SUPPORTING INFORMATION

MoO₃-TiO₂ synergy in oxidative dehydrogenation of lactic acid

to pyruvic acid

Kaituo Liu,^a Xiaoming Huang,^a Evgeny. A. Pidko,^{*a,b} Emiel J.M. Hensen^{*a}

^a Inorganic Materials Chemistry group, Schuit Institute of Catalysis, , Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.

^c ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia

* Corresponding authors: <u>e.a.pidko@tue.nl</u> (E.A.P.); <u>e.j.m.hensen@tue.nl</u> (E.J.M.H.)

Catalyst	S_{BET} (m ² /g)	Pore Volume(cm ³ /g)	Pore Size (nm)
TiO ₂	11.7	0.06	21
MoO ₃	0.5	0.00	18
TiO ₂ /MoO ₃ (1:2)	3.1	0.02	22
MT10	10.7	0.05	19
MT8	10.7	0.07	26
MT5	11.5	0.06	20
MT2	10.7	0.06	21
MT1	11.0	0.06	21

 Table S1. Textural properties of the catalysts.

Figure S1. (a) Mo 3d and (b) Ti 2p XPS spectra of MT2 spent upon LA conversion in N₂

Figure S2. SEM images of (a) TiO_2 -fresh, (b) MoO_3 -fresh, (c) TiO_2 spent in Air, (d) MoO_3 spent in Air, (e) TiO_2 spent in N_2 and (f) MoO_3 spent in N_2 .

Catalyst	N(total) B µmol/g	N(total) L µmol/g
MoO ₃	14	22
MT10	27	41
MT8	16	43
MT5	32	43
MT2	12	29
MT1	0	32
TiO ₂	0	33

Figure S3. FTIR spectra of the adsorbed pyridine in the 1660-1400 cm⁻¹ range after pyridine desorption at 200°C of samples: TiO_2 , MoO_3 and binary molybdena-titania catalysts. L=coordinated pyridine on Lewis acid site, B=pyridinium ion formed on Brønsted acid site.

Figure S4. Calibration curves of lactic acid, pyruvic acid and acetaldehyde.

Figure S5. Oxidative dehydrogenation of lactic acid over MT2 catalyst at 200°C.

Figure S6. TGA mass loss curve of spent catalyst MT2 after 24h oxidative dehydrogenation of lactic acid.