## Supporting Information

## Whole procedure solvent free route to CO<sub>2</sub> based waterborne polyurethane by elevated temperature dispersing strategy

Jin Wang, Hongming Zhang\*, Yuyang Miao, Lijun Qiao, Xianhong Wang\*

## Supporting information mentioned in main article

**Scheme S1.** Whole procedure VOC free preparation of  $CO_2$ -WPU by elevated temperature dispersing (ETD)strategy.



**Figure.S1** Dependences of reactant viscosity, NCO conversion and molecular weight of reactant on reaction time (for typical CO<sub>2</sub>-WPU).



**Figure.S2** Dependence of viscosity and molecule weight of prepolymer on NCO/OH from IPDI and CO<sub>2</sub>-polyol with  $M_n$  of 1350 g/mol and carbonate content of 30%.



**Figure.S3** Dependence of viscosity of  $CO_2$ -polyol and prepolymer on carbonate content of  $CO_2$ -polyol with similar  $M_n$  of 1400 g/mol, NCO/OH to be 2, and IPDI as the diisocyanate.



**Figure.S4** Dependence of viscosity of  $CO_2$ -polyol and prepolymer on molecule weight of  $CO_2$ -polyol with uniform carbonate content of 30%, NCO/OH to be 2, and IPDI as the diisocyanate.



Figure.S5 TEM image of CO<sub>2</sub>-WPU emulsion particles.



Figure.S6 TGA and DSC trace of  $CO_2$ -WPU multi-film.



Figure.S7 Tensile stress strain curve of typical CO<sub>2</sub>-WPU dried film.



Figure.S8 Dependence of tensile strength and elongation at break of CO<sub>2</sub>-WPUs on NCO/OH of prepolymer.



Figure.S9 Dependence of elastic modulus and elongation and break of CO<sub>2</sub>-WPUs on carbonate content of CO<sub>2</sub>-polyol.



**Figure.S10** Dependence of particle size, contact angle, and water absorption on  $M_n$  of CO<sub>2</sub>-polyol.



**Figure.S11a** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with carbonate content (CU%) and molecule weight ( $M_n$ ) respectively to be 30% and 1350 g/mol.



**Figure.S11b** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 40% and 1450 g/mol.



**Figure. S11c** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 48% and 1400 g/mol.



**Figure. S11d** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 55% and 1400 g/mol.



**Figure. S11e** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 65% and 1450 g/mol.



**Figure. S11f** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 30% and 2050 g/mol.



**Figure. S11g** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 30% and 2500 g/mol.



**Figure. S11h** <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 30% and 2900 g/mol.



7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0. 11.(gpa)

Figure. S11i <sup>1</sup>H-NMR spectral of CO<sub>2</sub>-polyol with CU% and  $M_n$  respectively to be 30% and 3400 g/mol.



Figure. S12. Tensile stress strain curves of typical CO<sub>2</sub>-WPU with different dispersing temperature.



**Figure. S13.** Tensile stress strain curves of  $CO_2$ -WPU from  $CO_2$ -polyol with CU% and  $M_n$  respectively to be 30% and 2050 g/mol.after different immersion time in 0.5% NaOH aqueous solution.



Figure. S14. Tensile stress strain curves of PBA-WPU after different immersion time in 0.5% NaOH aqueous solution.



Figure.S15 GPC spectra of typical CO<sub>2</sub>-WPU.