), 4.14 (dd, *J* = 14.3, 1.5 Hz, 1H), 4.04 (ddd, *J* = 9.5, 3.2, 2.1 Hz, 1H), 3.96 (dd, *J* = 6.7, 1.6 Hz, 1H), 2.29 – 2.20 (m, 1H), 2.03 (ddd, *J* = 14.1, 10.0, 4.4 Hz, 1H), 1.74 (dd, *J* = 7.7, 4.3 Hz, 1H), 1.70 (dd, *J* = 8.0, 3.5 Hz, 1H), 1.33 – 1.21 (m, 2H), 1.09 (dd, *J* = 13.4, 3.4 Hz, 1H), 0.92 – 0.89 (m, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.87, 86.92, 83.86, 49.18, 47.75, 44.98, 36.37, 27.95, 26.71, 19.71, 18.85, 13.69. HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>20</sub>AgO, 287.0560; found, 287.0567.

## 1-(vinyloxy)naphthalene (2j)



1-(vinyloxy)naphthalene was obtained as yellow oil (34 mg, 36 %). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  8.38 – 8.35 (m, 1H), 7.61 – 7.58 (m, 1H), 7.36 (dd, J = 8.3 Hz, 0.9 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.10 (dd, J = 8.2 Hz, 7.6 Hz, 1H), 6.75 (dd, J = 7.6 Hz, 1.0 Hz, 1H), 6.48 (dd, J = 13.7 Hz, 6.0 Hz, 1H), 4.83 (dd, J = 13.7 Hz, 1.5 Hz, 1H), 4.27 (dd, J = 6.0 Hz, 1.5 Hz, 1H); <sup>13</sup>C NMR (100 MHz,  $C_6D_6$ ):  $\delta$  153.3, 148.9, 135.3, 127.9, 126.9, 126.5, 126.1, 125.9, 123.3, 122.4, 110.7, 95.7; analysis (calcd., found for  $C_{12}H_{10}O$ ): C (84.68, 86.16), H (5.92, 4.47).

#### 1,2-dimethyl-4-(vinyloxy)benzene (2k)



1,2-dimethyl-4-(vinyloxy)benzene was obtained as yellow oil (76 mg, 70 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.07 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 2.5 Hz, 1H), 6.75 (dd, J = 8.2 Hz, 2.6 Hz, 1H), 6.62 (dd, J = 13.8 Hz, 6.1 Hz, 1H), 4.71 (dd, J = 13.7 Hz, 1.6 Hz, 1H), 4.37 (dd, J = 6.1 Hz, 1.6 Hz, 1H), 2.25 (s, 3H), 2.22 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.0, 149.0, 138.2, 131.5, 130.6, 118.7, 114.5, 94.2, 20.1, 19.1; analysis (calcd., found for C<sub>10</sub>H<sub>12</sub>O): C (81.04, 81.21), H (8.16, 8.47).

#### Phenyl vinyl ether (21)



Phenyl vinyl ether was obtained as yellow oil (52 mg, 54 %). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  7.05 – 6.99 (m, 2H), 6.89 – 6.80 (m, 3H), 6.39 (dd, J = 13.7 Hz, 6.1 Hz, 1H), 4.74 (dd, J = 13.7 Hz, 1.5 Hz, 1H), 4.20 (dd, J = 6.1 Hz, 1.5 Hz, 1H); <sup>13</sup>C NMR (100 MHz,  $C_6D_6$ ):  $\delta$  157.4, 148.6, 129.9, 123.3, 117.4, 95.0.

#### 1-methoxy-4-(vinyloxy)benzene (2m)



1-methoxy-4-(vinyloxy)benzene was obtained as yellow oil (62 mg, 41 %). <sup>1</sup>H NMR (400 MHz,  $CDCI_3$ ):  $\delta$  7.00 - 6.91 (m, 2H), 6.89 - 6.81 (m, 2H), 6.59 (dd, J = 13.8 Hz, 6.18= Hz, 1H), 4.64 (dd, J = 13.8 Hz, 1.6

Hz, 1H), 4.33 (dd, J = 6.1 Hz, 1.6 Hz, 1H), 3.79 (s, 3H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.8, 150.7, 149.7, 118.8, 114.8, 93.7, 55.8; analysis (calcd., found for C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>): C (71.98, 80.01), H (6.71, 6.75).

#### 1-methyl-4-(vinyloxy)benzene (2n)



1-methyl-4-(vinyloxy)benzene was obtained as yellow oil (66 mg, 62 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.16 – 7.09 (m, 2H), 6.93 – 6.88 (m, 2H), 6.63 (dd, J = 13.7 Hz, 6.1 Hz, 1H), 4.72 (dd, J = 13.7 Hz, 1.6 Hz, 1H), 4.38 (dd, J = 6.1 Hz, 1.6 Hz, 1H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.8, 148.9, 132.8, 130.2, 117.3, 94.4, 20.8; analysis (calcd., found for C<sub>9</sub>H<sub>10</sub>O): C (80.56, 80.53), H (7.51, 7.48).

2-(vinyloxy)-1,1'-biphenyl (20)



2-(vinyloxy)-1,1'-biphenyl was obtained as yellow oil (41 mg, 32 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 – 7.52 (m, 2H), 7.45 – 7.40 (m, 3H), 7.37 – 7.32 (m, 2H), 7.19 (td, J = 7.5 Hz, 1.2 Hz, 1H), 7.11 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 6.58 (dd, J = 13.8 Hz, 6.2 Hz, 1H), 4.61 (dd, J = 13.8 Hz, 1.7 Hz, 1H), 4.35 (dd, J = 6.2 Hz, 1.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.6, 149.3, 137.9, 132.8, 131.3, 129.5, 128.8, 128.2, 127.3, 124.0, 118.4, 94.5; HRMS (m/z): [M]<sup>+</sup> calcd. for C<sub>14</sub>H<sub>12</sub>AgO, 302.9939; found, 302.9944.

## 2-chloro-1,3-dimethyl-5-(vinyloxy)benzene (2p)



2-chloro-1,3-dimethyl-5-(vinyloxy)benzene was obtained as yellow oil (44 mg, 38 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.74 (s, 2H), 6.58 (dd, J = 13.7 Hz, 6.1 Hz, 1H), 4.74 (dd, J = 13.7 Hz, 1.7 Hz, 1H), 4.42 (dd, J = 6.1 Hz, 1.7 Hz, 1H), 2.36 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.7, 148.4, 137.7, 117.2, 95.3, 21.0; analysis (calcd., found for C<sub>10</sub>H<sub>11</sub>ClO): C (65.76, 65.81), H (6.07, 6.06).

## Benzyl vinyl ether (2q)



Benzyl vinyl ether was obtained as colorless oil (123 mg, 92 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 – 7.36 (m, 5H), 6.65 (dd, J = 14.3 Hz, 6.8 Hz, 1H), 4.83 (s, 2H), 4.40 (dd, J = 14.3 Hz, 2.1 Hz, 1H), 4.17 (dd, J = 6.8 Hz, 2.1 Hz, 1H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.7, 137.0, 128.7, 128.0, 127.6, 87.4, 70.1; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>9</sub>H<sub>10</sub>AgO, 240.9783; found, 240.9788.



Estradiol divinyl ether was obtained as white crystals (26 mg, 52 %). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  7.06 (d, J = 8.55 Hz, 1H), 6.85 (dd, J = 8.55 Hz, 2.59 Hz, 1H), 6.76 (d, J = 2.44 Hz, 1H), 6.54 (dd, J = 13.73 Hz, 6.10 Hz, 1H), 6.36 (dd, J = 14.11 Hz, 6.64 Hz, 1H), 4.82 (dd, J = 13.73 Hz, 1.37 Hz, 1H), 4.42 (dd, J = 14.11 Hz, 1.30 Hz, 1H), 4.24 (dd, J = 6.10 Hz, 1.37 Hz, 1H), 4.03 (dd, J = 6.64 Hz, 1.30 Hz, 1H), 3.60 – 3.56 (m, 1H), 2.62 – 2.59 (m, 2H), 2.04 – 1.87 (m, 4H), 1.62 – 1.53 (m, 2H), 1.41 – 1.03 (m, 7H), 0.81 (s, 3H), 0.81 – 0.74 (m, 1H); <sup>13</sup>C NMR (100 MHz,  $C_6D_6$ ):  $\delta$  155.5, 152.2, 149.2, 138.4, 135.4, 127.0, 117.7, 115.1, 94.3, 88.2, 87.9, 49.9, 44.2, 43.7, 38.6, 37.7, 29.9, 28.1, 27.4, 26.5, 23.4, 12.0; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>22</sub>H<sub>28</sub>AgO<sub>2</sub>, 431.1140; found, 431.1142.

#### Cholesteryl vinyl ether (2t)



Cholesteryl vinyl ether was obtained as white crystals (45.6 mg, 91 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.33 (dd, J = 14.1 Hz, 6.6 Hz, 1H), 5.37 (dt, J = 5.3 Hz, 1.8 H,z 1H), 4.29 (dd, J = 14.1 Hz, 1.4 Hz, 1H), 3.99 (dd, J = 6.6 Hz, 1.4 Hz, 1H), 3.63 (tt, J = 11.2 Hz, 4.6 Hz, 1H), 2.39 (ddd, J = 13.2 Hz, 4.9 Hz, 2.1 Hz, 1H), 2.34 - 2.24 (m, 1H), 2.13 - 1.76 (m, 6H), 1.67 - 1.04 (m, 20H), 1.01 (s, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.87 (dd, J = 6.6 Hz, 1.7 Hz, 6H), 0.68 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.6, 140.4, 122.4, 88.4, 79.2, 56.9, 56.3, 50.3, 42.5, 39.9, 39.7, 38.9, 37.2, 36.9, 36.4, 35.9, 32.1, 32.0, 28.4, 28.3, 28.2, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>29</sub>H<sub>48</sub>AgO, 519.2756; found, 519.2758.

#### Estradiol vinyl ether (2u)



Estradiol vinyl ether was obtained as white crystals (45 mg, 74 %). <sup>1</sup>H NMR (400 MHz,  $C_6D_6$ ):  $\delta$  7.05 (d, J = 8.4 Hz, 1H), 6.48 (dd, J = 8.4 Hz, 2.7 Hz, 1H), 6.37 (dd, J = 14.1 Hz, 6.6 Hz, 1H), 6.36 (s, 1H), 4.43 (dd, J = 14.1 Hz, 1.3 Hz, 1H), 4.03 (dd, J = 6.6 Hz, 1.3 Hz, 1H), 3.96 (br. s, 1H), 3.58 (dd, J = 8.9 Hz, 7.7 Hz, 1H), 2.64 (dd, J = 6.9 Hz, 3.3 Hz, 2H), 2.12 - 1.86 (m, 4H), 1.71 - 1.51 (m, 2H), 1.45 - 1.02 (m, 7H), 0.82 (s, 3H); <sup>13</sup>C NMR (100 MHz,  $C_6D_6$ ):  $\delta$  154.3, 152.3, 138.0, 132.4, 126.8, 115.6, 113.1, 88.3, 87.9, 49.9,

44.2, 43.7, 38.8, 37.8, 29.9, 28.1, 27.6, 26.6, 23.4, 12.0; HRMS (m/z):  $[M+Ag]^{+}$  calcd. for  $C_{20}H_{26}AgO_2$ , 405.0984; found, 405.0995.

*N-isopropyl-3-(4-(2-methoxyethyl)phenoxy)-2-(vinyloxy)propan-1-amine (2v)* 



*N*-isopropyl-3-(4-(2-methoxyethyl)phenoxy)-2-(vinyloxy)propan-1-amine was obtained as colorless oil (43.5 mg, 87 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.12 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.42 (dd, J = 14.1 Hz, 6.5 Hz, 1H), 4.39 (dd, J = 14.1 Hz, 1.7 Hz, 1H), 4.26 – 4.20 (m, 1H), 4.09 – 4.02 (m, 3H), 3.55 (t, J = 7.1 Hz, 2H), 3.34 (s, 3H) 2.96 – 2.79 (m, 6H), 1.06 (d, J = 6.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  157.2, 151.4, 131.6, 129.9, 114.8, 89.4, 78.1, 74.0, 68.4, 58.8, 48.8, 48.4, 35.4, 23.1, 23.0; HRMS (m/z): [M]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>28</sub>NO<sub>3</sub>, 294.2069; found, 294.2065.

## 1-((4-chlorophenyl)(phenyl)methyl)-4-(2-(2-(vinyloxy)ethoxy)ethyl)piperazine (2w)



1-((4-chlorophenyl)(phenyl)methyl)-4-(2-(2-(vinyloxy)ethoxy)ethyl)piperazine was obtained as colorless oil (42.5 mg, 85 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.32 (m, 4H), 7.28 – 7.16 (m, 5H), 6.48 (dd, J = 14.3 Hz, 6.8 Hz, 1H), 4.20 (s, 1H), 4.17 (dd, J = 14.3 Hz, 2.1 Hz, 1H), 4.00 (dd, J = 6.8 Hz, 2.1 Hz, 1H), 3.81 (dd, J = 5.7 Hz, 3.8 Hz, 2H), 3.68 (dd, J = 5.7 Hz, 3.8 Hz, 2H), 3.64 (t, J = 5.9 Hz, 2H), 2.62 (t, J = 5.8 Hz, 2H), 2.55 (br. s, 4H) 2.42 (br. s, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.9, 142.3, 141.5, 132.7, 129.3, 128.8, 128.7, 128.0, 127.3, 86.8, 75.6, 69.5, 69.2, 67.4, 57.8, 54.0, 51.8; HRMS (m/z): [M]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>30</sub>ClN<sub>2</sub>O<sub>2</sub>, 401.1996; found, 401.1991.

#### Vinyloxyferrocene (2z)



Vinyloxyferrocene was obtained as orange oil (173 mg, 76 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  6.66 (dd, *J* = 13.8 Hz, 6.1 Hz, 1H), 4.65 (dd, *J* = 13.8 Hz, 1.7 Hz, 1H), 4.30 (dd, *J* = 6.1 Hz, 1.7 Hz, 1H), 4.24 (s, 5H), 4.17 (t, *J* = 2.0 Hz, 2H), 3.89 (t, *J* = 2.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  149.9, 123.6, 93.3, 69.0, 62.7, 57.5; HRMS (m/z): [M+Ag]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>12</sub>AgFeO, 334.9289; found, 334.9286.

## S5. NMR spectra





Cyclohexyl vinyl ether (2b)



# 



1-isopropyl-4-methyl-2-(vinyloxy)cyclohexane (2c)



1,2,2,6,6-pentamethyl-4-(vinyloxy)piperidine (2d)



2,2,6,6-tetramethyl-4-(vinyloxy)piperidine (2e)





2-(vinyloxy)octane (2g)



1-Hexyl vinyl ether (2h)





1-(vinyloxy)naphthalene (2j)



1,2-dimethyl-4-(vinyloxy)benzene (2k)



Phenyl vinyl ether (2I)



Dilution with pentane was utilized for product stabilization.

1-methoxy-4-(vinyloxy)benzene (2m)



1-methyl-4-(vinyloxy)benzene (2n)





2-chloro-1,3-dimethyl-5-(vinyloxy)benzene (2p)





Estradiol divinyl ether (2s)



Cholesteryl vinyl ether (2t)





Estradiol vinyl ether (2u)







Vinyloxyferrocene (2z)





**Figure S3.** Bottom: <sup>1</sup>H NMR spectrum of product **2a** synthesized under regular experimental conditions using  $H_2O$  as a reagent and DMSO as a solvent (signals of the vinyl protons are marked by the asterisk); top: <sup>1</sup>H NMR spectrum of product **2a** synthesized in the deuteration study with deuterated ROD derivative of **1a** and using  $D_2O$  as a reagent and DMSO-d<sub>6</sub> as a solvent.

### S6. XPD and SEM study of inorganic residue

Scanning electron microscopy of the initial calcium carbide and inorganic residue isolated after the reaction were studied at low, medium and high magnifications (Figure 4 in the article). In order to estimate the composition of the inorganic solid residue isolated after the reaction of phenol **1a** with  $CaC_2$  in the presence of KF the X-ray microanalysis technique in the combination with scanning electron microscopy (EDS-SEM) was used. Elemental composition of  $CaF_2$  was confirmed by EDS-SEM analysis.

In addition to EDS-SEM, two samples were studied by synchrotron X-ray powder diffraction (XPD). Sample 1: Inorganic residue isolated after the reaction of phenol **1a** with calcium carbide and KF (Table 1, entry 9 in the article); Sample 2: Inorganic residue isolated after the reaction of calcium carbide with water in the presence of KF (reaction 2, Figure 5 in the article). The resulting pattern for sample 1 completely corresponds to the pattern obtained for the

sample 2 (Figure S4). Both samples predominantly contain  $CaF_2$  phase with some CaO phase as an impurity (the later originated from  $Ca(OH)_2$  after drying). The content of the studied inorganic phase is in agreement with proposed reaction mechanisms.





| 2θ.         | dea |   |
|-------------|-----|---|
| <b>∠</b> 0, | uuu | • |



## **S7.** Theoretical calculations

### **Computational Details**

All structures were optimized by PBE1PBE<sup>10</sup> DFT method with 6-311++G(d,p) basis set<sup>11</sup> (Grid=UltraFine). Calculations in DMSO medium were performed by SMD continuum solvation model.<sup>12</sup> Molecular structures were optimized in DMSO medium. For all molecules the normal mode analysis was carried out at DFT level and all transition states have one imaginary frequency corresponding to hydroalkoxylation reaction. The validity of all transition states was confirmed by intrinsic reaction coordinate calculations (IRC).<sup>13</sup> For all optimized structures the single point CCSD(T)<sup>14</sup> calculations at same basis set in vacuum and DMSO (SMD) was performed. The CCSD(T) thermodynamic parameters were calculated as sum G(CCSD(T)) = E(CCSD(T)) + DFT(Thermal correction to Gibbs Free Energy) and H(CCSD(T)) = E(CCSD(T)) + DFT(Thermal correction to Enthalpy). Gaussian 09<sup>15</sup> program package was used for all calculations.

Detailed description of the calculations for the reaction with MeOH as a substrate (Figure 7 in the manuscript) was provided below. Similar procedure was utilized for the calculations with PhOH as a substrate (Figure 8 in the manuscript).

<sup>(10)</sup> a) Perdew, J.P.; Burke, K.; Ernzerhof M. *Phys. Rev. Lett.* **1996**, *77*, 3865. b) Adamo, C; Barone, V. J. Chem. *Phys.* **1999**, *110*, 6158.

<sup>(11)</sup> a) McLean, A.D.; Chandler, G.S. *J. Chem. Phys.* **1980**, *72*, 5639. b) Krishnan, R; Binkley, J.S.; Seeger, R.; Pople, J.A. *J. Chem. Phys.* **1980**, *72*, 650. c) Clark T., Chandrasekhar J., Spitznagel G.W., Schleyer P.v.R. *J. Comp. Chem.* **1983**, *4*, 294.

<sup>(12)</sup> Marenich A.V., Cramer C. J., Truhlar D.G. J. Phys. Chem. B, 2009, 113, 6378.

<sup>(13)</sup> Hratchian H.P., Schlegel H.B. J. Chem. Theory Comput. 2005, 1, 61.

<sup>(14)</sup> a) Bartlett, R.J.; Purvis, G.D. *Int. J. Quantum Chem.* **1978**, *14*, 561. b) Pople, J.A.; Krishnan, R.; Schlegel, H.B.; Binkley, J.S. *Int. J. Quantum Chem.* **1978**, *14*, 545. c)Pople, J.A.; Head-Gordon, M.; Raghavachari, K. *J. Chem. Phys.* **1987**, *87*, 5968. d) Bartlett, R.J.; Musial, M. *Rev. Mod. Phys.* **2007**, *79*, 291.

<sup>(15)</sup> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*; Gaussian, Inc., Wallingford CT, 2013.

## Halide ion association with substrate molecules

Isolated molecules

**Figure S5.** Optimized molecular structures of the substrate molecules and fluoride associates, PBE1PBE/6-311++G(d,p). The CCSD(T) single point energies are in parentheses.



**Figure S6.** Optimized molecular structures of the substrate molecules and fluoride associates, PBE1PBE/6-311++G(d,p), DMSO (SMD model). The CCSD(T) single point energies are in parentheses.



## Hydroalkoxylation reaction

#### Isolated molecules

**Figure S7.** Optimized molecular structures of the reagents, transition states and product for the acetylene hydroalkoxylation reactions promoted by fluoride ion in vacuum. The DFT imaginary frequencies for transition states are denoted by red color. The atomic movements corresponding to imaginary frequencies are denoted by red arrows. Activation energies ( $\Delta E_a$ ,  $\Delta G_a$ ) and reaction energy ( $\Delta E$ ,  $\Delta G$ ) are in kcal/mol. The CCSD(T) single point energies are in parentheses.



**Figure S8.** Optimized molecular structures of the reagent, transition state and product for the acetylene hydroalkoxylation reactions promoted by chloride ion in vacuum. The DFT imaginary frequencies for transition states are denoted by red color. The atomic movements corresponding to imaginary frequencies are denoted by red arrows. Activation energies ( $\Delta E_a$ ,  $\Delta G_a$ ) and reaction energy ( $\Delta E$ ,  $\Delta G$ ) are in kcal/mol. The CCSD(T) single point energies are in parentheses.



**Figure S9.** Intrinsic reaction coordinate (IRC) for the II-TS (only a fraction of reaction coordinate is shown near the TS region; further optimizations are carried out to reach stationary points of initial structure and product).



**Figure S10.** Intrinsic reaction coordinate (IRC) for the II-TS-F (only a fraction of reaction coordinate is shown near the TS region; further optimizations are carried out to reach stationary points of initial structure and product).



**Figure S11.** Intrinsic reaction coordinate (IRC) for the IV-TS-F (only a fraction of reaction coordinate is shown near the TS region; further optimizations are carried out to reach stationary points of initial structure and product).



#### DMSO (SMD continuum solvation model)

**Figure S12.** Optimized molecular structures of the reagents, transition states and product for the acetylene hydroalkoxylation reactions promoted by fluoride ion in the DMSO medium (SMD continuum model). The DFT imaginary frequencies for transition states are denoted by red color. The atomic movements corresponding to imaginary frequencies are denoted by red arrows. The CCSD(T) single point energies are in parentheses.



**Figure S13.** Optimized molecular structures of the reagents, transition states and product for the acetylene hydroalkoxylation reactions promoted by chloride ion in the DMSO medium (SMD continuum model). The DFT imaginary frequencies for transition states are denoted by red color. The atomic movements corresponding to imaginary frequencies are denoted by red arrows. The CCSD(T) single point energies are in parentheses.



**Figure S14.** PES of the non-catalytic and fluoride-assisted hydroalkoxylation reaction for isolated molecules and DMSO-medium, PBE1PBE/6-311++G(d,p).



|              | МеОН  | MeOH-<br>F | C <sub>2</sub> H <sub>2</sub> | C <sub>2</sub> H <sub>2</sub> -<br>F | Ι     | I-F   | I-Cl  | II-TS | II-TS-<br>F | IV-TS-<br>F | IV-TS-<br>Cl | III/III-<br>F/III-Cl |
|--------------|-------|------------|-------------------------------|--------------------------------------|-------|-------|-------|-------|-------------|-------------|--------------|----------------------|
|              |       | •          | •                             |                                      | •     | v     | acuum | •     |             |             |              |                      |
| C1-O1        | 1.411 | 1.375      | _                             | _                                    | 1.416 | 1.386 | 1.397 | 1.437 | 1.447       | 1.380       | 1.416        | 1.411                |
| O1-H1        | 0.958 | 1.080      | _                             | -                                    | 0.959 | 1.018 | 0.984 | 1.086 | 1.108       | 1.316       | 1.046        | _                    |
| H1-X         | _     | 1.308      | _                             | -                                    | _     | 1.469 | 2.121 | _     | _           | 1.048       | 1.801        | _                    |
| H2-X         | _     | _          | _                             | _                                    | _     | _     | _     | _     | _           | _           | _            | _                    |
| C2-H2        | _     | -          | 1.065                         | 1.067                                | 1.065 | 1.064 | 1.064 | 1.086 | 1.091       | 1.074       | 1.088        | 1.082                |
| C2-C3        | _     | -          | 1.200                         | 1.225                                | 1.201 | 1.210 | 1.205 | 1.298 | 1.313       | 1.248       | 1.277        | 1.329                |
| C3-H3        | _     | -          | 1.065                         | 1.365                                | 1.073 | 1.129 | 1.091 | 1.082 | 1.101       | 1.075       | 1.081        | 1.090                |
| H1-C2        | _     | -          | _                             | -                                    | _     | _     | _     | 1.664 | 1.618       | _           | _            | 1.084                |
| O1-C3        | _     | -          | _                             | -                                    | _     | _     | _     | 1.576 | 1.534       | 1.862       | 1.696        | 1.352                |
| C1-O1-<br>H1 | 108.6 | 107.8      | -                             | -                                    | 109.1 | 107.1 | 106.5 | 113.1 | 119.4       | 115.0       | 110.3        |                      |
| 01-H1-<br>C2 | _     | -          | _                             | -                                    | _     | 174.7 | 149.5 | 108.6 | 107.6       | -           | -            | -                    |
| C3-O1-<br>H1 | -     | -          | -                             | _                                    | 121.1 | -     | -     | 78.3  | 79.3        | 112.3       | 110.6        | _                    |
| 01-H1-<br>X  | _     | 176.8      | —                             | _                                    | —     | 174.2 | 167.8 | _     | _           | 179.8       | 176.6        | _                    |
|              |       |            |                               |                                      |       | ]     | DMSO  |       |             |             |              |                      |
| C1-O1        | 1.418 | 1.399      | -                             | -                                    | 1.421 | 1.401 | 1.408 | 1.449 | 1.446       | 1.402       | 1.424        | 1.422                |
| O1-H1        | 0.961 | 1.001      | —                             | _                                    | 0.962 | 0.994 | 0.976 | 1.120 | 1.119       | 1.117       | 1.013        | _                    |
| H1-X         | —     | 1.537      | -                             | _                                    | -     | 1.572 | 2.159 | _     | _           | 1.221       | 1.912        | —                    |
| H2-X         | —     | _          | —                             | -                                    | —     | _     | _     | —     | _           | -           | -            | _                    |
| C2-H2        | —     | _          | 1.070                         | 1.069                                | 1.069 | 1.069 | 1.069 | 1.090 | 1.091       | 1.082       | 1.089        | 1.083                |
| C2-C3        | _     | _          | 1.202                         | 1.207                                | 1.203 | 1.205 | 1.203 | 1.310 | 1.312       | 1.257       | 1.269        | 1.332                |
| C3-H3        | _     | _          | 1.070                         | 1.111                                | 1.078 | 1.099 | 1.080 | 1.084 | 1.100       | 1.078       | 1.080        | 1.090                |
| H1-C2        | -     | -          | -                             | -                                    | -     | _     | _     | 1.618 | 1.609       | -           | -            | 1.086                |
| O1-C3        | _     | _          | _                             | 1                                    | _     | _     | _     | 1.500 | 1.516       | 1.826       | 1.766        | 1.348                |
| C1-O1-<br>H1 | 107.8 | 107.3      | _                             | -                                    | 108.2 | 107.2 | 107.1 | 115.3 | 115.4       | 111.3       | 108.6        | _                    |
| 01-H1-<br>C2 | -     | _          | _                             | _                                    | _     | 176.3 | 158.7 | 106.9 | 107.4       | _           | _            | _                    |
| C3-O1-<br>H1 | -     | -          | _                             | -                                    | 126.1 | _     | -     | 79.1  | 79.0        | 106.2       | 106.2        | _                    |
| 01-H1-<br>X  | -     | 177.3      | -                             | -                                    | -     | 176.5 | 174.4 | -     | —           | 179.6       | 178.2        | —                    |

**Table S20.** Interatomic distances (Å) and valence angles (degrees) for optimized molecules in vacuum and DMSO (SMD), PBE1PBE/6-311++G(d,p) (X = F, Cl).

| VAC                                                           | UUM                                                                       |
|---------------------------------------------------------------|---------------------------------------------------------------------------|
| MeOH (vacuum)                                                 | F <sup>(-)</sup> (vacuum)                                                 |
| F(DFT) = -115 626113                                          | F(DFT) = -99784183                                                        |
| H (DFT) = -115.020113                                         | H (DFT) = -0.0781823                                                      |
| (DFT) = -115.570555                                           | $\begin{array}{c} (DF1) = -99.701023 \\ C (DFT) = -00.700242 \end{array}$ |
| G(DPT) = -TTJ.JJJJT                                           | G(DEI) = -99.790342                                                       |
| E(CCSD(1)) = -113.4771217                                     | E(CCSD(1)) = -99.0799293                                                  |
| -0.74410 $0.12180$ $0.00000$                                  | F 0.00000 0.00000 0.00000                                                 |
|                                                               |                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |                                                                           |
| H = 1.02010 - 0.54420 - 0.09200                               |                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |                                                                           |
| MOCH-F (12000000000000000000000000000000000000                | C.H. (322011177)                                                          |
| $\mathbf{F} (\mathbf{D}\mathbf{F}\mathbf{T}) = -215 \ 161896$ | $E_{212}$ (vacuum)                                                        |
| $\mu$ (DFT) = -215,401090                                     | U(DT) = -77.240120                                                        |
| H (DFI) = -215.4000000                                        | $\Gamma$ (DF1) = -77.217207                                               |
| G(DPT) = -215.430774<br>E(CCCD(TT)) = -215.2044912            | G(DEI) = -77.240000                                                       |
| E(CCSD(T)) = -215.2044813                                     | E(CCSD(T)) = -77.1407696                                                  |
| 0 -0.46050 0.71090 0.00000                                    | C = 0.00000 = 0.00000 = 0.59980                                           |
| H = 2.36380 = 0.03150 = 0.00010                               | H = 0.00000 = 0.00000 = 1.66470                                           |
| H = 1 19070 = 1 02810 = 0.88530                               | H = 0.00000 = 0.00000 = 1.00470                                           |
| H = 1.19070 = 1.02810 = 0.000000                              |                                                                           |
| H = 0.55170 = 0.33390 = 0.00000                               |                                                                           |
| F = 1.74980 - 0.19050 - 0.00000                               |                                                                           |
| C <sub>2</sub> H <sub>2</sub> -F (vacuum)                     | I (vacuum)                                                                |
| E (DFT) = -177.075504                                         | E (DFT) = -192.880297                                                     |
| H (DFT) = -177.046211                                         | H (DFT) = -192.791611                                                     |
| G (DFT) = -177.071637                                         | G (DFT) = -192.831814                                                     |
| E(CCSD(T)) = -176.8583661                                     | E(CCSD(T)) = -192.6243356                                                 |
| C -1.84710 0.00060 -0.00000                                   | C 1.78940 0.06870 -0.02020                                                |
| C -0.62210 -0.00200 0.00000                                   | C 2.96850 -0.15770 0.01980                                                |
| н -2.91370 0.00360 0.00000                                    | н 0.73590 0.27080 -0.05420                                                |
| н 0.74280 -0.00130 0.00000                                    | н 4.01370 -0.35770 0.05420                                                |
| F 1.88730 0.00060 0.00000                                     | C -2.23710 -0.50410 0.01940                                               |
|                                                               | 0 -1.34540 0.59150 -0.07290                                               |
|                                                               | н -1.76300 -1.34290 -0.49200                                              |
|                                                               | н -2.42600 -0.79530 1.05960                                               |
|                                                               | н -3.19300 -0.29430 -0.47500                                              |
|                                                               | H -1.72900 1.34610 0.37680                                                |
| I-F (vacuum)                                                  | CL'' (vacuum)                                                             |
| E (DET) = -292.736683                                         | E (DFT) = -460.129342                                                     |
| H (DFT) = -292.647326                                         | H (DFT) = -460.126982                                                     |
| G (DFT) = -292.691/24                                         | G (DFT) = -460.144365                                                     |
| E(CCSD(T)) = -292.3692842                                     | E(CCSD(T)) = -459.718588                                                  |
| C = -2.88340 = 0.63970 = 0.00000                              |                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |                                                                           |
| H = 256680 = 123730 = 0.00130                                 |                                                                           |
| H = 2.56440 = 1.23940 = 0.88490                               |                                                                           |
| H = -1.38470 = 0.58210 = 0.00020                              |                                                                           |
| C 3.91830 0.21800 -0.00050                                    |                                                                           |
| C 2.72200 0.03870 0.00000                                     |                                                                           |
| Н 4.97070 0.37500 -0.00100                                    |                                                                           |
| н 1.60500 -0.12780 0.00050                                    |                                                                           |
| F 0.06570 -0.35100 0.00120                                    |                                                                           |

# XYZ coordinates (Å) and E, H, G values (a.u) of the optimized molecular structures

| I-Cl (vacuum)                                         | II-TS (vacuum)                                                           |
|-------------------------------------------------------|--------------------------------------------------------------------------|
| E (DFT) = -653.0445265                                | E (DFT) = -192.808791                                                    |
| H (DFT) = -652.953992                                 | H (DFT) = $-192.724297$                                                  |
| G (DFT) = -653.003961                                 | G (DFT) = -192.757317                                                    |
| E(CCSD(T)) = -652.379014                              | E(CCSD(T)) = -192.5419192                                                |
| C -3.16150 -0.74290 0.44120                           | C -0.86460 0.57790 0.02740                                               |
| 0 -2.74980 -0.18770 -0.77310                          | C = 1.64250 = 0.45270 = 0.15470                                          |
| H = 4.16640 = 1.16020 = 0.30250                       | H = 0.73060 1.64950 0.10090                                              |
| H = 2.49750 = 1.55270 0.78070                         | H = -2.00740 = 0.37970 = 0.50580                                         |
| H = -1.85360  0.18900  -0.61840                       | $0 \qquad 0 \qquad 45210 \qquad -0 \qquad 0.3820 \qquad -0 \qquad 58050$ |
| C = 4 32880 - 0.64270 - 0.06490                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                     |
| C = 3.18850 - 0.25680 - 0.01950                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                     |
| H = 5.33490 - 0.98560 - 0.10620                       | H $2.37480 - 0.63810 - 0.18300$                                          |
| н 2.15660 0.09470 0.02220                             | н -0.18710 -0.91290 -0.50870                                             |
| Cl 0.00570 0.86870 0.14190                            |                                                                          |
| II-TS-F (vacuum)                                      | IV-TS-F (vacuum)                                                         |
| E (DFT) = -292.637399                                 | E (DFT) = -292.692491                                                    |
| H (DFT) = -292.550930                                 | H (DFT) = -292.606037                                                    |
| G (DFT) = -292.588382                                 | G (DFT) = -292.645291                                                    |
| E(CCSD(T)) = -292.2631576                             | E(CCSD(T)) = -292.3216359                                                |
| C 0.77050 -0.69280 -0.11300                           | C -0.03020 -1.51930 -0.07420                                             |
| C 2.03760 -0.63090 0.22680                            | 0 -0.26540 -0.26100 0.44050                                              |
| н -0.18440 -1.23860 -0.16690                          | н -0.15600 -2.30500 0.69130                                              |
| н 2.57230 -1.53440 0.52210                            | н -0.70060 -1.75480 -0.91820                                             |
| C -0.57830 1.36640 0.29300                            | н 1.01690 -1.56240 -0.44070                                              |
| 0 0.46860 0.76010 -0.50150                            | F -2.30680 0.72730 -0.22450                                              |
| Н -1.41850 0.63480 0.26070                            | Н -1.40270 0.28730 0.06980                                               |
| H = -0.20840 1.50650 1.31550                          | C = 2.23060 = 0.38720 = 0.27590                                          |
| H = -0.81/60 2.32810 $-0.16/50$                       | C = 1.18440 = 0.88150 = 0.19260                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                     |
| F = -2.00000 = 0.98090 = 0.00220                      | H 0.39200 1.09040 0.38140                                                |
| E (DET) = -652 0013142                                | E (DET) = -102 035702                                                    |
| H (DFT) = -652.9913142                                | H (DFT) = -192.933792                                                    |
| G(DFT) = -652.903133                                  | G(DFT) = -192.879632                                                     |
| $E(CCSD(T)) = -652 \cdot 3170579$                     | E(CCSD(T)) = -192.674568                                                 |
| C = 0.74190 1 56920 $-0.12070$                        | $H = -2 \ 11070 \ -1 \ 12540 \ 0 \ 08590$                                |
| 0 -0.42650 0.33590 0.49900                            | $\begin{array}{c} C \\ 1.71240 \\ 0.10920 \\ 0.04040 \end{array}$        |
| н -0.66980 2.37080 0.61960                            | 0 0.44380 -0.50120 -0.06020                                              |
| н -0.04770 1.75320 -0.94510                           | н 2.45210 -0.68420 -0.06370                                              |
| н -1.77220 1.47000 -0.48890                           | н 1.86440 0.84620 -0.75780                                               |
| C -2.63530 -0.61860 -0.30560                          | Н 1.84420 0.59650 1.01390                                                |
| C -1.49100 -0.94010 0.16080                           | C -1.86730 -0.07070 0.03460                                              |
| н -3.34500 -1.41810 -0.50930                          | C -0.60770 0.34760 -0.03230                                              |
| Н -0.82330 -1.72660 0.48300                           | Н -2.67090 0.65330 0.03020                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | H -0.35420 1.40680 -0.08260                                              |
|                                                       |                                                                          |
|                                                       |                                                                          |
| DMSO                                                  | (SMD)                                                                    |
|                                                       |                                                                          |
| MeOH (DMSO)                                           | F <sup>(-)</sup> (DMSO)                                                  |
| E (DFT) = -115.631319                                 | E (DFT) = -99.924846                                                     |
| H (DFT) = -115.575762                                 | H (DFT) = -99.922486                                                     |
| G (DFT) = -115.602809                                 | G (DET) = -99.939005                                                     |
| E(UCSD(T)) = -115.482282                              | E(CCD(T)) = -99.8203019                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                                                          |
| H $1.02230 - 0.54770 - 0.89190$                       |                                                                          |
| H = -1.13150 = -0.75810 = 0.00000                     |                                                                          |
| MeOH-F (DMSO)                                         | C <sub>2</sub> H <sub>2</sub> (DMSO)                                     |
| E (DFT) = -215.571025                                 | E (DFT) = -77.250304                                                     |
| · · · · · · · · · · · · · · · · · · ·                 |                                                                          |
| H (DFT) = -215.512848                                 | H (DFT) = -77.219400                                                     |

| G (DFT) = -215.545447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G (DFT) = -77.242675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| E(CCSD(T)) = -215.3151077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E(CCSD(T)) = -77.1420218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| C -1.35420 -0.39850 -0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 0.00000 0.00000 -0.60090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 0 -0.51800 0.72350 -0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 0.00000 0.00000 0.60090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| н -2.39790 -0.06460 -0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н 0.00000 0.00000 -1.67040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| н -1.21120 -1.03410 -0.88850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н 0.00000 0.00000 1.67030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| н -1.21120 -1.03410 0.88840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 0.42680 0.39220 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| F 1.85140 -0.18410 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| $C_2H_2-F$ (DMSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| E (DFT) = -1//.182484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E (DFT) = -192.884580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| H (DFT) = -1//.149801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H (DFT) = -192.796200<br>C (DFT) = -102.825218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| G (DET) = -1//.1/5236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G (DFT) = -192.835218<br>E (CCSD(T)) = -192.6277349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| E(CCSD(T)) = -176.9666512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E(CCSD(T)) = -192.6277349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C = 1.92120 = 0.00050 = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C = 1.73650 = 0.07230 = 0.01240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| U = 2,00070, 0,00170, -0,00000, 0,00000, 0,0000, 0,0000, 0,0000, 0,0000, 0,0000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,000, 0,0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H = 0.39650 = 0.00170 = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| F = -2.04530 0.00140 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C = -2.16780 = 0.52900 = 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 -1.33100 0.61590 -0.07760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H -1.62120 -1.36730 -0.42070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н -2.40670 -0.77290 1.05750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н -3.10090 -0.39330 -0.54280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н -1.78770 1.35670 0.33180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| I-F (DMSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl <sup>(-)</sup> (DMSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| E (DFT) = -292.827360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E (DFT) = -460.234928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| H (DFT) = -292.737010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H (DFT) = $-460.232568$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| G (DFT) = -292.780222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G (DFT) = -460.249951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| E(CCSD(T)) = -292.4610994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E(CCSD(T)) = -459.823789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| C 3.03210 0.62620 -0.00500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl 0.00000 0.00000 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 0 2.46870 -0.65520 -0.06630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H $4.12350$ $0.53390$ $-0.00850$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Н 2.75060 1.25380 -0.86550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 -0.54570 -0.01210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 -0.54570 -0.01210<br>C -4.06230 0.18460 -0.04460<br>C -2.86630 0.04200 0.00380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 -0.54570 -0.01210<br>C -4.06230 0.18460 -0.04460<br>C -2.86630 0.04200 0.00380<br>H -5.12310 0.31280 -0.08670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 -0.54570 -0.01210<br>C -4.06230 0.18460 -0.04460<br>C -2.86630 0.04200 0.00380<br>H -5.12310 0.31280 -0.08670<br>H -1.77590 -0.08740 0.04450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H $2.74790$ $1.16980$ $0.90950$ H $1.48190$ $-0.54570$ $-0.01210$ C $-4.06230$ $0.18460$ $-0.04460$ C $-2.86630$ $0.04200$ $0.00380$ H $-5.12310$ $0.31280$ $-0.08670$ H $-1.77590$ $-0.08740$ $0.04450$ F $-0.06400$ $-0.27910$ $0.09150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 -0.54570 -0.01210<br>C -4.06230 0.18460 -0.04460<br>C -2.86630 0.04200 0.00380<br>H -5.12310 0.31280 -0.08670<br>H -1.77590 -0.08740 0.04450<br>F -0.06400 -0.27910 0.09150<br>I-C1 (DMSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II-TS (DMSO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>C (DFT) = $-653.037165$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>C (DFT) = 192.76162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSP(T)) = $-652.4616685$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $-3.41560 -0.76550 -0.25650$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C = -0.81550 = 0.56370 = -0.03230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>II-TS (DMSO)</b><br>E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-CI (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370                                                                                                                                                                                                                                                                                                                    |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790                                                                                                                                                                                                                                                                                    |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>C $-0.03070 0.62670 -0.23940$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790                                                                                                                                                                                                                                                                                    |  |  |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>E (DFT) = -292.780635                                                                                                                                                                                                                                                           |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>C1 $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>E (DFT) = -292.780635<br>H (DFT) = -292.694301                                                                                                                                                                                                                                  |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>C1 $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.658833$<br>G (DFT) = $-292.658833$<br>G (DFT) = $-292.698577$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>E (DFT) = -292.780635<br>H (DFT) = -292.694301<br>G (DFT) = -292.733064                                                                                                                                                                                                         |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>C1 $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.658833$<br>G (DFT) = $-292.3728194$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.733064<br>E (CCSD(T)) = -292.4079682                                                                                                                                                                                     |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>Cl $-0.03070 0.62677 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.658833$<br>G (DFT) = $-292.3728194$<br>C $0.00800 -0.74960 -0.03270$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.733064<br>E (CCSD(T)) = -292.4079682<br>C 0.12060 1.55240 -0.10650                                                                                                                                                       |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-C1 (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>Cl $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.698577$<br>E (CCSD(T)) = $-292.3728194$<br>C $0.00800 -0.74960 -0.03270$<br>C $0.74920 -1.80920 0.19240$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.733064<br>E (CCSD(T)) = -292.4079682<br>C 0.12060 1.55240 -0.10650<br>O 0.25770 0.29990 0.50930                                                                                                                          |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br><b>I-Cl (DMSO)</b><br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.037165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>Cl $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.658833$<br>G (DFT) = $-292.3728194$<br>C $0.00800 -0.74960 -0.03270$<br>C $0.74920 -1.80920 0.19240$<br>H $-1.01400 -0.34360 -0.02270$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.73064<br>E (CCSD(T)) = -292.4079682<br>C 0.12060 1.55240 -0.10650<br>O 0.25770 0.29990 0.50930<br>H 0.30360 2.35550 0.61630                                                                                              |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>I-Cl (DMSO)<br>E (DFT) = $-653.027165$<br>G (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>Cl $-0.03070 0.62670 -0.23940$<br>II-TS-F (DMSO)<br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.658833$<br>G (DFT) = $-292.3728194$<br>C $0.00800 -0.74960 -0.03270$<br>C $0.74920 -1.80920 0.19240$<br>H $-1.01400 -0.34360 -0.02270$<br>H $0.29020 -2.74230 0.52260$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.733064<br>E (CCSD(T)) = -292.4079682<br>C 0.12060 1.55240 -0.10650<br>O 0.25770 0.29990 0.50930<br>H 0.30360 2.35550 0.61630<br>H 0.81330 1.66190 -0.94930                                                               |  |  |  |
| H 2.74790 1.16980 0.90950<br>H 1.48190 $-0.54570 -0.01210$<br>C $-4.06230 0.18460 -0.04460$<br>C $-2.86630 0.04200 0.00380$<br>H $-5.12310 0.31280 -0.08670$<br>H $-1.77590 -0.08740 0.04450$<br>F $-0.06400 -0.27910 0.09150$<br>E (DFT) = $-653.1278373$<br>H (DFT) = $-653.085462$<br>E (CCSD(T)) = $-652.4616685$<br>C $3.41560 -0.76550 -0.25650$<br>O $2.93520 0.18520 0.66400$<br>H $4.45770 -0.98540 -0.00720$<br>H $2.85140 -1.70830 -0.21570$<br>H $3.38650 -0.39620 -1.29170$<br>H $2.00400 0.36500 0.43200$<br>C $-4.59530 -0.48210 0.14660$<br>C $-3.42800 -0.20670 0.05070$<br>H $-5.63270 -0.72740 0.23110$<br>H $-2.38050 0.04190 -0.03490$<br>C1 $-0.03070 0.62670 -0.23940$<br><b>II-TS-F (DMSO)</b><br>E (DFT) = $-292.746020$<br>H (DFT) = $-292.658833$<br>G (DFT) = $-292.698577$<br>E (CCSD(T)) = $-292.3728194$<br>C $0.00800 -0.74960 -0.03270$<br>C $0.74920 -1.80920 0.19240$<br>H $-1.01400 -0.34360 -0.02270$<br>H $0.29020 -2.74230 0.52260$<br>C $1.23250 1.41480 0.30000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II-TS (DMSO) E (DFT) = -192.817999<br>H (DFT) = -192.733454<br>G (DFT) = -192.766163<br>E (CCSD(T)) = -192.5503218<br>C -0.81550 0.56370 -0.03230<br>C -1.65740 -0.41510 0.19220<br>H -0.70020 1.64180 -0.01810<br>H -2.67710 -0.21010 0.51900<br>C 1.58910 -0.04460 0.29970<br>O 0.41540 -0.12270 -0.54640<br>H 1.91070 0.99570 0.33350<br>H 1.34260 -0.40610 1.30090<br>H 2.35730 -0.66200 -0.16370<br>H -0.25330 -1.00170 -0.35790<br>IV-TS-F (DMSO) E (DFT) = -292.780635<br>H (DFT) = -292.733064<br>E (CCSD(T)) = -292.4079682<br>C 0.12060 1.55240 -0.10650<br>O 0.25770 0.29990 0.50930<br>H 0.30360 2.35550 0.61630<br>H 0.81330 1.66190 -0.94930<br>H -0.90850 1.64480 -0.48830<br>E 2.15450 -0.83070 -0.26000 |  |  |  |

| Н        | 0.31460                   | 2.00140  | 0.32050  |                           | Η                     | 1.16470  | -0.23710 | 0.14000  |  |
|----------|---------------------------|----------|----------|---------------------------|-----------------------|----------|----------|----------|--|
| Н        | 1.49970                   | 1.08460  | 1.30710  |                           | С                     | -2.15570 | -0.36170 | -0.33970 |  |
| Н        | 2.03960                   | 1.99380  | -0.14730 |                           | С                     | -1.14830 | -0.83540 | 0.24400  |  |
| Н        | 1.67630                   | -0.61230 | -0.35170 |                           | Н                     | -3.09490 | -0.84140 | -0.58230 |  |
| F        | -2.75800                  | 0.37390  | -0.00000 |                           | Н                     | -0.62980 | -1.63870 | 0.74190  |  |
| IV-TS-C1 |                           |          |          | III (III-F, III-Cl)       |                       |          |          |          |  |
| E (      | E (DFT) = -653.0760769    |          |          |                           | E (DFT) = -192.940199 |          |          |          |  |
| Н (      | H (DFT) = -652.986961     |          |          |                           | H (DFT) = -192.849542 |          |          |          |  |
| G (      | G(DFT) = -653.027993      |          |          |                           | G (DFT) = -192.883590 |          |          |          |  |
| E(C      | E(CCSD(T)) = -652.4026068 |          |          | E(CCSD(T)) = -192.6711692 |                       |          |          |          |  |
| С        | -0.78610                  | 1.61580  | -0.17030 |                           | Η                     | -2.13750 | -1.11850 | -0.00000 |  |
| 0        | -0.46210                  | 0.45540  | 0.58870  |                           | С                     | 1.71880  | 0.11310  | -0.00000 |  |
| Н        | -0.04600                  | 2.38570  | 0.05780  |                           | 0                     | 0.44020  | -0.50910 | 0.00000  |  |
| Н        | -0.78950                  | 1.40130  | -1.24260 |                           | Η                     | 2.45820  | -0.68790 | 0.00010  |  |
| Н        | -1.77520                  | 1.95760  | 0.13330  |                           | Η                     | 1.85580  | 0.72970  | -0.89480 |  |
| С        | -2.47520                  | -0.78260 | -0.47850 |                           | Η                     | 1.85580  | 0.72980  | 0.89470  |  |
| С        | -1.49290                  | -0.95040 | 0.30630  |                           | С                     | -1.87210 | -0.06580 | 0.00000  |  |
| Н        | -3.15260                  | -1.61390 | -0.66780 |                           | С                     | -0.60410 | 0.34340  | 0.00000  |  |
| Н        | -0.92610                  | -1.58600 | 0.97020  |                           | Н                     | -2.66470 | 0.67280  | -0.00000 |  |
| Н        | 0.48040                   | 0.16740  | 0.35310  |                           | Η                     | -0.34480 | 1.40230  | 0.00000  |  |
| Cl       | 2.26060                   | -0.33250 | -0.13290 |                           |                       |          |          |          |  |