Supporting Information

Exploiting Intramolecular Hydrogen Bond for Highly (Z)-Selective & Metal Free Synthesis of Amide Substituted βaminoenones

Palaniraja Subramaniam,^{* ab} Chandrasekaran Ramasubbu,^c Selvaraj Athiramu^b

^aSigma-Aldrich Chemicals Pvt. Ltd, Bangalore-560100, Karnataka, India. Sigma-Aldrich Chemicals Pvt. Ltd. is a subsidiary of Merck KGaA.

Email: palaniraja.subramaniam@sial.com, palanirajas@gmail.com

^bResearch and Development Center, Bharathiar University, Coimbatore-641046, Tamilnadu, India.

^cSai Supreme Chemicals, Gummidipoondi, Chennai -601 201, Tamilnadu, India.

Table of contents

S.No.	Contents			
1	General Information	S3		
2	General scheme and procedure for preparation of EMD of β -keto amide 1			
3	General procedure for preparation of 2 & 3			
4	Synthesis1 of Leflunomide (4a) & Teriflunomide (4b)			
5	Chemical Shift (δ) data of NH in ppm			
6	Copies of ¹ H, ¹³ C, ¹⁹ F NMR and NOE spectra			
7	Chiral HPLC analysis of 3g & 3h	S92		
8	X-ray Crystallographic data for 2b	S94		

1. General Information:

All reagents and solvents were used from Sigma-Aldrich and used without treatment, unless otherwise indicated. All NMR spectra were recorded on Bruker AV400. Proton and carbon-13 NMR spectra are reported as chemical shifts (δ) in parts per million (ppm) relative to residual undeuterated solvent peak using the Bruker internal referencing procedure (edlock). Coupling constants (J) are reported in units of hertz (Hz) and are rounded to the nearest 0.5. The following abbreviations are used to describe multiplets: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet) and br (broad). 2D techniques (NOESY) were also used to assist on structural confirmation. Infrared spectra were recorded as neat compound using a Perkin-Elmer FT-IR spectrometer and absorptions are reported in wavenumbers (cm⁻¹). Melting points of solids were measured on a Buchi melting point M-565 apparatus and are uncorrected. Specific rotations ($[\alpha]_D$) were determined at 20°C on a Anton Paar MCP 200 Polarimeter. HPLC purity and chiral HPLC were recorded using an Agilent 6300 Series system. HPLC was carried out with Discovery® C18, 5 µm column (15 cm x 4.6 mm) using gradients between 0.1% TFA in water (Solvent A) and CH₃CN. Chiral HPLC was carried out with Daicel Chiralcel® OD-H column using gradients n-Hexane/Isopropanol in the ratio 85:15. High resolution mass spectra were recorded on a 6530 Q-TOF (Agilent Technologies). The single crystal X-ray diffraction studies of **2b** were performed using Bruker AXS Kappa APEX II CCD Diffractometer.

2. General scheme and procedure for preparation¹ of EMD of β -keto amides 1:

The required β -keto amide (1 eq), acetic anhydride (3 eq) and triethylorthoformate (1.2 eq) were stirred at 105°C until reaction completion. The reaction completions were monitored by TLC (Hexanes/EtOAc: 70/30). After reaction completion, Compound **1a**, **1b** and **1c** were isolated as solids by cooling to -15 °C and filtered to isolate as solids and used as such for the next step. Compound **1d**, **1e** and **1f** the reaction mixtures were concentrated to dryness and the mixtures were dissolved in dichloromethane, washed with cold brine solution and the organic layer was dried over sodium sulfate. The sodium sulfate were filtered and concentrated the organic layer to dryness to afford product (**1d**, **1e** and **1f**) and used as such for the next step.

3. General procedure for preparation of 2 & 3:

Typical procedure for 2: To a solution of ethoxymethylidine- β -keto amide **1** (1 eq) in methanol (10.0 mL) and ammonium hydroxide solution (2 eq) were added. The reaction mixture was heated at 60 °C until completion. Reaction completion was monitored by TLC (Hexanes/EtOAc: 70/30). Upon cooling to room temperature, the reaction mixture was poured to 20 ml of ice cold water. The precipitated white solids were collected by filtration and dried in vacuum to afford **2**.

Typical procedure for 3: To a solution of ethoxymethylidine- β -keto amide **1** (1eq) in methanol (10.0 mL) and substituted primary amine (1.01 eq) were added. The reaction mixture was heated at 60 °C until completion. Reaction completion was monitored by TLC (Hexanes/EtOAc: 70/30). Upon cooling to room temperature, the reaction mixture was further cooled to 0°C. The precipitated solids were collected by filtration and dried in vacuum to afford pure compound **3**.

Note: In case of aryl/heteroaryl amines the product was thrown out of solvent during the course of reaction; after the reaction completion the reaction mixture was cooled to RT and the precipitated solids were collected by filtration and dried in vacuum to afford the pure product. For compound (**3b**, **3c**, **3e**, **3l**, **3m**,

3n, 3o, 3p, 3q, 3r and 3s) the solid product started thrown out immediately after completion of reaction. So after cooling to room temperature the solids were filtered and dried to afford pure product.

(Z)-2-(Aminomethylene)-3-oxo-N-phenylbutanamide (2a):

White solid: mp. 121-123 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.23 (s, 3H), 5.94 (br, 1H), 7.00 (t, *J*=7.6 Hz, 1H), 7.22-7.26 (m, 2H), 7.50-7.51 (d, *J*=8.4 Hz, 2H), 7.84-7.90 (m, 1H), 10.15 (br, 1H), 11.60 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 26.1, 103.8, 120.8, 123.7, 128.8, 138.8, 159.2, 167.4, 196.2; **IR** (Neat, cm⁻¹): 3313, 3185, 2167, 2000, 1626, 1583, 1526, 1441, 1376, 1327, 1300, 1240, 1199, 1178, 1156, 1125,

1045, 1009, 950, 904, 796, 757, 692; **HPLC** Purity: 99.61%; Anal. Calculated for $C_{11}H_{12}N_2O_2$: C, 64.69; H, 5.92; N, 13.72, found: C, 64.95; H, 5.56; N, 13.25, Isolated Yield: 416 mg, 95.0%.

(Z)-2-(aminomethylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (2b):

White solid: mp. 218.3 - 221.1 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.29 (s, 3H), 7.62 (d, J= 8.8 Hz, 2H), 7.78 (d, J= 8.4 Hz, 2H), 8.17 (dd, J= 15.2 Hz, 8 Hz, 1H), 8.82 (br, 1H), 9.83 (br, 1H), 12.26 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.1, 101.0, 119.3, 122.7 (q, *J*=32 Hz), 124.4 (q, *J*=269 Hz), 126.0, 142.4, 161.6, 167.3, 196.1; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.92; IR (Neat, cm⁻¹): 3312, 3092, 1660, 1544, 1414, 1384, 1343, 1318, 1257, 1198,

1180, 1157, 1136, 1100, 1061, 1013, 951, 850, 824, 776, 757, 710, 654; **HPLC** Purity: 99.89%; Anal. Calculated for $C_{12}H_{11}F_3N_2O_2$: C, 52.95; H, 4.07; N, 10.29, found: C, 53.43; H, 3.67; N, 10.44; Isolated Yield: 1.78 g, 98.5%.

(Z)-2-(aminomethylene)-N-(3-bromophenyl)-3-oxobutanamide (2c):

Off white solid: mp. 209.5-210.0°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.28 (s, 3H), 7.19-7.27 (m, 2H), 7.32-7.35 (m, 1H), 8.09 (s, 1H), 8.14 (dd, *J*=15.6 Hz, 8.8 Hz, 1H), 8.77 (br, 1H), 9.80 (br, 1H), 12.07 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.1, 100.9, 118.2, 121.6, 121.7, 125.3, 130.7, 140.4, 161.5, 167.1, 196.1; **IR** (Neat, cm⁻¹): 3349, 3227, 3061, 2158, 1654, 1565, 1523, 1474, 1422, 1376,

1328, 1303, 1246, 1191,1132, 1066, 1042, 1006, 991, 953, 878, 776, 675; **HPLC** Purity: 99.35%; Anal. Calculated for $C_{11}H_{11}BrN_2O_2$: C, 46.67; H, 3.92; N, 9.89, found: C, 46.90; H, 3.56; Br, 28.22; N, 9.97; Isolated Yield: 893.5 mg, 96.0%.

(S,Z)-2-(aminomethylene)-3-oxo-N-(2-oxotetrahydrofuran-3-yl)hexanamide (2d):

Faint yellow solid: mp. 128.6-129.7°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 0.88 (t, *J*=7.2 Hz, 3H), 1.47-1.54(m, 2H), 2.22-2.30 (m, 1H), 2.39-2.45 (m, 1H), 2.49-2.53 (m, 2H), 4.18-4.24 (m, 1H), 4.32-4.37 (m, 1H), 4.53-4.60 (m, 1H), 8.07 (dd, *J*=15.2 Hz, 8.8 Hz, 1H), 8.41 (br, 1H), 9.73 (br, 1H), 9.98 (d, *J*=7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 13.8, 18.7, 28.5, 38.5, 47.6, 65.3, 100.5, 159.9, 168.8, 175.6, 197.4; **IR** (Neat, cm⁻¹): 3289, 3167, 2952, 2870, 2216, 2169, 2033, 1773, 1759, 1618, 1562, 1518, 1459, 1386, 1334, 1310, 1286, 1246, 1223, 1177, 1089, 1022, 995, 968, 953,

875, 794; **HPLC** Purity: 99.5%; $[\alpha]_{D}^{20}$: +11.02 (c=1, CH₃OH); Anal. Calculated for C₁₁H₁₆N₂O₄: C, 54.99; H, 6.71; N, 11.66, found: C, 55.24; H, 6.13; N, 11.58; Isolated Yield: 841 mg, 94.3%.

(S,Z)-2-(aminomethylene)-3-oxo-N-(2-oxotetrahydrofuran-3-yl)octanamide (2e):

Faint yellow solid: mp. 119.7-120.9°C; ¹H NMR (400 MHz, CDCl₃) δ =0.89 (t, *J*=7.2 Hz), 1.22-1.37(m, 4H), 1.57-1.64 (m, 2H-merged with H₂O peak), 2.34-2.44 (m, 1H), 2.51 (t, *J*=7.6 Hz, 2H), 2.57-2.64 (m, 1H), 4.24-4.31 (m, 1 H), 4.47-4.57 (m, 2H), 5.98 (br, 1H), 7.95 (dd, *J*=14 Hz, 8.4 Hz, 1H), 9.98 (br, 1H), 10.19 (d, *J*=7.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 22.5, 25.4, 29.3, 31.6, 37.5, 48.1, 65.8, 102.5, 158.3, 169.6, 175.6, 198.7; **IR** (Neat, cm⁻¹):

3286, 2955, 2869, 2164, 1770, 1622, 1565, 1522, 1383, 1336, 1317, 1280, 1217, 1157, 1093, 1018, 957, 848, 793, 707; **HPLC** Purity: 98.94%; $[\alpha]_D^{20}$: -14.44 (c=1, CHCl₃); Anal. Calculated for C₁₃H₂₀N₂O₄: C, 58.19; H, 7.51; N, 10.44; found: C, 58.40; H, 7.24; N, 9.90; Isolated Yield: 420 mg, 93.1%.

(S,Z)-2-(aminomethylene)-3-oxo-N-(2-oxotetrahydrofuran-3-yl)dodecanamide (2f):

Faint yellow solid: mp. 120.1-120.9 °C; ¹H NMR (400 MHz, CDCl₃) δ =0.87 (t, *J*=6.8 Hz, 3H), 1.25-1.29 (m, 12H), 1.56-1.61 (m, 2H-merged with H₂O peak), 2.34-2.44 (m, 1H), 2.50 (t, *J*=7.2 Hz, 2H), 2.56-2.64 (m, 1H), 4.24-4.31 (m, 1H), 4.47-4.57 (m, 1H), 6.01 (br, 1H), 7.95 (dd, *J*=14.4 Hz, 8.4 Hz, 1H), 9.96 (br, 1H), 10.19 (d, *J*=7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 14.1, 22.7, 25.8, 29.2, 29.3, 29.4, 29.5, 31.8, 37.6, 48.1, 65.8, 102.4, 158.3, 169.6, 175.6,

198.8; **IR** (Neat, cm⁻¹): 3298, 3172, 2923, 2853, 2164, 1781, 1768, 1619, 1565, 1519, 1467, 1383, 1355, 1337, 1314, 1283, 1254, 1216, 1171, 1096, 1023, 1001, 950, 883, 799, 699; **HPLC** Purity: 98.68%; $[\alpha]_D^{20}$: -7.48 (c=1, CHCl₃); **HRMS (EI)** m/z: calculated for C₁₇H₂₈N₂O₄ [M+Na]⁺: 347.1947, found: 347.1950; Isolated Yield: 430 mg 93.7%.

(Z)-2-((ethylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (2g):

Pale green solid: mp. 99.7 -100.7 °C; ¹H NMR (400 MHz, DMSO-d₆) δ =0.85 (t, *J*=6.8 Hz, 3H), 1.25 (br, 12H), 1.53 (br, 2H), 2.64 (t, *J*=7.6 Hz, 2H), 8.25 (dd, *J*=15.6 Hz, 8.8 Hz, 1H), 8.30-8.36 (m, 2H), 8.86 (br, 1H), 9.43 (s, 1H), 9.82 (br, 1H), 12.54 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 13.9, 22.1, 25.4, 28.7, 28.8, 28.9, 31.2, 36.9, 100.0, 136.2, 139.1, 142.8, 148.7, 161.2, 167.1, 198.6; IR (Neat, cm⁻¹) 3383, 3218, 2921, 2852, 1659, 1513, 1411,

1383, 1340, 1292, 1267, 1190, 1165, 1145, 1099, 1054, 1009, 963, 866, 846, 720, 667; **HPLC** Purity: 98.08%; Anal. Calculated for $C_{17}H_{26}N_4O_2$: C, 64.12; H, 8.23; N, 17.60, found: C, 63.90; H, 7.83; N, 16.90; Isolated Yield: 168 mg, 91.7%.

EZ-2-(aminomethylene)-4,4,4-trifluoro-3-oxo-ethylester-butanoic acid (2h):

Light yellow solid: mp. 78.2-79.9 °C; ¹H NMR (400 MHz, CDCl₃) δ =1.29 (m, 3H), 4.25 (m, 2H), 6.77-6.95 (br, 1H), 8.11 & 8.27 (dd, *J*=16 Hz, 8.8 Hz, 1H), 9.87 & 9.18 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 13.9 & 14.0, 60.6 & 60.8, 98.1 & 98.7, 116.8 & 117.2 (q, *J*=286 & 289 Hz), 160.3 & 162.0, 165.4 & 167.3, 180.0 & 178.3 (q, *J*=36 & 34 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ =-73.19, -71.75; IR (Neat, cm⁻¹)

3439, 3212, 1720, 1677, 1651, 1639, 1618, 1562, 1478, 1417, 1384, 1362, 1319, 1221, 1199, 1187, 1161, 1132, 1018, 917, 777, 739, 708; Anal. Calculated for $C_7H_8F_3NO_3$: C, 39.82; H, 3.82; N, 6.63, found: C, 39.62; H, 3.63; N, 6.72; Isolated Yield: 410 mg, 93.3%.

(Z)-2-((ethylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3a)

White powder: mp. 125.7-127.4 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 1.22 (t, *J*=7.2 Hz, 3H), 2.29 (s, 3H), 3.45-3.52 (m, 2H), 7.63 (d, J= 8.4 Hz, 2H), 7.78 (d, J= 8.4 Hz, 2H), 8.24 (d, J= 14 Hz, 1H), 10.50 (m, 1H), 12.35 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 15.9, 26.1, 44.3, 99.9, 119.2, 122.6 (q, *J*=32 Hz), 124.4(q, *J*=269 Hz), 126.0, 142.4, 162.0, 167.3, 195.4; ¹⁹F NMR (376 MHz) δ = -60.24; **IR** (Neat, cm⁻¹): 3224.8, 2976.6, 1650.7, 1582.9, 1532, 1452.9,

1406.9, 1379.2, 1322.6, 1257.4, 1181.7, 1150.6, 1093.6, 1061.8, 1012.8, 989.2, 954.2, 837.1, 819.7, 800.9, 774.6, 678.8; **HPLC** Purity: 98.29%; **HRMS (EI)** m/z: calculated for $C_{14}H_{15}F_3N_2O_2$ [M+H]⁺: 301.1164, found: 301.1184; Isolated Yield: 917 mg, 92.0%.

(Z)-2-((2-aminophenylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl) butanamide (3b):

Yellow solid: mp. 202.4-203.5 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.42(s, 3H), 3.80 (s, 2H), 6.83-6.89 (m, 2H), 7.09-7.13 (m, 2H), 7.56 (d, *J*=8.4 Hz, 2H), 7.75 (d, *J*=8.4 Hz, 2H), 8.25 (d, *J*=12.8 Hz, 1H), 12.08 (s, 1H), 12.46 (d, *J*=12 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 26.3, 104.5, 117.5, 119.7, 119.9, 120.2, 124.3 (q, *J*=270 Hz), 125.0 (q, *J*=32 Hz), 126.1, 127.2, 127.5, 138.7, 141.5, 156.1, 167.8, 196.2; ¹⁹F NMR (376 MHz, CDCl₃) δ = -61.96; **IR** (Neat, cm⁻¹): 3428, 3356, 3141, 3046, 2196,

2160, 2024, 2005, 1646, 1535, 1503, 1463, 1413, 1374, 1315, 1281, 1265, 1186, 1158, 1147, 1104, 1066, 1016, 982, 956, 929, 906, 841, 788, 744, 680, 637, 622, 606; **HPLC** Purity: 98.29%; **HRMS (EI)** m/z: calculated for $C_{18}H_{16}F_3N_3O_2$ [M+H]⁺: 364.1273, found: 364.1272; Isolated Yield: 1.10 g, 91.2%.

(Z)-2-((4-chlorophenylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl) butanamide (3c):

White solid: mp. 228.4-230.6°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.50 (s, 3H), 7.49 (d, *J*=8.8 Hz, 2H), 7.61 (d, *J*=8.8 Hz, 2H), 7.69 (d, *J*=8.8 Hz, 2H), 7.85 (d, *J*=8.4 Hz, 2H), 8.60 (d, *J*=12.8 Hz, 1H), 12.18 (s, 1H), 12.34 (d, *J*=13.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.7, 103.0, 119.8, 120.1, 123.0 (q, *J*=32 Hz), 124.3 (q, *J*=270 Hz), 126.1, 129.2, 129.3, 138.0, 141.8, 155.2, 166.9, 197.5; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.32; **IR** (Neat, cm⁻¹): 3018, 2013, 1660, 1586,

1541, 1495, 1414, 1382, 1315, 1256, 1186, 1151, 1103, 1067, 1011, 954, 845, 815, 778, 705, 690; **HPLC** Purity: 99.95%; **HRMS (EI)** m/z: calculated for $C_{18}H_{14}CIF_3N_2O_2$ [M+H]⁺: 383.0774, found: 383.0775; Isolated Yield: 1.23 g, 96.8%.

(Z)-4-((3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)methyl)benzoic acid (3d):

White spongy solid: mp. 203.4-207.7°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.33 (s, 3H), 4.77 (d, *J*=6 Hz, 2H), 7.49 (d, *J*=8 Hz, 2H), 7.63 (d, *J*=8.8 Hz, 2H), 7.78 (d, *J*=8.4 Hz, 2H), 7.97 (d, *J*=8 Hz, 2H), 8.44 (d, *J*=13.6 Hz, 1H), 10.81-10.75 (m, 1H), 12.30 (s, 1H), 12.67 (br, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ

= 26.3, 52.3, 100.7, 119.4, 123.0 (q, *J*=32 Hz), 124.4 (q, *J*=269 Hz), 126.1, 129.7, 130.3, 142.3, 142.8, 162.8, 167.1, 167.2, 195.9; ¹⁹**F NMR** (376 MHz, DMSO-d₆) δ = -60.26; **IR** (Neat, cm⁻¹) 3750, 2987, 2618, 2047, 1715, 1615, 1589, 1530, 1448, 1424, 1402, 1381, 1351, 1315, 1278, 1248, 1184, 1157, 1108, 1065, 1035, 1023, 1014, 993, 957, 837, 795, 760, 744, 694, 679; **HPLC** Purity: 99.87%; **HRMS (EI)** m/z: calculated for C₂₀H₁₇F₃N₂O₄ [M+H]⁺: 407.1219, found: 407.1219; Isolated Yield: 1.22 g, 90.5%.

(Z)-2-((4-acetylphenylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3e):

Off-white solid: mp. 194.1-195.0°C; ¹H NMR (400 MHz, CDCl₃) δ = 2.49 (s, 3H), 2.60 (s, 3H), 7.25 (d, *J*=8.4 Hz, 2H), 7.58 (d, *J*=8.4 Hz, 2H), 7.74 (d, *J*=8 Hz, 2H), 8.03 (d, *J*=8.4 Hz, 2H), 8.41 (d, *J*=12.4 Hz, 1H), 11.96 (s, 1H), 12.81 (d, *J*=11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 26.4, 26.5, 105.3, 116.9, 120.4, 123.0 (q, *J*=32 Hz), 124.3 (q, *J*=270 Hz), 126.1, 130.6, 134.1, 141.2, 142.6, 152.1, 167.2, 196.3, 196.7; ¹⁹F NMR (376 MHz, CDCl₃) δ = -62.01; **IR** (Neat, cm⁻¹): 3047, 2168, 1918, 1674, 1658, 1634, 1576, 1534,

1414, 1389, 1355, 1300, 1253, 1211, 1178, 1147, 1100, 1065, 1011, 951, 908, 842, 827, 772, 678; **HPLC** Purity: 99.91%; Anal. Calculated for $C_{20}H_{17}F_3N_2O$: C, 50.92; H, 3.97; N, 8.48, found: C, 50.75; H, 3.21; N, 8.20; Isolated Yield: 1.18 g, 91.1%.

(Z)-2-(3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)acetic acid (3f):

White powder: mp. 200- 204.7 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.29 (s, 3H), 4.30 (d, *J*=6 Hz, 2H), 7.65 (d, *J*= 8.8 Hz, 2H), 7.80 (d, *J*= 8.4 Hz, 2H), 8.27 (d, *J*= 13.6 Hz, 1H), 10.48-10.54 (m, 1H), 12.27 (s, 1H), 13.09 (br, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 25.1, 48.9, 99.9, 101.2, 119.3, 122.8(q, *J*=30 Hz), 124.4(q, *J*=269 Hz), 126.0,128.4, 141.3, 162.3, 166.1, 169.7, 194.9; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.32; IR (Neat, cm⁻¹) 3312, 3092, 1660, 1618, 1544, 1414, 1384, 1343, 1318, 1257, 1198,

1180, 1157, 1136, 1100, 1061, 1013, 951, 850, 824, 776, 757, 710, 654; **HPLC** Purity: 98.92%; Anal. Calculated for $C_{14}H_{13}F_3N_2O_4$: C, 50.92; H, 3.97; N, 8.48, found: C, 50.75; H, 3.21; N, 8.20; Isolated Yield: 1.00 g 91.2%.

(S,Z)-2-(3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)-3-phenylpropanoic acid (3g):

White solid: mp. 160.1-163.4 °C; ¹**H NMR** (400 MHz, DMSO-d₆) $\bar{\delta}$ = 2.06 (s, 3H), 3.10 (dd, J=14 Hz, 8.8 Hz, 1H), 3.30 (dd, J=14 Hz, 4.8 Hz, 1H-H₂O peak merged), 4.67-4.72 (m, 1H), 7.22-7.28 (m, 3H), 7.31-7.34 (m, 2H), 7.64 (d, J=8.8 Hz, 2H), 7.77 (d, J=8.4 Hz, 2H), 7.88 (d, J=13.6 Hz, 1H), 10.65 (dd, J=13.2 Hz, 8.8 Hz, 1H), 12.17 (s, 1H), 13.55 (br, 1H); ¹³**C NMR** (100 MHz, DMSO-d₆) $\bar{\delta}$ = 25.9, 39.0, 62.0, 100.4, 119.4, 122.8 (q, J=32 Hz), 124.4(q, J=269 Hz), 126.1, 128.4, 126.9, 129.6, 136.0, 142.1,

161.6, 167.0, 171.5, 195.7; ¹⁹**F** NMR (376 MHz, DMSO-d₆) $\bar{\delta}$ = -60.26; **IR** (Neat, cm⁻¹): 2923, 2349, 2180, 1960, 1715, 1650, 1628, 1601, 1537, 1449, 1413, 1384, 1357, 1322, 1276, 1244, 1223, 1202, 1184, 1167, 1110, 1067, 1014, 995, 963, 885, 872, 845, 829, 801, 769, 744, 704, 684; **HPLC** Purity: 99.07%; **Enantiomeric ratio (er)**: 100:0; $[\alpha]_D^{20}$: -229.83 (c=1, CH₃OH); **HRMS (EI)** m/z: calculated for C₂₁H₁₉F₃N₂O₄ [M+Na]⁺: 443.1195, found: 443.1208; Isolated Yield: 1.25 g, 89.6%.

(R,Z)-2-(3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)-3-phenylpropanoic acid (3h):

White solid: mp. 163.1-168.7°C; ¹**H NMR** (400 MHz, DMSO-d₆) δ = 2.07 (s, 3H), 3.10 (dd, J=13.6 Hz, 8.4 Hz, 1H), 3.30 (dd, J=13.6 Hz, 4.4 Hz, 1H, H₂O peak merged), 4.69-4.74 (m, 1H), 7.22-7.27 (m, 3H), 7.31-7.35 (m, 2H), 7.65 (d, J=8.8 Hz, 2H), 7.77 (d, J=8.4 Hz, 2H), 7.90 (d, J=13.6 Hz, 1H), 10.65 (dd, J=13.2 Hz, 8.8 Hz, 1H), 12.17 (s, 1H), 13.55 (br, 1H); ¹³C **NMR** (100 MHz, DMSO-d₆) δ = 25.9, 39.1 (merged with solvent residual peak), 61.9, 100.5, 119.5, 122.8 (q, J=32 Hz), 124.4(q, J=269 Hz), 126.1,

128.4, 126.9, 129.6, 136.0, 142.1, 161.7, 167.1, 171.5, 195.8; ¹⁹F NMR (376 MHz, DMSO-d₆) $\bar{\delta}$ = -60.26; IR (Neat, cm⁻¹): 3028, 2348, 2196, 2170, 1976, 1742, 1653, 1529, 1381, 1322, 1273, 1177, 1098, 1064, 1014, 981, 962, 835, 735, 698; HPLC Purity: 98.77%; Enantiomeric ratio (er): 99.2:0.8; $[\alpha]_{D}^{20}$: +233.44 (c=1, CH₃OH); HRMS (EI) m/z: calculated for C₂₁H₁₉F₃N₂O₄ [M+H]⁺: 421.1375, found: 421.1381; Isolated Yield: 1.29 g, 93.1%.

(2S,3S)-3-methyl-2-((Z)-3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)pentanoic acid(3i):

White solid: mp. 194.2-196.0 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 0.91 (m, 6H), 1.16 (m, 1H), 1.45 (m, 1H), 1.99 (m, 1H), 2.30 (s, 3H), 4.37 (dd, *J*=9.6 Hz, 4.4 Hz, 1H), 7.65 (d, *J*=8.8 Hz, 2H), 7.78 (d, *J*=8.4 Hz, 2H), 8.31 (d, *J*=13.2 Hz, 1H), 10.85 (q, *J*=13.2 Hz, 9.6 Hz, 1H), 12.30 (s, 1H), 13.44 (br, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 11.4, 15.2, 24.2, 26.2, 38.0, 65.8, 100.7, 119.6, 122.9 (q, *J*=32 Hz), 124.4 (q, *J*=270 Hz), 126.1, 142.1, 162.2, 167.5, 171.7, 196; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.29; IR

(Neat, cm⁻¹): 2965, 1727, 1661, 1618, 1596, 1516, 1382, 1318, 1258, 1240, 1203, 1179, 1153, 1135, 1110, 1064, 1012, 990, 960, 898, 846, 827, 808, 748, 659; **CHIRAL HPLC** Purity: 99.82%; $[\alpha]_{D}^{20}$: -24.012 (c=1, CH₃OH); **HRMS (EI)** m/z: calculated for C₁₈H₂₁F₃N₂O₄ [M+H]⁺:, found: ; Isolated Yield: 1.15 g, 89.7%.

(S,Z)-3-(1H-imidazol-5-yl)-2-(3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)propanoic acid (3j):

DMSO-d₆) δ = -60.24; **IR** (Neat, cm⁻¹): 3129, 2032, 1567, 1529, 1376, 1316, 1254, 1187, 1154, 1109, 1066, 1010, 987, 953, 837, 701, 666; **HPLC** Purity: 98.60%; **[a]**_D²⁰ : -44.85 (c=1, (CH₃)₂SO); **HRMS (EI)** m/z: calculated for C₁₈H₁₇F₃N₄O₄ [M+Na]⁺: 433.1100, found: 433.1108 ; Isolated Yield: 1.19 g, 87.4%.

(Z)-2-(((Z)-2-amino-1,2-dicyanovinylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3k):

Brown solid: mp. 192.5°C (decomposition); ¹H NMR (400 MHz, DMSO-d₆) $\delta = 2.36(s, 3H)$, 7.64-7.74 (m, 4H), 7.84 (d, *J*=8.8 Hz, 2H), 8.21 (d, *J*=12.4 Hz, 1H), 11.19 (d, *J*=12.4 Hz, 1H), 11.98 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) $\delta = 26.4$, 93.8, 104.4, 113.8, 116.2, 119.8, 123.7 (q, *J*=32 Hz), 124.3 (q, *J*=269 Hz), 126.1, 146.7, 159.4, 166.3, 197.2; ¹⁹F NMR (376 MHz, DMSO-d₆) $\delta = -60.34$; IR (Neat, cm⁻¹): 3427, 3349, 3029, 2220, 2166, 2021, 1983, 1648, 1586, 1531, 1398, 1377, 1320, 1299, 1252, 1187,

1158, 1107, 1066, 1014, 950, 895, 855, 834, 764, 732, 674; **HPLC** Purity: 98.60%; **HRMS (EI)** m/z: calculated for $C_{16}H_{12}F_3N_5O_2[M+H]^+$: 364.1021, found: 364.1019; Isolated Yield: 1.09 g, 90.4%.

(Z)-2-((3-(benzyloxy)pyridin-2-ylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3I):

White spongy powder: mp. 214.0-214.9°C; ¹H NMR (400 MHz, CDCl₃) δ = 2.54 (s, 3H), 5.27(s, 2H), 7.03 (dd, *J*=8.4 Hz, 5.2Hz, 1H), 7.24 (d, *J*=1.2 Hz, 1H), 7.38-7.47 (m, 3H), 7.57-7.60 (m, 4H), 7.82 (d, J= 8.8 Hz, 2H), 7.96 (d, *J*=4.8 Hz, 1H), 9.25 (d, 12 Hz, 1H), 12.00 (s, 1H), 13.24 (d, *J*=12.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 25.6, 69.5, 104.6, 118.6, 119.0, 119.1, 124.1 (q, *J*=32 Hz), 124.7 (q, *J*=270 Hz), 125.0, 125.8, 127.3, 127.7, 134.5,

138.5, 140.3, 140.7, 142.4, 149.5, 166.1, 196.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ = -61.86; **IR** (Neat, cm⁻¹): 3068, 1650, 1628, 1590, 1562, 1529, 1471, 1460, 1449, 1413, 1393, 1372, 1315, 1271, 1252, 1216, 1180, 1154, 1106, 1065, 1036, 1024, 1012, 974, 950, 840,825, 783, 752, 728, 690; **HPLC** Purity: 98.18%; **HRMS** (**EI**) m/z: calculated for C₂₄H₂₀F₃N₃O₃ [M+H]⁺: 456.1535, found: 456.1548; Isolated Yield: 1.40 g, 92.6%.

(Z)-2-((2,3-dimethyl-2H-indazol-6-ylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3m):

Off-white powder: mp. 219.0-220.8 °C; ¹H NMR (400 MHz, CDCl₃) δ = 2.48 (s, 3H), 2.64 (s, 3H), 4.15 (s, 3H), 6.95 (d, *J*=8.4 Hz, 2H), 7.42 (s, 1H), 7.57-7.64 (m, 3H), 7.76 (d, *J*= 8.4 Hz, 2 H), 8.46 (d, *J*=12.8 Hz, 2H), 12.06 (s, 1H), 12.70 (d, *J*= 12 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 9.4, 26.8, 37.1, 102.1, 102.8, 114.0, 118.6, 119.8, 124.1 (q, *J*=32 Hz), 124.7 (q, *J*=270 Hz), 125.7, 126.1, 134.5, 137.9, 141.8, 145.0, 155.0, 167.1, 197.5; ¹⁹F NMR (376 MHz, CDCl3) δ = -61.95; IR (Neat, cm⁻¹) 3013, 2156, 1631, 1583, 1534, 1403, 1368, 1318, 1267,

1200, 1179, 1159, 1108, 1062, 1008, 953, 903, 855, 840, 785, 766, 741, 693, 668; **HPLC** Purity: 99.98%; **HRMS (EI)** m/z: calculated for $C_{21}H_{19}F_3N_4O_2$ [M+Na]⁺: 439.1358, found: 439.1381; Isolated Yield: 1.27 g, 91.9%.

(Z)-5-(3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino)-1H-imidazole-4-carboxamide (3n):

Off-white powder: mp. 227.5-228.8 °C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.30 (s, 3H), 7.41 (s, 2H), 7.69 (d, J= 8.4 Hz, 2H), 7.82 (s, 1H), 7.85 (d, J= 8.4 Hz, 2H), 8.92 (d, J= 12.8 Hz, 1H), 12.06 (s, 1H), 12.52 (s, 1H), 12.85 (d, J= 13.2 Hz); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.4, 103.1, 108.7, 119.6, 123.6 (q, *J*=32 Hz), 124.7 (q, *J*=269 Hz), 126.1, 142.0, 142.6, 151.8, 161.1, 166.1, 197.0; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.27; **IR** (Neat, cm⁻¹) 3123, 1656, 1611, 1567, 1525,

1451, 1414, 1377, 1304, 1274, 1252, 1186, 1157, 1107, 1062, 1012, 992, 953, 848, 828, 793, 768, 696, 676; **HPLC** Purity: 99.54%; **HRMS (EI)** m/z: calculated for $C_{16}H_{14}F_3N_5O_3[M+H]^+$: 382.1127, found: 382.1127; Isolated Yield: 1.18 g 93.2%.

(Z)-3-oxo-2-((pyrazin-2-ylamino)methylene)-N-(4-(trifluoromethyl)phenyl)butanamide (3o):

White spongy solid: mp. 207.6-208.6°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.50 (s, 3H-merged with residual solvent peak), 7.70 (d, *J*=8.4 Hz, 2H), 7.88 (d, *J*=8.4 Hz, 2H), 7.45 (m, 2H), 8.91 (s, 1H), 9.08 (d, *J*=12.4 Hz, 1H), 11.89 (s, 1H), 12.32 (d, *J*=12 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.6, 105.8, 119.9, 123.6 (q, *J*=32 Hz), 124.7 (q, *J*=269 Hz), 126.1, 136.5, 140.6, 141.6, 142.3, 147.0, 151.4, 166.0, 198.0; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.36; **IR** (Neat, cm⁻¹) 3016, 1664, 1632, 1594,

1546, 1525, 1476, 1442, 1415, 1380, 1317, 1289, 1257, 1189, 1157, 1141, 1104, 1062, 1009, 977, 953, 912, 849, 836, 777, 732, 703; **HPLC** Purity: 99.82%; **HRMS (EI)** m/z: calculated for $C_{16}H_{13}F_3N_4O_2$ [M+H]⁺: 351.1069, found: 351.1087; Isolated Yield: 1.05 g, 90.3%.

(Z)-2-((9H-purin-6-ylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl)butanamide (3p):

Off-white solid: mp. 294.0°C-295.6°C; ¹H NMR (400 MHz, DMSO-d₆) $\overline{\delta}$ = 2.56 (s, 3H), 7.73 (d, *J*=8.8 Hz, 2H), 7.91 (d, *J*=8.4 Hz, 2H), 8.60 (s, 1H), 8.71 (s, 1H), 9.60 (d, *J*=12 Hz, 1H), 11.89 (s, 1H), 12.85 (d, *J*=12 Hz, 1 H), 13.76 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆+CD₂Cl₂) $\overline{\delta}$ = 26.7, 106.5, 120.2, 121.0, 123.8, 126.2, 141.3, 144.1, 146.8, 151.9, 152.0, 153.2, 166.4, 198.3 (Solubility of the sample is very poor in all deuterated NMR solvents so the peaks in the 13C spectra

is not as good as other samples); ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.40; **IR** (Neat, cm⁻¹) 3098, 2991, 2839, 1781, 1665, 1619, 1573, 1533, 1468, 1434, 1410, 1372, 1318, 1305, 1272, 1254, 1179, 1166, 1148, 1104, 1075, 1060, 1010, 957, 940, 925, 889, 847, 818, 796, 722, 686, 673; **HPLC** Purity: 99.41%; **HRMS (EI)** m/z: calculated for C₁₇H₁₃F₃N₆O₂ [M+Na]⁺: 413.0950, found: 413.0954; Isolated Yield: 1.20 g, 92.6%.

(Z)-3-oxo-2-((thiazol-2-ylamino)methylene)-N-(4-(trifluoromethyl)phenyl)butanamide (3q):

Peach solid: mp. 162.9-164.5°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.46 (s, 3H), 7.38 (d, *J*=3.6 Hz, 1H), 7.52 (d, *J*=3.2 Hz, 1H), 7.68 (d, *J*=8.8 Hz, 2H), 7.85 (d, *J*=8.4 Hz, 2H), 8.83 (d, *J*=12 Hz, 1H), 11.77 (s, 1H), 12.54 (d, *J*=12 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.5, 105.6, 116.0, 119.8, 123.5 (q, *J*=32 Hz), 124.3 (q, *J*=270 Hz), 126.1, 139.2, 141.7, 151.6, 161.0, 165.5, 197.7; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.39; **IR** (Neat, cm⁻¹): 3029, 2098, 2041, 2013, 1972, 1658, 1583, 1546, 1512,

1460, 1395, 1317, 1292, 1254, 1195, 1159, 1101, 1065, 1014, 971, 950, 883, 867, 839, 776, 695, 666; **HPLC** Purity: 99.79%; **HRMS (EI)** m/z: calculated for $C_{15}H_{12}F_3N_3O_2S$ [M+H]⁺: 356.0681, found: 356.0681; Isolated Yield: 1.09 g, 92.4%.

(Z)-2-((3-methylpyridin-2-ylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl) butanamide (3r):

White solid: mp. 224.9-225.5°C; ¹H NMR (400 MHz, CDCl₃) δ = 2.42 (s, 3H), 2.54 (s, 3H), 7.02-7.05 (m, 1H), 7.53-7.59 (m, 3H), 7.78 (d, *J*=8.8 Hz, 2H), 8.23 (d, *J*=4.4 Hz, 1H), 9.35 (d, *J*=12 Hz, 1H), 12.06 (s, 1H), 12.96 (d, *J*=10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 16.5, 26.7, 105.2, 120.2, 120.3, 121.2, 125.4 (q, *J*=32 Hz), 126.1, 126.9 (q, *J*=270 Hz), 139.6, 141.4, 146.0, 148.8, 151.9, 167.6, 197.9; ¹⁹F NMR (376 MHz, CDCl₃) δ = -61.98; **IR** (Neat, cm⁻¹): 3028, 2012, 1660, 1597, 1579, 1541,

1470, 1455, 1435, 1410, 1379, 1314, 1268, 1253, 1194, 1169, 1155, 1101, 1063, 1011, 986, 954, 910, 847, 811, 777, 756, 731, 679; **HPLC** Purity: 99.74%; **HRMS (EI)** m/z: calculated for $C_{18}H_{16}F_3N_3O_2$ [M+H]⁺: 364.1273, found: 364.1278; Isolated Yield: 1.12 g, 92.9%.

(Z)-2-((5-fluoro-2-oxo-2,3-dihydropyrimidin-4-ylamino)methylene)-3-oxo-N-(4-(trifluoromethyl)phenyl) butanamide (3s):

White solid: mp. 269.8-271.0°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.53 (s, 3H), 7.73 (d, *J*=8.4 Hz, 2H), 7.87 (d, *J*=7.6 Hz, 2H), 8.28 (d, *J*=4 Hz, 1H), 8.90 (d, *J*=11.2 Hz, 1H), 11.61 (br, 1H), 11.72 (s, 1H), 12.51 (d,

J=11.6 Hz, 1H); ¹³**C** NMR (100 MHz, DMSO-d₆) $\bar{\delta}$ = 26.8, 108.6, 119.6, 120.4, 122.8, 124.4, 126.2, 141.0, 148.6, 166.0, 198.7 (Solubility of the sample is very poor in all deuterated NMR solvents so the peaks in the ¹³C spectra is not as good as other samples); ¹⁹**F** NMR (376 MHz, DMSO-d₆) $\bar{\delta}$ = -60.30, -60.45; **IR** (Neat, cm⁻¹) 3048, 2749, 1659, 1590, 1542, 1481, 1444, 1416, 1389, 1321, 1268, 1188, 1154, 1111, 1068, 1057, 1035, 1018, 960, 888, 844, 834, 793, 772, 733, 721, 683; **HPLC** Purity: 98.18%; **HRMS (EI)** m/z: calculated for C₁₆H₁₂F₄N₄O₃ [M+H]⁺: 385.0924, found: 385.0946; Isolated Yield: 1.18 g, 92.5%.

(Z)-3-oxo-N-(4-(trifluoromethyl)phenyl)-2-(((3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-3-ylamino)methylene)butanamide (3t):

White solid: mp. 139.5-140.4°C; ¹H NMR (400 MHz DMSO-d₆) δ = 2.28 (s, 3H), 3.15-3.18 (m, 1H), 3.38-3.42 (m, 1H), 3.38-3.42 (m, 1H), 3.47-3.53 (m, 2H), 3.64-3.67 (m, 2H), 4.51 (t, *J*=6 Hz, 1H), 5.09 (d, *J*=6 Hz, 1H), 5.16 (t, *J*=3.6 Hz, 1H), 5.32 (d, *J*=5.6 Hz, 1H), 7.04 (d, *J*=4 Hz, 1H), 7.64 (d, *J*=8.8 Hz, 2H), 7.79 (d, *J*=8.8 Hz, 2H), 8.23 (d, *J*=13.6 Hz), 10.47 (dd, *J*=13.2 Hz, 9.2 Hz, 1H), 12.33 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ =26.1, 60.8, 64.1, 70.3, 71.4, 72.4, 90.5, 100.2, 119.4, 122.8 (q, *J*=32 Hz), 124.4 (q, *J*=269 Hz), 126.1,

142.3, 162.7, 167.5, 195.6; ¹⁹**F** NMR (376 MHz, DMSO-d₆) δ = -60.25; **IR** (Neat, cm⁻¹) 3370, 1659, 1592, 1533, 1410, 1380, 1320, 1254, 1170, 1114, 1067, 1015, 960, 919, 839, 793; **HPLC** Purity: 98.18%; $[\alpha]_{D}^{20}$: +121.30 (c=1, CH₃OH); **HRMS (EI)** m/z: calculated for C₁₈H₂₁F₃N₂O₇ [M+H]⁺: 435.1379, found: 435.1389; Isolated Yield: 1.26 g, 87.4%.

(2R,3R,4R,5R)-2-(5-fluoro-2-oxo-4-((Z)-3-oxo-2-(4-(trifluoromethyl)phenylcarbamoyl)but-1-enylamino) pyrimidin-1(2H)-yl)-5-methyltetrahydrofuran-3,4-diyl diacetate (3u):

White solid: mp. 205.8-206.9 °C; ¹H NMR (400 MHz, CDCl₃) δ = 1.54 (d, J=6.4 Hz, 3H), 2.15 (d, J=6 Hz, 6H), 2.58 (s, 3H), 4.36 (quint, 1H), 5.04 (t, J=6 Hz, 1H), 5.39 (t, J=5.6 Hz, 1H), 6.06 (d, J=4 Hz 1H), 7.63 (d, J=8.8 Hz, 2H), 7.77-7.80 (m, 3H), 9.05 (d, J=11.2 Hz, 1H), 11.75 (s, 1H), 13.16 (d, J=10.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 18.6, 20.49, 20.51, 27.2, 73.9, 74.0, 78.3, 89.4, 110.5, 120.6, 124.1(q, J=270 Hz), 126.0 (q, J=32 Hz), 126.2 (q, J=3.8 Hz), 128.2 (d, J= 35 Hz), 137.0 (d, J= 246 Hz), 140.5, 147.9, 152.2 (d, J=12 Hz), 152.7, 165.9,

169.6, 169.7, 199.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ = -62.13, -167.19; **IR** (Neat, cm⁻¹): 3105, 1754, 1687, 1664, 1649, 1592, 1537, 1474, 1408, 1371, 1318, 1272, 1239, 1208, 1159, 1108, 1092, 1063, 1011, 954, 896, 840, 817, 775, 718; **HPLC** Purity: 99.74%; $[\alpha]_{D}^{20}$: +55.29 (c=1, CHCl₃); **HRMS (EI)** m/z: calculated for C₂₅H₂₄F₄N₄O₈ [M+Na]⁺: 607.1428, found: 607.1441 ; Isolated Yield: 435 mg, 89.7%.

(S,Z)-4-((3-oxo-2-(2-oxotetrahydrofuran-3-ylcarbamoyl)hex-1-enylamino)methyl)benzoic acid (3v):

Faint yellow solid: mp. 178.2-180.4°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 0.89 (t, *J*=7.6 Hz, 3H), 1.49-1.58 (m, 2H), 2.21-2.31 (m, 1H), 2.38-2.45 (m, 1H), 2.58 (t, *J*=7.2 Hz, 2H), 4.17-4.23 (m, 1H), 4.34 (t, *J*=8.4 Hz, 1H), 4.53-4.60 (m, 1H), 4.70 (d, *J*=6.4 Hz, 2H), 7.45 (d, *J*=8 Hz, 2H), 7.95 (d, *J*=8 Hz, 2H), 8.33 (d, *J*=13.2 Hz, 1H), 10.05 (d, *J*=7.2 Hz, 1H), 10.68-10.75 (m, 1H), 12.96 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 13.8, 18.7, 28.4, 38.5, 47.8, 51.8, 65.3, 100.2,

127.5, 129.6, 129.9, 143.2, 161.4, 167.0, 168.7, 175.5, 197.2; IR (Neat, cm⁻¹): 3848, 3750, 3650, 2965,

2296, 2164, 1976, 1758, 1696, 1638, 1611, 1575, 1525, 1428, 1400, 1370, 1320, 1286, 1207, 1164, 1114, 1055, 1019, 1010, 985, 945, 854, 817, 783, 750, 694; **HPLC** Purity: 98.88%; $[\alpha]_D^{20}$: +8.796 (c=1, CH₃OH); Anal. Calculated for C₁₉H₂₂N₂O₆: C, 60.95; H, 5.92; N, 7.48, found: C, 60.69; H, 5.71; N, 7.42; Isolated Yield: 256 mg 92.1%.

(Z)-3-oxo-N-(4-(trifluoromethyl)phenyl)-2-((4-((2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yloxy)phenylamino)methylene)butanamide (3w):

Off-white solid: mp. 250.1-250.6°C; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.49 (s, 3H), 3.39-3.53 (m, 3H), 3.61 (d, *J*=11.2 Hz, 1H), 3.68 (dd, *J*=9.2 Hz, 3.2 Hz, 1H), 3.84 (s, 1H), 4.47 (br, 1H), 4.78-4.84 (br, 2H), 5.03 (br, 1H), 5.37 (s, 1H), 7.16 (d, *J*=8.8 Hz, 2H), 7.50 (d, *J*=8.8 Hz, 2H), 7.69 (d, *J*=8.8 Hz, 2H), 7.85 (d, *J*=8.8 Hz, 2H), 8.55 (d, *J*=13.2 Hz, 1H), 12.28 (s, 1H),

12.35 (d, *J*=13.2 Hz, 1H) ; ¹³C NMR (100 MHz, DMSO-d₆) δ = 26.6, 61.0, 66.7, 70.0, 70.6, 75.0, 99.2, 102.1, 117.8, 119.7, 123.1 (q, *J*=33 Hz), 124.4(q, *J*=269 Hz), 126.1, 133.5, 141.9, 154.2, 155.4, 167.2, 197.1; ¹⁹F NMR (376 MHz, DMSO-d₆) δ = -60.27; IR (Neat, cm⁻¹): 3488, 3327, 2935, 2165, 2026, 1654, 1583, 1532, 1508, 1439, 1413, 1383, 1318, 1270, 1255, 1238, 1183, 1152, 1110, 1088, 1065, 1045, 1002, 964, 888, 847, 815, 780, 669; HPLC Purity: 99.57%; $[\alpha]_{D}^{20}$: +89.95 (C=0.52, (CH₃)₂SO); Anal. Calculated for C₂₄H₂₅F₃N₂O₈: C, 54.75; H, 4.79; N, 5.32, found: C, 54.70; H, 4.40; N, 5.08; Isolated Yield: 410 mg, 93.9%.

(S,Z)-3-oxo-N-(2-oxotetrahydrofuran-3-yl)-2-((pyrazin-2-ylamino)methylene)hexanamide (3x):

Faint yellow solid: mp. 184.5-186.4°C; ¹H NMR (400 MHz, CDCl₃) δ = 1.00 (t, *J*=7.6 Hz, 3H), 1.67-1.76 (m, 2H), 2.36-2.44 (m, 1H), 2.66-2.71 (m, 1H), 2.74 (t, *J*=7.2 Hz, 2H), 4.28-4.34 (m, 1H), 4.51-4.61 (m, 2H), 8.29-8.34 (m, 3H), 9.10 (d, *J*=11.2 Hz, 1H), 10.20 (d, *J*=6.8 Hz, 1H), 12.77 (d, *J*=11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 18.7, 29.4, 39.8, 48.5, 65.8, 106.0, 135.8, 140.2, 142.4, 147.1, 149.3, 169.2, 174.8, 199.8; **IR** (Neat, cm⁻¹): 3240, 2965, 1774, 1627, 1594, 1524, 1481, 1438, 1383, 1342, 1312, 1285, 1207, 1169, 1142, 1063, 1024, 1012, 981, 948, 897, 878, 842, 797, 754, 680; **HPLC** Purity:

99.79%; **[α]**_D²⁰ : +15.24 (c=1, CHCl₃); Anal. Calculated for C₁₅H₁₈N₄O₄: C, 56.60; H, 5.70; N, 17.60, found: C, 56.92; H, 5.74; N, 16.79; Isolated Yield: 220 mg 93.1%.

Reference:

 (a) A. Riahi, M. Shkoor, O. Fatunsin, R. A. Khera, C. Fischer, P. Langer, Org. Biomol. Chem. 2009, 7, 4248–4251. (b) A. X. Wang, O. Xie, B. Lane, K. W. Mollison, G. C. Hsieh, K. Marsh, M. P. Sheets, J. R. Luly, M. J. Coghlan, Bioorg. Med. Chem. Lett. 1998, 8, 2787-2792. (c) A. E. Bouakher, R. L. Goff, J. Tasserie, J. Lhoste, A. Martel, S. Comesse, Org. Lett. 2016, 18, 2383–2386.

4. Synthesis¹ of Leflunomide (4a) & Teriflunomide (4b):

Typical procedure for 4a (Leflunomide): To a solution of 2-ethoxymethyleneacetoacetyl-(4-trifluoromethyl)aniline **1b** (0.5 g, 1.66 mmol) in ethanol (3 ml) was slowly added to an ice cooled solution of hydroxylamine hydrochloride (0.12 g, 1.72 mmol) in 2 M NaOH (0.91 ml). The mixture was heated to reflux for 1 hour, cooled to room temperature and evaporated to dryness. The residue was dissolved in ethyl acetate (50 ml) and water (10 ml). The organic layer was separated, extracted with water to remove inorganics, dried with sodium sulfate and the ethyl acetate layer was evaporated. The residue was crystallised in toluene to yield of **4a**.

Typical procedure for 4b (Teriflunomide): To a solution of 5-Methylisoxazole-4-(4-trifluoromethyl)carboxanilide **4a** in (0.20 g, 0.74 mmol) methanol (5 ml), pH was adjusted to 1 with concentrated hydrochloric acid and the suspension was stirred during 24 hours. The suspension was then filtered and dried under vacuum to obtain a white solid. The solid was then crystallised with acetone (5 ml) to afford compound **4b**.

5-Methylisoxazole-4-(4-trifluoromethyl)carboxanilide (4a):

Off-white solid; ¹H NMR (400 MHz, DMSO-d₆) δ = 2.69 (s, 3H), 7.72 (d, J= 8.4 Hz, 2H), 7.93 (d, J= 8.4 Hz, 2H), 9.10 (s, 1H), 10.35 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ = 12.1, 111.7, 119.9, 122.8 (q, *J*=32 Hz, 124.5 (q, *J*=269 Hz), 125.9, 142.2, 149.0, 159.5, 173.3; Isolated Yield: 0.358 g, 80%.

2-Cyano-3-hydroxy-N-[4-(trifluoromethyl)phenyl]-2-butenamide (4b):

White solid; ¹**H NMR** (400 MHz, DMSO-d₆) δ = 2.26 (s, 3H), 7.67 (d, J= 8.4 Hz, 2H), 7.78 (d, J= 8.4 Hz, 2H), 10.81 (br, 1H); ¹³**C NMR** (100 MHz, DMSO-d₆) δ = 23.4, 80.5, 119.9, 122.7 (q, *J*=32 Hz, 124.4 (q, *J*=269 Hz), 125.7, 141.8, 166.4, 187.1; Isolated Yield: 0.168 g, 84%.

Reference:

 (a) K. P. Hirth, E. Mann, L. K. Shawyer, A.Ullrich, I.Szekely, T.Bajor, J.Haimichael, L.Orfi, A.Levitzki, A.Gazit, P. C. Tang, R.Lammers, US Pat., 6,331,555 B1, 2001. (b) T-X. Metro, J. Bonnamour, T. Reidon, A. Duprez, J. Sarpoulet, J. Martinez, F. Lamaty, Chem. Commun., 2012, 48, 11781.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Code	δNH ₍₁₎	δNH ₍₂₎	δNH ₍₃₎ If R ³ =H	Solvent
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2a	11.60	10.15	5.94	CDCl ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2b	12.26	9.83	8.82	DMSO-d ₆
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2c	12.07	9.80	8.77	DMSO-d ₆
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2d	9.98	9.73	8.41	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2e	10.19	9.98	5.98	CDCl ₃
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2f	10.19	9.96	6.01	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2g	12.28	10.08	5.92	CDCl ₃
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3a	12.36	10.50	-	DMSO-d ₆
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3b	12.08	12.46	-	CDCl ₃
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3c	12.18	12.34	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3d	12.30	10.78	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3e	11.96	12.81	-	CDCl ₃
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3f	12.27	10.51	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3g	12.17	10.65	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3h	12.17	10.65	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3i	12.30	10.85	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Зј	12.21	10.70	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3k	11.98	11.19	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	12.00	13.24	-	CDCl ₃
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3m	12.06	12.70	-	CDCl ₃
30 11.89 12.32 - DMSO-d_6 3p 11.89 12.85 - DMSO-d_6 3q 11.77 12.54 - DMSO-d_6 3r 12.06 12.96 - CDCl_3 3s 11.72 12.51 - DMSO-d_6 3t 12.33 10.47 - DMSO-d_6 3u 11.75 13.16 - CDCl_3 3v 12.96 10.71 - DMSO-d_6 3w 12.28 12.35 - DMSO-d_6 3x 10.20 12.77 - CDCl_3 downfield shifted Interaction (NOE) Interaction (NOE) Interaction (NOE)	3n	12.06	12.85	-	DMSO-d ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	11.89	12.32	-	DMSO-d ₆
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3р	11.89	12.85	-	DMSO-d ₆
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3q	11.77	12.54	-	DMSO-d ₆
3s 11.72 12.51 - DMSO-d ₆ 3t 12.33 10.47 - DMSO-d ₆ 3u 11.75 13.16 - CDCl ₃ 3v 12.96 10.71 - DMSO-d ₆ 3w 12.28 12.35 - DMSO-d ₆ 3x 10.20 12.77 - CDCl ₃ downfield shifted R ² CH2 Through space interaction (NOE) R1 Q H R3 downfield shifted	3r	12.06	12.96	-	CDCl ₃
3t 12.33 10.47 - DMSO-d_6 3u 11.75 13.16 - CDCl ₃ 3v 12.96 10.71 - DMSO-d_6 3w 12.28 12.35 - DMSO-d_6 3x 10.20 12.77 - CDCl ₃ downfield shifted P P R ³ downfield shifted	3s	11.72	12.51	-	DMSO-d ₆
$3u$ 11.7513.16- $CDCl_3$ $3v$ 12.9610.71-DMSO-d_6 $3w$ 12.2812.35-DMSO-d_6 $3x$ 10.2012.77- $CDCl_3$ downfield shifted H H R^3 downfield shifted H R^3 downfield shifted H R^3	3t	12.33	10.47	-	DMSO-d ₆
$3v$ 12.9610.71-DMSO-d_6 $3w$ 12.2812.35-DMSO-d_6 $3x$ 10.2012.77-CDCl_3downfield shifted H H H H H R^1 O H R^3 $downfield shifted$	3u	11.75	13.16	-	CDCl ₃
$3w$ 12.2812.35-DMSO-d_6 $3x$ 10.2012.77-CDCl_3downfield shifted H H H H H R^1 O H R^3 $downfield shifted$	3v	12.96	10.71	-	DMSO-d ₆
3x 10.20 12.77 - CDCl ₃ downfield shifted O CH_2 Through space interaction (NOE) R^1 O H R^3 downfield shifted	3w	12.28	12.35	-	DMSO-d ₆
downfield shifted R^{1} R^{1} R^{1} R^{3} R^{1} R^{1} R^{3} R^{1} R^{3} R^{2} R^{3}	3х	10.20	12.77	-	CDCl ₃
'H NMR of 2 & 3 confirms intramolecular hydrogen bonding's between Carbonyl and NH groups. Isomer configuration was assigned by NOE interaction.					

5. Chemical Shift (δ) data of NH in ppm:

6. Chiral HPLC analysis of 3g & 3h:

The enantiomeric ratio was determined by HPLC with a Daicel Chiralcel® OD-H column using (85:15:0.1) n-Hexane/Isopropanol/Trifluro acetic acid. The stereochemistry of the product **3g** and **3h** was determined in comparison to its racemic material. Racemic material was prepared by mixing both **3g** and **3h**.

7. X-ray Crystallographic data for 2b

 Identification code	shelx
Empirical formula	C12 H11 F3 N2 O2
Formula weight	272.23
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/n
Unit cell dimensions	a = $7.1752(11)$ A alpha = 90 deg. b = $13.714(2)$ A beta = $91.918(5)$ deg. c = $12.346(2)$ A gamma = 90 deg.
Volume	1214.1(3) A^3
Z, Calculated density	4, 1.489 Mg/m^3
Absorption coefficient	0.133 mm^-1
F(000)	560
Crystal size	0.250 x 0.200 x 0.200 mm
Theta range for data collection	2.220 to 25.997 deg.
Limiting indices	-8<=h<=8, -16<=k<=16, -14<=l<=15
Reflections collected / unique	13410 / 2383 [R(int) = 0.0492]
Completeness to theta = 25.242	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.962 and 0.9021
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2383 / 1 / 176
Goodness-of-fit on F^2	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0693, wR2 = 0.1557
R indices (all data)	R1 = 0.1254, wR2 = 0.1866
Extinction coefficient	n/a
Largest diff. peak and hole	0.430 and -0.276 e.A^-3

Table 1. Crystal data and structure refinement for **2b**.

Table 2. Atomic coordinates ($x 10^{4}$) and equivalent isotropic displacement parameters (A² $x 10^{3}$) for **2b**.

	x	y z	U(eq)	
C(1)	6419(6)	6750(3)	-444(4)	53(1)
C(2)	4900(5)	7319(2)	30(3)	37(1)
C(3)	3453(5)	6862(3)	531(3)	46(1)
C(4)	2074(5)	7401(3)	977(3)	44(1)
C(5)	2092(5)	8415(2)	934(3)	36(1)
C(6)	3555(5)	8866(3)	435(3)	46(1)
C(7)	4947(5)	8318(3)	-8(3)	47(1)
C(8)	328(5)	9870(2)	1534(3)	40(1)
C(9)	-1379(5)	10153(2)	2080(3)	38(1)
C(10)	-1737(5)	11144(2)	2190(3)	41(1)
C(11)	-2677(5)	9465(3)	2501(3)	43(1)
C(12)	-4417(6)	9803(3)	3046(4)	68(1)
N(1)	619(4)	8899(2)	1405(3)	41(1)
N(2)	-732(4)	11865(2)	1882(3)	52(1)
O(1)	1459(4)	10476(2)	1222(3)	65(1)
O(2)	-2437(4)	8566(2)	2453(3)	59(1)
F(1)	6035(4)	5830(2)	-608(3)	107(1)
F(2)	7984(4)	6778(3)	157(3)	114(1)
F(3)	6942(4)	7085(2)	-1387(2)	86(1)

U(eq)is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for **2b**.

C(1)-F(1) C(1)-F(3) C(1)-F(2) C(1)-C(2) C(2)-C(7)	1.306(4) 1.318(5) 1.326(5) 1.477(5) 1.372(5)
C(2)-C(3)	1.377(5)
C(3)-C(4)	1.366(5)
C(3)-H(3)	0.9300
C(4)-C(5)	1.392(5)
C(4)-H(4)	0.9300
C(5)-C(6)	1.380(5)
C(5)-N(1)	1.392(4)
C(6)-C(7)	1.377(5)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-O(1)	1.232(4)
C(8)-N(1)	1.357(4)
C(8)-C(9)	1.470(5)
C(9)-C(10)	1.392(5)
C(9)-C(11)	1.435(5)
C(10)-N(2)	1.288(4)
C(10)-H(10)	0.9300
C(11)-O(2)	1.247(4)
C(11)-C(12)	1.510(5)
C(12)-H(12A)	0.9600

C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
N(1)-H(1) N(2) = H(2A)	0.898(10)
N(2)-H(2R)	0.8600
F(1)-C(1)-F(3)	105.3(4)
F(1)-C(1)-F(2)	106.5(4)
F(3)-C(1)-F(2)	102.9(3)
F(1)-C(1)-C(2)	114.6(3)
F(3)-C(1)-C(2)	113.7(3)
F(2)-C(1)-C(2)	112.7(4)
C(7)-C(2)-C(3)	119.3(3)
C(7)-C(2)-C(1)	119.6(3)
C(3)-C(2)-C(1)	121.1(3)
C(4) - C(3) - C(2)	120.2(3)
$C(4)-C(3)-\Pi(3)$	119.9
$C(2) - C(3) - \Gamma(3)$ C(3) - C(4) - C(5)	121 2(3)
C(3)- $C(4)$ - $H(4)$	119.4
C(5)-C(4)-H(4)	119.4
C(6) - C(5) - C(4)	118.2(3)
C(6)-C(5)-N(1)	124.9(3)
C(4)-C(5)-N(1)	116.9(3)
C(7)-C(6)-C(5)	120.3(3)
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(2)-C(7)-C(0)	120.9(3)
C(2)-C(7)-H(7) C(6)-C(7)-H(7)	119.0
O(1)- $C(8)$ - $N(1)$	121.3(3)
O(1)-C(8)-C(9)	122.2(3)
N(1)-C(8)-C(9)	116.5(3)
C(10)-C(9)-C(11)	118.9(3)
C(10)-C(9)-C(8)	117.5(3)
C(11)-C(9)-C(8)	123.6(3)
N(2)-C(10)-C(9)	127.9(3)
N(2)-C(10)-H(10)	116.0
O(2)-O(10)-O(10)	122 7(3)
O(2)-O(11)-O(3)	116 2(3)
C(9)- $C(11)$ - $C(12)$	121.1(3)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B	B) 109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(120	C) 109.5
H(12B)-C(12)-H(120)	J) 109.5
C(0) - N(1) - C(0) C(0) - N(1) - U(1)	129.7(3)
C(5)-N(1)-H(1)	119(2)
C(10)-N(2)-H(2A)	120.0
C(10)-N(2)-H(2B)	120.0
H(2A)-N(2)-H(2B)	120.0

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for **2b**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12
C(1)	43(2)	46(2)	70(3)	-2(2)	17(2)	2(2)
C(2) C(3)	43(2)	27(2)	42(2) 69(3)	-4(2) -2(2)	4(2) 13(2)	-2(2)
C(4) C(5)	39(2) 36(2)	33(2) 32(2)	62(3) 40(2)	3(2) 1(2)	17(2) 8(2)	-5(2) 2(2)
C(6)	51(2)	27(2)	62(3)	2(2)	22(2)	0(2)
C(7) C(8)	43(2) 40(2)	37(2) 29(2)	51(3)	2(2) 6(2)	19(2) 8(2)	-7(2) 4(2)
C(9) C(10)	34(2) 36(2)	33(2) 38(2)	47(2) 49(2)	0(2) 2(2)	7(2) 10(2)	1(2) 3(2)
C(11)	37(2)	41(2)	53(3)	1(2)	11(2)	-3(2)
C(12) N(1)	54(3) 38(2)	54(3) 29(2)	100(4) 58(2)	-8(3) 4(1)	36(3) 21(2)	-8(2) 2(1)
N(2)	51(2)	28(2)	79(3)	-1(2)	20(2)	4(1)
O(1) O(2)	52(2)	34(1)	94(2)	4(2)	28(2)	-6(1)
F(1) F(2)	95(2) 55(2)	40(1) 170(3)	191(4) 116(3)	-19(2) -42(2)	69(2) -13(2)	6(1) 49(2)
F(3)	98(2)	80(2)	83(2)	-2(2)	48(2)	15(2)

Table 5. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters(A² x 10³) for **2b**.

x	y z	z U(eq))	
H(3)	3414	6185	566	55
H(4)	1106	7085	1317	53
H(6)	3601	9543	399	56
H(7)	5930	8630	-337	56
H(10)	-2834	11307	2527	49
H(12A)	-4466	10502	3040	102
H(12B)	-5495	9546	2663	102
H(12C)	-4395	9574	3781	102
H(2A)	297	11757	1566	63
H(2B)	-1092	12454	1993	63
H(1)	-300(40)	8550(20)	1690(3	53(12)

Table 6. Torsion angles [deg] for **2b**.

F(1)-C(1)-C(2)-C(7)	-164.0(4)
F(3)-C(1)-C(2)-C(7)	-42.7(6)
F(2)-C(1)-C(2)-C(7)	74.0(5)
F(1)-C(1)-C(2)-C(3)	17.5(6)
F(3)-C(1)-C(2)-C(3)	138.7(4)
F(2)-C(1)-C(2)-C(3)	-104.6(5)
C(7)-C(2)-C(3)-C(4)	0.5(6)

C(1)-C(2)-C(3)-C(4)	179.1(4)
C(2)-C(3)-C(4)-C(5)	0.3(7)
C(3)-C(4)-C(5)-C(6)	-0.7(6)
C(3)-C(4)-C(5)-N(1)	179.6(4)
C(4)-C(5)-C(6)-C(7)	0.3(6)
N(1)-C(5)-C(6)-C(7)	-180.0(4)
C(3)-C(2)-C(7)-C(6)	-0.9(6)
C(1)-C(2)-C(7)-C(6)	-179.5(4)
C(5)-C(6)-C(7)-C(2)	0.5(7)
O(1)-C(8)-C(9)-C(10)	3.1(6)
N(1)-C(8)-C(9)-C(10)	-178.0(4)
O(1)-C(8)-C(9)-C(11)	-176.7(4)
N(1)-C(8)-C(9)-C(11)	2.2(6)
C(11)-C(9)-C(10)-N(2)	178.8(4)
C(8)-C(9)-C(10)-N(2)	-1.0(6)
C(10)-C(9)-C(11)-O(2)	-178.6(4)
C(8)-C(9)-C(11)-O(2)	1.2(6)
C(10)-C(9)-C(11)-C(12)	0.7(6)
C(8)-C(9)-C(11)-C(12)	-179.5(4)
O(1)-C(8)-N(1)-C(5)	-0.6(7)
C(9)-C(8)-N(1)-C(5)	-179.5(4)
C(6)-C(5)-N(1)-C(8)	-3.7(7)
C(4)-C(5)-N(1)-C(8)	176.0(4)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen b	onds for 2k	(A and de	əg.].	
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2A)F(3)#1 N(2)-H(2B)O(2)#2 N(2)-H(2A)O(1) N(1)-H(1)O(2)	0.86 0.86 0.86 0.898(1	2.55 1.99 2.00 0) 1.83(2	3.155(4 2.813(4 2.618(4) 2) 2.623(127.8 160.0 128.2 147(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z #2 -x-1/2,y+1/2,-z+1/2