A general environmentally friendly (sustainable) access to long chain fatty acid ionic liquids (LCFA-ILs)

Andrea Mezzetta,^[a] Lorenzo Guazzelli,^{*[a]} Maurizia Seggiani,^[b] Christian Silvio Pomelli,^[a] Monica Puccini,^[b] and Cinzia Chiappe^{*[a]}

Supporting Information

Table of contents

¹H- and ¹³C-NMR spectra of compounds **1-15** pages S2-S46

IR spectra of compounds 1-15 pages S47-S61

Thermal gravimetric analysis (TGA) of compounds 1-15 page S62

Viscosity trend as a function of the temperature page of compounds 6-15 S63-S64

DSC thermogram of compounds 1,2,4,6,7,9,11-14 S65-S74

[a] Mr A. Mezzetta, Prof. C. S. Pomelli, Dr L. Guazzelli, Prof. C. Chiappe Department of Pharmacy University of Pisa Via Bonanno 6, Pisa (Italy) E-mail: lorenzo.guazzelli@unipi.it, cinzia.chiappe@unipi.it
[b] Prof. M. Seggiani, Dr. M. Puccini Department of Civil and Industrial Engineering University of Pisa Largo Lucio Lazzarino 2, Pisa (Italy) E-mail: Maurizia.seggiani@unipi.it

Supporting information for this article is given via a link at the end of the document.

Fig S1: ¹H NMR of 1 at 25 °C

Fig S2: ¹³C NMR of **1** at 25 °C

[EMIM]	[C16]	δ (ppm)	Shape	Integral
C(2)H imidazolium	-	11,06	S	0,75
CHCl ₃	-	7.26	S	-
C(4-5)H imidaziolium	-	7,24	t	1,91
$C(1) H_{2 \text{ chain}}$	-	4,19	m	2,00
C (1')H _{3 chain}	-	3,88	S	2,94
MeOH		3,19	S	-
-	$C(2)H_2$	2,05	t	2,16
-	$C(3)H_2$	1,46	р	2,04
$C(2)_{chain}H_3$	-	1,38	t	3,14
-	C(4 to 15)H ₂	1,22-0,99	m	24,5
-	C(18)H ₃	0,71	t	3,18

Table S1. Peak assignments and integrals of the ¹H-NMR spectrum of **1** at 25°C.

Table S2. Peak assignments of the ¹³C-NMR spectrum of **1** at 25°C.

[EMIM]	[C16]	δ (ppm)	[EMIM]	[C16]	δ (ppm)
-	C(1)OO-	180,2	-	C(chain)H ₂	29,9
C(2)H imidazolium	-	139,8	-	C(chain)H ₂	29,5-
C(4)H imidazolium	-	122,9			29,4
C(5)H imidazolium	-	121,0	-	C(chain)H ₂	29,2
CDCI: CHCI:		77.7-76.7,	-	C(chain)H ₂	22,5
CDCI ₃ , CHCI ₃		77.2	C(2)H _{3 chain}	-	15,4
MeOD		49,3	-	C(16)H ₃	14,0
$C(1)H_{2 \text{ chain}}$	-	44,7			
-	$C(1)H_2$	38.8			
$C(1')H_3$	-	36,0			
-	C(14)H ₂	31,7			

Fig S3: ¹H NMR of 2 at 25 °C

Fig S4: ¹³C NMR of **2** at 25 °C

[EMIM]	[C18]	δ (ppm)	Shape	Integral
C(2)H imidazolium	-	10,99	S	0,80
CHCl ₃	-	7.26	S	-
C(4-5)H imidaziolium	-	7,24	t	1,91
$C(1) H_{2 \text{ chain}}$	-	4,20	m	2,01
C (1')H _{3 chain}	-	3,89	S	3,00
MeOH		3,20	S	-
-	$C(2)H_2$	1,96	t	1,99
-	$C(3)H_2$	1,47	р	2,22
$C(2)_{chain}H_3$	-	1,40	t	3,28
-	C(4 to 17)H ₂	1,24-0,98	m	28,2
-	C(18)H ₃	0,72	t	3,04

Table S3. Peak assignments and integrals of the ¹H-NMR spectrum of **2** at 25°C.

Table S4. Peak assignments of the 13 C-NMR spectrum of **2** at 25°C.

[EMIM]	[C18]	δ (ppm)	[EMIM]	[C18]	δ (ppm)
-	C(1)OO-	180,3	-	C(chain)H ₂	29,9
C(2)H imidazolium	-	139,8	-	C(chain)H ₂	29,6-
C(4)H imidazolium	-	122,9			29,5
$C(5)$ \mathbf{H}		121.0	-	C(chain)H ₂	29,5
$C(3)\Pi$ imidazolium	-	121,0		C(chain)H ₂	29,2
CDC1. CHC1.		77.7-76.7,	-	C(chain)H ₂	22,5
CDC13, CHC13		77.2	C(2)H _{3 chain}	-	15,4
MeOD		49,4	-	C(16)H ₃	14,0
C(1)H _{2 chain}	-	44,7			
-	$C(1)H_2$	38.8			
$C(1')H_3$	-	36,0			
-	C(16)H ₂	31,8			

Fig S5: ¹H NMR of 3 at 25 °C

Fig S6: ¹³C NMR of **3** at 25 °C

[EMIM]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	Shape	Integral
C(2)H imidazolium	-	10,83	S	0,84
CHCl ₃	-	7.26	S	-
C(4-5)H imidaziolium	-	7,23	t	1,86
-	C(9,10)H	5,15-5,00	m	2,01
C(1) H _{2 chain}	-	4,10	m	1,99
C (1')H _{3 chain}	-	3,79	S	2,92
MeOH		3,10	S	-
-	$C(2)H_2$	1,96	t	1,99
-	$C(8,11)H_2$	1,84-1,65	m	3,70
-	$C(3)H_2$	1,38	р	2,08
$C(2)_{chain}H_3$	-	1,30	t	3,12
-	C(4 to 8, 12-17)H ₂	1,15-0,91	m	20,19
-	C(18)H ₃	0,62	t	3,05

Table S5. Peak assignments and integrals of the ¹H-NMR spectrum of **3** at 25°C.

Table S6. Peak assignments of the 13 C-NMR spectrum of **3** at 25°C.

[EMIM]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	[EMIM]	[C18:1 tested according to Ph.Eur.]	δ (ppm)
-	C(1)OO-	179,8	-	C(chain)H ₂	29,6-28,9
C(2)H imidazolium	-	139,8	-	C(11)H ₂	26,9
-	C(9,10)H	129,5-129,4	-	C(9)H ₂	26,8
-	C(linoleic)H	127,5	-	C(3)H ₂	26,8
C(4)H imidazolium	-	122,9		C(17)H ₂	22,4
C(5)H imidazolium	-	121,0	C(2)H _{3 chain}	-	15,2
CDCl ₃ , CHCl ₃		77.7-76.7, 77.2	-	C(18)H ₃	13,7
MeOD		49,0			
C(1) H _{2 chain}	-	44,5			
-	$C(1)H_2$	38.8			
C(1')H ₃	-	35,7			
-	C(16)H ₂	31,8			

Fig S7: ¹H NMR of **4** at 25 °C

Fig S8: ¹³C NMR of **4** at 25 °C

[EMIM]	[C18:2]	δ (ppm)	Shape	Integral
C(2)H imidazolium	-	11,27	S	0,21
CHCl ₃	-	7.26	S	-
C(4-5)H imidaziolium	-	7,19	t	2,00
-	C(9,10,12,13)H	5,36-5,14	m	3,99
C(1) H _{2 chain}	-	4,27	tt	2,08
C (1')H _{3 chain}	-	3,96	s	3,15
MeOH		3,26	S	-
-	C(11)H ₂	2,67	t	2,00
-	$C(2)H_2$	2,11	t	2,15
-	C(8,14)H ₂	2,01-1,84	m	3,99
-	C(3)H ₂	1,55	р	2,18
$C(2)_{chain}H_3$	-	1,45	t	3,23
-	C(4 to 7, 15-17)H ₂	1,34-1,10	m	14,56
-	C(18)H ₃	0,79	t	3,07

Table S7. Peak assignments and integrals of the ¹H-NMR spectrum of **4** at 25°C.

Table S8. Peak assignments of the ¹³C-NMR spectrum of **4** at 25°C.

[EMIM]	[C _{18:2}]	δ (ppm)	[EMIM]	[C _{18:2}]	δ (ppm)
-	C(1)OO-	180,2	-	C(chain)H ₂	29,8-29,1
C(2)H _{imidazolium}	-	130,0	-	C(14)H ₂	27,0
-	C(9,10,12,13)H	127,7	-	C(8)H ₂	26,9
C(4)H imidazolium	-	123,0'	-	$C(11)H_2$	25,4
C(5)H imidazolium	-	121,0		C(17)H ₂	22,3
CDCl ₃ , CHCl ₃		77.7-76.7, 77.2	$C(2)H_{3 \text{ chain}}$	-	15,4
MeOD		49,0	-	C(18)H ₃	13,9
C(1) H _{2 chain}	-	44,7			
-	$C(1)H_2$	39,2			
$C(1')H_3$	-	35,9			
-	$C(16)H_2$	31,3			

Fig S9: ¹H NMR of 5 at 25 °C

Fig S10: ¹³C NMR of **5** at 25 °C

[EMIM]	[C18:1-C18:2 30%-70%]	δ (ppm)	Shape	Integral
C(2)H imidazolium	-	11,40	S	0,84
CHCl ₃	-	7.26	s	-
C(4-5)H imidaziolium	-	7,16	s	1,93
-	C(9,10,12,13)H	5,37-5,17	m	3,30
C(1) H _{2 chain}	-	4,29	tt	2,06
C (1')H _{3 chain}	-	3,98	s	3,00
MeOH		3,26	s	-
-	$C(11)H_2$	2,70	t	1,26
-	$C(2)H_2$	2,17	t	2,10
-	C(8,14)H ₂	2,04-1,86	m	3,82
-	C(3)H ₂	1,58	р	2,03
$C(2)_{chain}H_3$	-	1,49	t	3,17
-	C(4 to 8, 15-17)H ₂	1,36-1,12	m	17,41
-	C(18)H ₃	0,80	t	3,11

Table S9. Peak assignments and integrals of the ¹H-NMR spectrum of **5** at 25°C.

Table S10. Peak assignments of the 13 C-NMR spectrum of **5** at 25°C.

[EMIM]	[C18:1-C18:2 30%-70%]	δ (ppm)	[EMIM]	[C18:1-C18:2 30%-70%]	δ (ppm)
-	C(1)OO-	180,9	-	C(chain)H ₂	30,0-29,3
C(2)H _{imidazolium}	-	130,0	-	$C(14)H_2$	27,3
-	C(9,10,12,13)H	128,0-127,8	-	C(8)H ₂	27,1
C(4)H imidazolium	-	122,6	-	$C(11)H_2$	25,6
C(5)H imidazolium	-	120,5		C(17)H ₂	22,6
CDCla CHCla		77.7-76.7,	C(2)H _{3 chain}	-	15,6
CDCI ₃ , CHCI ₃		77.2			
MeOD		49,0	-	C(18)H ₃	14,1
C(1) H _{2 chain}	-	44,9			
-	$C(1)H_2$	39,2			
$C(1')H_3$	-	36,2			
		31,9			
-	$C(16)H_2$	31,5			

-90000 -80000 -70000 11 1 -60000 -50000 -40000 -30000 -20000 -10000 W -0 8.12 H 54.91H 1 Т F10.21 61'6 1.93 1 1 ---11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

Fig S11: ¹H NMR of 6 at 25 °C

Fig S12: ¹³C NMR of **6** at 25 °C

[N8881]	[C16]	δ (ppm)	Shape	Integral
CHCl ₃			S	-
H ₂ O				
$C(1,1',1'')H_2$	-	3,48-3,26	m	0.10
C(1''')H ₃	-	3,29	S	9,19
-	$C(2)H_2$	2,15	t	1,93
C(3,3',3'')H ₂	C(3)H ₂	1,70 - 1,51	m	8,12
C(4-7,4'-7',4''- 7'')H ₂	C(4-15)H ₂	1,42 - 1,10	m	54,91
C(8,8',8'')H ₃	C(16)H ₃	0,85 - 0,70	m	12,01

Table S11. Peak assignments and integrals of the ¹H-NMR spectrum of 6 at 25°C.

Table S12. Peak assignments of the 13 C-NMR spectrum of 6 at 25°C.

[N8881]	[C16]	δ (ppm)	[N8881]	[C16]	δ (ppm)
-	C(1)OO-	179,6	C(5,5',5'')H ₂		28,8
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(3)H ₂	27,1
C(1,1',1'')H ₂	-	61,1	C(3,3',3'')H ₂	-	26,4
C(1''')H ₃	-	48,5	-	C(15)H ₂	22,5
-	$C(2)H_2$	39,6	$C(7,7,7,7)H_2$	-	22,3-22,1
-	$C(14)H_2$	31,9	-	$C(16)H_3$	14,1
C(6,6',6'')H ₂		31,6	C(8,8',8'')H ₂	-	14,0
-	C(4-13)H ₂	29,7-29,0			
C(4,4',4'')H ₂	-	28,9			

Fig S13: ¹H NMR of **7** at 25 °C

Fig S14: ¹³C NMR of **7** at 25 °C

[N8881]	[C ₁₈]	δ (ppm)	Shape	Integral
CHCl ₃			S	-
H ₂ O				
$C(1,1',1'')H_2$	-	3,58-3,31	m	0.02
C(1''')H ₃	-	3,29	S	9,02
-	$C(2)H_2$	2,15	t	1,97
C(3,3',3'')H ₂	C(3)H ₂	1,78-1,57	m	8,35
C(4-7,4'-7',4''- 7'')H ₂	C(4-17)H ₂	1,52-1,20	m	58,79
C(8,8',8'')H ₃	C(18)H ₃	1,05-0,70	m	12,19

Table S13. Peak assignments and integrals of the ¹H-NMR spectrum of 7 at 25°C.

Table S14. Peak assignments of the 13 C-NMR spectrum of **7** at 25°C.

[N8881]	[C18]	δ (ppm)	[N8881]	[C18]	δ (ppm)
-	C(1)OO-	179,4	C(5,5',5'')H ₂		28,9
			-	$C(3)H_2$	27,2
			C(3,3',3'')H ₂	-	26,2
CDCI: CHCI:		77,5-76.6,	-	$C(17)H_2$	22,5
CDCI ₃ , CHCI ₃		77,3			
C(1, 1', 1'')		60.0	$C(7,7',7'')H_2$	-	22,5
$C(1,1,1)H_2$	-	00,9			-22,4
C(1''')H ₃	-	48,4	-	$C(18)H_3$	14,0
-	$C(2)H_2$	39,7	C(8,8',8'')H ₂	-	13,9
-	C(16)H ₂	31,7			
C(6,6',6'')H ₂		31,5			
-	C(4-15)H ₂	29,6-29,1			
C(4,4',4'')H ₂	-	29,0			

Fig S15: ¹H NMR of **8** at 25 °C

Fig S16: ¹³C NMR of **8** at 25 °C

[N8881]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	Shape	Integral
CHCl ₃	C(9,10)	5,26-5,11	s m	- 1,52
H_2O $C(1,1',1'')H_2$ $C(1''')H_2$	-	3,36-3,17	m	8,25
- -	-C(2)H ₂ C(8,11)H ₂	2,03 1,91 - 1,74	t m	2,00 3,03
C(3,3',3'')H ₂ C(4-7,4'-7',4''-	C(3)H ₂ C(4-7,12-17)H ₂	1,62 - 1,36 1,31 - 0,95	m m	8,14 49,02
$(7^{\circ})H_2$ C(8,8',8'')H ₃	C(18)H ₃	0,85-0,55	m	12,16

Table S15. Peak assignments and integrals of the ¹H-NMR spectrum of **8** at 25°C.

Table S16. Peak assignments of the 13 C-NMR spectrum of 8 at 25°C.

[N ₈₈₈₁]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	[N ₈₈₈₁]	[C18:1 tested according to Ph.Eur.]	δ (ppm)
-	C(1)OO-	179,0	C(5,5',5'')H ₂		28,9
-	$C(10)H_2$	129,8	-	C(8)H ₂	27,1
-	$C(11)H_2$	129,6	-	C(3)H ₂	27,0
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3		C(11)H ₂	27,0
$C(1,1',1'')H_2$	-	60,9	C(3,3',3'')H ₂	-	26,2
C(1''')H ₃	-	48,4	-	C(17)H ₂	22,5
-	$C(2)H_2$	38,8	C(7,7',7'')H ₂	-	22,4
-	$C(16)H_2$	31,7	-	C(18)H ₃	13,9
C(6,6',6'')H ₂		31,5	C(8,8',8'')H ₂	-	13,9
-	C(4-7,12-16)H ₂	30,0-29,1			
C(4,4',4'')H ₂	-	29,0			

Fig S17: ¹H NMR of **9** at 25 °C

Fig S18: ¹³C NMR of **9** at 25 °C

[N8881]	[C18:2]	δ (ppm)	Shape	Integral
CHCl ₃			S	-
-	C(9,10,12,13)	5,44-5,23	m	3,76
H_2O				
$C(1,1',1'')H_2$	-	3,36-3,21	m	8 83
C(1''')H ₃	-	3,17		0,05
-	$C(11)H_2$	2,76	t	1,83
-	$C(2)H_2$	2,03	t	2,00
-	$C(8,11)H_2$	2,08 - 1,95	m	3,68
C(3,3',3'')H ₂	C(3)H ₂	1,73 - 1,50	m	8,02
C(4-7,4'-7',4''- 7'')H ₂	C(4-7,14-17)H ₂	1,44 - 1,14	m	44,65
C(8,8',8'')H ₃	C(18)H ₃	0,96-0,78	m	12,02

Table S17. Peak assignments and integrals of the ¹H-NMR spectrum of **9** at 25°C.

Table S18. Peak assignments of the ¹³C-NMR spectrum of **9** at 25°C.

[N8881]	[C18:2]	δ (ppm)	[N8881]	[C18:2]	δ (ppm)
-	C(1)OO-	179,8	C(5,5',5'')H ₂		29,0
-	C(9)H ₂	130,2	-	C(8)H ₂	27,3
-	C(13)H ₂	130,1	-	C(3)H ₂	27,2
-	$C(10)H_2$	127,9	-	$C(11)H_2$	27,1
-	$C(12)H_2$	127,8	C(3,3',3'')H ₂	-	26,2
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(14)H ₂	25,6
$C(1,1',1'')H_2$	-	61,3	C(7,7',7'')H ₂	-	22,5
C(1''')H ₃	-	48,9	-	C(17)H ₂	22,3
-	$C(2)H_2$	39,4	-	$C(18)H_{3}$	14,0
-	C(16)H ₂	31,6	C(8,8',8'')H ₂	-	14,0
C(6,6',6'')H ₂		31,5			
-	C(4-16)H ₂	30,1-29,3			
C(4,4',4'')H ₂	-	29,1			

Fig S19: ¹H NMR of 10 at 25 °C

Fig S20: ¹³C NMR of **10** at 25 °C

[N8881]	[C18:1-18:2 30%-70%]	δ (ppm)	Shape	Integral
CHCl ₃			S	-
-	C(9,10,12,13)	5,26-5,06	m	2,09
H_2O				
$C(1,1',1'')H_2$	-	3,30-3,12	m	8.04
C(1''')H ₃	-	3,08		8,04
-	$C(11)H_2$	2,59	t	0,68
-	$C(2)H_2$	2,00	t	2,00
-	C(8,11)H ₂	1,94 - 1,73	m	2,64
C(3,3',3'')H ₂	C(3)H ₂	1,57 - 1,34	m	8,05
C(4-7,4'-7',4''- 7'')H ₂	C(4-7,14-17)H ₂	1,30 - 0,91	m	43,54
C(8,8',8'')H ₃	C(18)H ₃	0,81-0,58	m	11,43

Table S19. Peak assignments and integrals of the ¹H-NMR spectrum of 10 at 25°C.

Table S20. Peak assignments of the ¹³C-NMR spectrum of **10** at 25°C.

[N8881]	[C18:1-18:2 30%-70%]	δ (ppm)	[N8881]	[C18:1-18:2 30%-70%]	δ (ppm)
-	C(1)OO-	178,9	C(5,5',5'')H ₂		29,8
-	C(9)H ₂	130,0	-	C(8)H ₂	27,1
-	$C(13)H_2$	129,9	-	$C(3)H_2$	27,0
-	$C(10)H_2$	127,7	-	$C(11)H_2$	26,9
-	$C(12)H_2$	127,6	C(3,3',3'')H ₂	-	26,1
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(14)H ₂	25,4
$C(1,1',1'')H_2$	-	61,0	C(7,7',7'')H ₂	-	22,4
C(1''')H ₃	-	48,5	-	$C(17)H_2$	22,1
-	$C(2)H_2$	38,4	-	C(18)H ₃	13,9
-	$C(16)H_2$	31,6	C(8,8',8'')H ₂	-	13,8
C(6,6',6'')H ₂		31,3			
-	C(4-16)H ₂	29,8-29,1			
C(4,4',4'')H ₂	-	29,9			

Fig S21: ¹H NMR of **11** at 25 °C

Fig S22: ¹³C NMR of **11** at 25 °C

[P ₈₈₈₁]	[C ₁₆]	δ (ppm)	Shape	Integral
CHCl ₃ C(1,1',1'')H ₂	-	7,26 2,42-2,17	s m	6,00
$C(1^{\prime\prime\prime})H_3$ $C(3-7,3^{\prime}-7^{\prime},3^{\prime\prime}-7^{\prime\prime})H_3$	$C(2)H_2$ $C(3-15)H_2$	2,10-1,92 1,55-1,04	m m	5,01 65,19
$C(8,8',8'')H_3$	C(16)H ₃	0,81 - 0,68	m	12,10

Table S21. Peak assignments and integrals of the ¹H-NMR spectrum of **11** at 25°C.

Table S22. Peak assignments of the ¹³C-NMR spectrum of 11 at 25°C.

[P8881]	[C16]	δ (ppm)	[P8881]	[C ₁₆]	δ (ppm)
-	C(1)OO-	179,2	C(3,3',3'')H ₂	-	26,4
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(15)H ₂	22,6
-	$C(2)H_2$	39,7	C(7,7',7'')H ₂	-	22,5
-	$C(14)H_2$	31,8	C(3,3',3'')H ₂	-	21,7;21,6
C(6,6',6'')H ₂		31,6	C(2,2',2'')H ₂	-	20,3;19,5
-	C(4-13)H ₂	30,8-28,9	-	$C(16)H_3$	14,0
C(4,4',4'')H ₂	-	29,6	C(8,8',8'')H ₂	-	13,9
C(5,5',5'')H ₂	-	28,9	C(1''')H ₃	-	4,6;3,8
-	$C(3)H_2$	27,4			

Fig S23: ¹H NMR of **12** at 25 °C

Fig S24: ¹³C NMR of **12** at 25 °C

[P ₈₈₈₁]	[C ₁₈]	δ (ppm)	Shape	Integral
CHCl ₃		7,26	S	-
$C(1,1^{\prime},1^{\prime\prime})H_2$ $C(1^{\prime\prime\prime})H_3$	- C(2)H ₂	2,42-2,19 2,09-1,94	m m	6,01 5,00
C(3-7,3'-7',3''- 7'')H ₂	C(3-17)H ₂	1,59-1,00	m	69,43
C(8,8',8'')H ₃	C(18)H ₃	0,82 - 0,69	m	12,24

Table S23. Peak assignments and integrals of the ¹H-NMR spectrum of **12** at 25°C.

Table S24. Peak assignments of the ¹³C-NMR spectrum of 12 at 25°C.

[P8881]	[C18]	δ (ppm)	[P8881]	[C18]	δ (ppm)
-	C(1)OO-	179,2	C(3,3',3'')H ₂	-	26,4
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(17)H ₂	22,6
-	$C(2)H_2$	39,7	C(7,7',7'')H ₂	-	22,5
-	C(16)H ₂	31,8	C(3,3',3'')H ₂	-	21,7;21,6
C(6,6',6'')H ₂		31,6	C(2,2',2'')H ₂	-	20,3;19,5
-	$C(4-15)H_2$	29,7-28,9	-	$C(18)H_3$	14,0
$C(4,4',4'')H_2$	-	29,6	C(8,8',8'')H ₂	-	13,9
C(5,5',5'')H ₂	-	28,9	C(1''')H ₃	-	4,6;3,8
-	C(3)H ₂	27,4			

Fig S25: ¹H NMR of **13** at 25 °C

Fig S26: ¹³C NMR of **13** at 25 °C

[P8881]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	Shape	Integral
CHCl ₃		7,26	S	-
-	C(9,10)H ₂	5,25-5,06	m	1,96
$C(1,1',1'')H_2$	-	2,42-2,19	m	6,00
C(1''')H ₃	$C(2)H_2$	2,09-1,94	m	5,07
-	$C(8,11)H_2$	1,86-1,74	m	3,19
C(3-7,3'-7',3''- 7'')H ₂	C(3-15)H ₂	1,49-0,96	m	61,62
C(8,8',8'')H ₃	C(18)H ₃	0,76 - 0,63	m	12,40

Table S25. Peak assignments and integrals of the ¹H-NMR spectrum of **13** at 25°C.

Table S26. Peak assignments of the ¹³C-NMR spectrum of **13** at 25°C.

[P ₈₈₈₁]	[C18:1 tested according to Ph.Eur.]	δ (ppm)	[P ₈₈₈₁]	[C18:1 tested according to Ph.Eur.]	δ (ppm)
-	C(1)OO-	179,2	-	C(3)H ₂	27,0
-	C(9)H ₂	129,7	-	$C(11)H_2$	26,9
-	$C(10)H_2$	129,5	C(3,3',3'')H ₂	-	26,4
CDCl ₃ , CHCl ₃		77,5-76.6, 77,3	-	C(17)H ₂	22,4
-	$C(2)H_2$	39,6	C(7,7',7'')H ₂	-	22,3
-	$C(16)H_2$	31,6	C(3,3',3'')H ₂	-	21,6;21,5
C(6,6',6'')H ₂		31,5	C(2,2',2'')H ₂	-	20,1;19,4
-	C(4-7,12-15)H ₂	30,6-28,8	-	$C(18)H_3$	13,9
C(4,4',4'')H ₂	-	28,7	C(8,8',8'')H ₂	-	13,8
C(5,5',5'')H ₂	-	28,7	C(1''')H ₃	-	4,5;3,6
-	C(8)H ₂	27,3			

Fig S27: ¹H NMR of **14** at 25 °C

Fig S28: ¹³C NMR of **14** at 25 °C

S42

[P 8881]	[C _{18:2}]	δ (ppm)	Shape	Integral
CHCl ₃		7,26	S	-
-	C(9,10,12,13)H ₂	5,36-5,12	m	3,98
-	$C(11)H_2$	2,64	t	1,90
$C(1,1',1'')H_2$	-	2,42-2,19	m	6,06
C(1''')H ₃	$C(2)H_2$ $C(8,11)H_2$	2,10-1,84	m	9,02
C(3-7,3'-7',3''- 7'')H ₂	C(3-15)H ₂	1,61-0,99	m	56,82
C(8,8',8'')H ₃	C(18)H ₃	0,88 - 0,65	m	12,79

Table S27. Peak assignments and integrals of the ¹H-NMR spectrum of **14** at 25°C.

Table S28. Peak assignments of the ¹³C-NMR spectrum of 14 at 25°C.

[P8881]	[C _{18:2}]	δ (ppm)	[P8881]	[C18:2]	δ (ppm)
-	C(1)OO-	179,4	-	C(8,14)H ₂	27,3
-	C(9)H ₂	130,3	C(3,3',3'')H ₂	-	27,1
-	C(13)H ₂	130,1	-	$C(11)H_2$	25,6
-	$C(10)H_2$	128,0	C(7,7',7'')H ₂	-	22,5
-	C(12)H ₂	127,7	-	C(17)H ₂	22,5
CDCl ₃ , CHCl ₃		77,5-76.6, 77.3	C(3,3',3'')H ₂	-	21,8;21,7
-	C(2)H ₂	39,7	C(2,2',2'')H ₂	-	20,3;19,6
C(6,6',6'')H ₂	-	31,7	-	C(18)H ₃	14,0
=	C(16)H ₂	31,5	C(8,8',8'')H ₂	-	14,0
-	C(4-8,15)H ₂	30,8-29,0	C(1''')H ₃	-	4,7;3,9
C(4,4',4'')H ₂	-	29,3			
C(5,5',5'')H ₂	-	28,9			
-	C(3)H ₂	27,4			

-45000 -40000 -35000 - 11 1 -30000 -25000 -20000 -15000 -10000 -5000 -0 T. H + H + H + 4 12.65 F 60.19-1.15 6.00 8.91 3.16 1 . . 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Fig S29: ¹H NMR of **15** at 25 °C

Fig S30: ¹³C NMR of **15** at 25 °C

[P 8881]	[C _{18:2}]	δ (ppm)	Shape	Integral
CHCl ₃		7,26	S	-
-	C(9,10,12,13)H ₂	5,32-5,08	m	3,16
-	$C(11)H_2$	2,60	t	1,15
$C(1,1',1'')H_2$	-	2,36-2,17	m	6,00
C(1''')H ₃	$C(2)H_2$ $C(8,11)H_2$	2,06-1,75	m	8,91
C(3-7,3'-7',3''- 7'')H ₂	C(3-15)H ₂	1,55-0,97	m	60,19
C(8,8',8'')H ₃	C(18)H ₃	0,81 - 0,58	m	12,65

Table S29. Peak assignments and integrals of the ¹H-NMR spectrum of **14** at 25°C.

Table S30. Peak assignments of the ¹³C-NMR spectrum of **14** at 25°C.

[P8881]	[C18:2]	δ (ppm)	[P8881]	[C18:2]	δ (ppm)
-	C(1)OO-	179,1	-	C(8,14)H ₂	27,3
-	$C(9)H_2$	130,1	C(3,3',3'')H ₂	-	27,0
-	C(13)H ₂	129,1	-	$C(11)H_2$	25,4
-	$C(10)H_2$	127,8	C(7,7',7'')H ₂	-	22,5
-	$C(12)H_2$	127,6	-	C(17)H ₂	22,4
CDCl ₃ , CHCl ₃		77,5-76.6, 77.3	C(3,3',3'')H ₂	-	21,6;21,5
-	$C(2)H_2$	39,6	C(2,2',2'')H ₂	-	20,2;19,4
C(6,6',6'')H ₂	-	31,5	-	C(18)H ₃	13,8
=	C(16)H ₂	31,3	C(8,8',8'')H ₂	-	13,8
-	C(4-8,15)H ₂	30,7-28,8	C(1''')H ₃	-	4,5;3,7
C(4,4',4'')H ₂	-	28,8			
C(5,5',5'')H ₂	-	28,8			
-	$C(3)H_2$	27,3			

Fig S31 IR of 1 at 25 °C

Fig S32 IR of 2 at 25 °C

Fig S33 IR of 3 at 25 °C

Fig S34 IR of 4 at 25 °C

Fig S35 IR of 5 at 25 °C

Wavenumber

Fig S36 IR of 6 at 25 °C

Fig S37 IR of 7 at 25 °C

Fig S38 IR of 8 at 25 °C

Fig S39 IR of 9 at 25 °C

Fig S40 IR of 10 at 25 °C

Fig S41 IR of 11 at 25 °C

Fig S42 IR of 12 at 25 °C

Fig S43 IR of 13 at 25 °C

Fig S44 IR of 14 at 25 °C

Fig S45 IR of 15 at 25 °C

Fig S46 Thermal gravimetric analysis (TGA) of [EMIM] series.

Fig S47 Thermal gravimetric analysis (TGA) of [N₈₈₈₁] series.

Fig S48 Thermal gravimetric analysis (TGA) of [P₈₈₈₁] series.

Т	[N ₈₈₈₁]				[P	8881]		
°C	[C16]	[C18]	[C18:1 _{PhEur}]	[C18:2]	[C16]	[C18]	[C18:1 _{PhEur}]	[C18:2]
20	2463	1998	1283	1385	774.1	720.2	585.7	552.0
22,5	1989	1605	1075	1172	-	-	-	-
25	1615	1342	929.1	985.6	556.6	529.0	435.9	415.6
30	1127	940.2	656.2	727.2	415.0	392.1	333.7	312.4
35	792.2	675.2	495.8	531.3	312.0	301.4	258.9	241.6
40	595.4	494.6	362.9	407.2	244.3	229.7	199.8	190.1
45	429.4	355.6	273.5	311.8	184.6	177.5	157.1	149.8
50	313.0	272.2	220.4	242.8	145.3	142.1	126.0	120.8
60	175.7	167.5	135.7	154.9	95.24	91.22	83.00	80.00
70	109.8	107.2	93.41	104.01	65.15	64.44	58.91	57.31
80	75.76	74.28	68.57	72.01	46.61	46.39	42.66	40.97

Table S31. Comparison of the viscosity as a function of the temperature of [N₈₈₈₁] and [P₈₈₈₁] series.

Fig S49. Comparison of the Arrhenius fitting of a) [N₈₈₈₁] and b) [P₈₈₈₁] series.

Figure S50. DSC thermogram of **1** (heating rate of 5 K⁻min⁻¹).

Figure S51. DSC thermogram of **2** (heating rate of 5 K⁻min⁻¹).

S66

Figure S52. DSC thermogram of **4** (heating rate of 5 K⁻min⁻¹).

Figure S53. DSC thermogram of **6** (heating rate of 5 K⁻min⁻¹).

Figure S54. DSC thermogram of **7** (heating rate of 5 K⁻min⁻¹).

Figure S55. DSC thermogram of **9** (heating rate of 5 K⁻min⁻¹).

Figure S56. DSC thermogram of **11** (heating rate of 5 K min⁻¹).

Figure S57. DSC thermogram of **12** (heating rate of 5 K min⁻¹).

Figure S58. DSC thermogram of **13** (heating rate of 5 K min⁻¹).

Figure S59. DSC thermogram of **14** (heating rate of 5 K min⁻¹).