Reductive Amination/Cyclization of Levulinic Acid to Pyrrolidones versus Pyrrolidines by Switching the Catalyst from AlCl₃ to RuCl₃ under mild conditions

Cailing Wu^{a,b}, Xiaoying Luo^{a,b}, Hongye Zhang^a, Xinwei Liu^{a,b}, Guipeng Ji^{a,b}, Zhenghui Liu^{a,b} and Zhimin Liu^{a,b}*

^aBeijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: liuzm@iccas.ac.cn

Table of contents

1. General Information	.1
2. Typical procedures for the reductive amination reaction of LA to pyrrolidones	2
3. Typical procedures for the reductive amination reaction of LA to cyclic amines	2
4. Synthesis of 2-methyl-1-phenylpyrrolidine (1c) using 5-methyl-1-phenylpyrrolidin-2- one (1b) as the substrate	.2
5. Screening of Reductants using RuCl ₃ .3H ₂ O as the catalyst	3
6. GC-MS spectrum of the mixture of LA, aniline and AlCl ₃	3
7. NMR data of the resultant pyrrolidones	.4
8. NMR data of the resultant pyrrolidines	.8
9. NMR spectra of the products	11

1. General information

All reagents and solvents were purchased from commercial sources (J&K, Beijing InnoChem Science & Technology Co., Energy Chemical), and were used without further purification.

Liquid NMR spectra were recorded on Bruck 400 spectrometer using CDCl₃ as the solvent. The reaction mixture was analyzed by means of GC (Agilent 4890D) with a FID detector and a nonpolar capillary column (DB-5) ($30m \times 0.25mm \times 0.25\mu m$). The column oven was temperature-programmed with a 2 min hold at 323 K, followed by the temperature increase to 528K at a rate of

15 K/min and kept at 538 K for 10 min. High-purity nitrogen was used as a carrier gas.

2. Typical procedures for the reductive amination reaction of LA to pyrrolidones

The reaction was conducted in a screw-capped vial (15 mL inner volume) equipped with a magnetic stirrer. Typically, AlCl₃.6H₂O (0.05mmol), amine (1.0 mmol), LA (1.0 mmol), and PhSiH₃ (3.0 mmol) were successively added to the vial, and heated at 30°C for the desired time. After the reaction, the vial was cooled to room temperature. The yield of 5-methyl-1-phenylpyrrolidin-2-one was determined by GC with a FID detector, and the yields of other N-substituted pyrrolidinones were determined by ¹H NMR using mesitylene as an internal standard. The crude mixture was diluted by ether and isolated by column chromatography on silica gel (eluent: petroleum ether and EtOAc).

3. Typical procedures for the reductive amination reaction of LA to cyclic amines

The reaction was conducted in a screw-capped vial (15 mL inner volume) equipped with a magnetic stirrer. Typically, RuCl₃.3H₂O (0.01mmol), amine (1.0 mmol), LA (1.0 mmol), and PhSiH₃ (4.0 mmol) were successively added into the vial, and heated at 45°C for 24h. Then the vial was cooled to room temperature. The yield of 2-methyl-1-phenylpyrrolidine was determined by GC with a FID detector, and the yields of other N-substituted pyrrolidines were determined by ¹H NMR using mesitylene as an internal standard. The crude mixture was diluted by ether and isolated by column chromatography on silica gel (eluent: petroleum ether and CH₂Cl₂).

4. Synthesis of 2-methyl-1-phenylpyrrolidine (1c) using 5-methyl-1-phenylpyrrolidin-2-one

(1b) as the substrate.

To a screw-capped vial (15 mL inner volume), $RuCl_{3.3}H_2O$ (0.01mmol), 5-methyl-1phenylpyrrolidin-2-one (1.0 mmol), and $PhSiH_3$ (2.0 mmol) were added successively, and heated at 50°C for 24h. Then the vial was cooled to room temperature. The product yield was determined by GC with a FID detector.

Scheme S1: Synthesis of 2-methyl-1-phenylpyrrolidine (1c) using 5-methyl-1-phenylpyrrolidin-2-one (1b) as the substrate.

Table S1:Screening of reductants using RuCl ₃ .3H ₂ O as the catalyst ^a				
Entry	Reductant/n ^b	Yield ^c		
		1b	1c	
1	EtSiH ₂ /6	28	0	
2	PhSiH ₂ /6	0	0	
3	EtO ₃ SiH/12	50	0	
4	Ph ₃ SiH/12	0	0	
5	(CH ₃ O) ₂ CH ₃ SiH/12	78	0	
6	(CH ₃) ₂ PhSiH/12	96	0	

5. Screening of reductants using RuCl₃.3H₂O as the catalyst

^a Reaction conditions: aniline (1mmol), LA (1mmol), RuCl₃.3H₂O (1 mol%). ^b n refers to mmol of hydrosilane. ^cDetermined by GC analysis using dodecane as the internal standard.

6. The GC-MS spectra of the mixture of LA, aniline and AlCl₃

7. NMR data of the resultant pyrrolidones

5-Methyl-1-phenylpyrrolidin-2-one

Isolated yield: 92% ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 4H), 7.20 (dd, J = 6.7, 4.7 Hz, 1H), 4.42 – 4.18 (m, 1H), 2.75 – 2.26 (m, 3H), 1.83 – 1.66 (m, 1H), 1.20 (d, J = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl3) δ 174.18, 137.63, 128.97, 125.72, 124.04, 55.61, 31.35, 26.75, 20.16 ppm.HRMS (ESI) for C₁₁H₁₃NO [M+Na]+ :calc.:198.0889. Found: 198.0889.

5-Methyl-1-(p-tolyl)pyrrolidin-2-one

Isolated yield: 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (m, J = 8.4 Hz, 4H), 4.23 (m, J = 13.0, 6.3 Hz, 1H), 2.56 (m, J = 16.8, 9.4, 6.9 Hz, 2H), 2.32 (s, 4H), 1.72 (m, J = 13.0, 9.4, 7.3 Hz, 1H), 1.17 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.14, 135.55, 134.89, 129.52, 124.17, 55.71, 31.19, 26.73, 20.89, 20.12 ppm. HRMS (ESI) for C₁₂H₁₅NNaO [M+Na]+ :calc.: 212.1046. Found: 212.1047.

5-Methyl-1-(m-tolyl)pyrrolidin-2-one

Isolated yield: 87%,¹H NMR (400 MHz, CDCl₃) δ 7.16 (m, *J* = 46.0, 26.8, 7.6 Hz, 4H), 4.26 (dd, *J* = 13.0, 6.4 Hz, 1H), 2.58 (m, *J* = 16.8, 9.4, 6.9 Hz, 2H), 2.36 (s, 4H), 1.80 – 1.68 (m, 1H), 1.19 (d, *J* = 6.2 Hz, 3H)ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.16, 138.78, 137.40, 128.70, 126.67, 125.03, 121.20, 55.74,

31.26, 26.72, 21.40, 20.15 ppm. HRMS (ESI) for C₁₂H₁₅NNaO [M+Na]⁺ :calc.: 212.1046. Found: 212.1046.

5-Methyl-1-(o-tolyl)pyrrolidin-2-one

Isolated yield: 50%, ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dt, J = 22.4, 4.6 Hz, 3H), 7.12 – 7.00 (m, 1H), 4.06 (d, J = 5.7 Hz, 1H), 2.68 – 2.32 (m, 3H), 2.22 (s, 3H), 1.86 – 1.70 (m, 1H), 1.11 (d, J = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 174.19, 136.43, 136.15, 131.14, 127.81, 126.67, 56.87, 30.88, 27.85, 20.29, 18.08 ppm. HRMS (ESI) for C₁₂H₁₅NNaO[M+Na]⁺ :calc.: 212.1046. Found: 212.1047. 1-(4-Methoxyphenyl)-5-methylpyrrolidin-2-one

Soluted yield: 92%. ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.22 (d, $J = 9.0$ Hz, 2H),
6.91 (d, $J = 9.0$ Hz, 2H), 4.17 (dd, $J = 13.3$, 6.2 Hz, 1H), 3.80 (s, 3H), 2.67 –
2.45 (m, 2H), 2.35 (dddd, $J = 13.3$, 9.3, 7.3, 6.1 Hz, 1H), 1.79 – 1.66 (m, 1H),
1.17 (d, $J = 6.2$ Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.28 ,

157.69 , 130.40 , 126.07 , 114.34 , 56.11 , 55.42 , 31.10 , 26.83 , 20.24 ppm. HRMS (ESI) for $C_{12}H_{15}NNaO_2\ [M+Na]^+$:calc.: 228.0995. Found: 228.0997.

1-(4-Fluorophenyl)-5-methylpyrrolidin-2-one

Isolated yield:88%. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.07 (t, J = 8.7 Hz, 2H), 4.22 (dd, J = 13.3, 6.2 Hz, 1H), 2.57 (ddd, J = 16.9, 9.4, 6.8 Hz, 2H), 2.44 – 2.26 (m, 1H), 1.78 – 1.71 (m, 1H), 1.18 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.24, 160.43 (d, J = 245.4 Hz), 133.54,

125.98 (d, J = 8.3 Hz), 115.78 (d, J = 22.5 Hz), 55.84, 31.10, 26.73, 20.10 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -136.11 ppm. HRMS (ESI) for C₁₁H₁₂FNNaO [M+Na]⁺ :calc.: 216.0795. Found: 216.0796.

1-(4-Chlorophenyl)-5-methylpyrrolidin-2-one

Isolated yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 4H), 4.27 (dd, J = 13.1, 6.2 Hz, 1H), 2.57 (ddd, J = 16.7, 9.5, 6.8 Hz, 2H), 2.45 – 2.24 (m, 1H), 1.75 (dddd, J = 12.8, 9.5, 7.1, 5.6 Hz, 1H), 1.20 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.17, 136.12, 130.86, 129.01, 124.89, 55.40, 31.18, 26.56, 19.95 ppm.HRMS (ESI) for C₁₁H₁₂ClNNaO [M+Na]⁺ :calc.: 232.0500. Found: 232.0501.

1-(4-Bromophenyl)-5-methylpyrrolidin-2-one

Br Isolated yield: 87%. ¹H NMR (400 MHz, CDCl3) δ 7.51 – 7.32 (m, 2H), 7.32 – 7.16 (m, 2H), 4.19 (dd, J = 12.2, 6.0 Hz, 1H), 2.67 – 2.16 (m, 3H), 1.79 – 1.52 (m, 1H), 1.11 (dd, J = 6.1, 1.2 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 173.98, 136.55, 131.79, 124.99, 118.41, 55.15, 31.08, 26.38, 19.78 ppm. HRMS (ESI) for C₁₁H₁₂BrNNaO [M+Na]⁺ :calc.: 275.9994. Found: 275.9995.

5-Methyl-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one

Isolated yield: 40%. ¹H NMR (CDCl3, 400 MHz): δ 7.64 (d, J = 8.8Hz, 2H), 7.58 (d, J = 8.8Hz, 2H), 4.39 (m, 1H), 2.69 (m, 1H), 2.60-2.52 (m, 1H), 2.41 (m, 1H), 1.80 (m, 1H), 1.26 (d, J = 6.0Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 149.83, 126.72, 122.82, 112.41 – 112.21 (m), 54.98, 31.51, 30.42, 26.52, 20.66 ppm.¹⁹F NMR (471 MHz, CDCl₃) δ -82.31.HRMS (ESI) for C₁₂H₁₂F₃NNaO [M+Na]⁺ :calc.: 266.0763. Found: 266.0763.

1-Cyclohexyl-5-methylpyrrolidin-2-one

Isolated yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 3.88 – 3.62 (m, 2H), 2.53 – 2.34 (m, 1H), 2.33 – 2.02 (m, 2H), 1.90 – 1.01 (m, 14H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 174.41, 77.32, 77.00, 76.68, 52.80, 52.47, 31.78, 30.27, 30.03, 27.43, 25.88 (d, *J* = 5.7 Hz), 25.50, 22.31 ppm. HRMS (ESI) for C₁₁H₁₉NNaO [M+Na]⁺ :calc.: 204.1359. Found: 204.1360.

1-Benzyl-5-methylpyrrolidin-2-one

Isolated yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.13 (m, 5H), 4.96 (d, J = 15.0 Hz, 1H), 3.99 (d, J = 15.0 Hz, 1H), 3.59 – 3.42 (m, 1H), 2.58 – 2.29 (m, 2H), 2.23 – 2.07 (m, 1H), 1.67 – 1.51 (m, 1H), 1.16 (d, J = 6.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 174.94 , 136.88, 128.60, 127.97, 127.39, 52.81, 43.90, 30.28, 26.67, 19.60 ppm. HRMS (ESI) for C₁₂H₁₅NNaO [M+Na]⁺: calc.:212.1046. Found: 212.1046.

5-Methyl-1-(4-methylbenzyl)pyrrolidin-2-one

V Isolated yield: 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (s, 4H), 4.93 (d, J = 14.9 Hz, 1H), 3.92 (d, J = 14.9 Hz, 1H), 3.50 (dd, J = 13.5, 6.2 Hz, 1H), 2.43 (m, J = 25.5, 10.0, 7.0 Hz, 2H), 2.32 (s, 3H), 2.19 − 2.09 (m, 1H), 1.57 (m, J = 12.9, 9.6, 7.2, 5.9 Hz, 1H), 1.15 (d, J = 6.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 174.83, 137.01, 133.76, 129.24, 127.96, 52.68, 43.57, 30.28, 26.62, 21.04, 19.55 ppm. HRMS (ESI) for C₁₃H₁₇NNaO [M+Na]⁺: calc.:226.1202. Found: 226.1203.

6-Methyl-1-phenylpiperidin-2-one

Isolated yield:87%. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 7.7 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.17 – 7.12 (m, 2H), 3.96 – 3.84 (m, 1H), 2.59 – 2.43 (m, 2H), 2.14 – 2.02 (m, 1H), 2.02 – 1.89 (m, 1H), 1.82 (m, J = 13.3, 9.7, 6.7, 3.0 Hz, 1H), 1.70 (m, J = 8.5, 6.1, 2.9 Hz, 1H), 1.05 (d, J = 6.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 170.35, 141.57, 129.14, 128.11, 127.10, 55.75, 32.76, 30.86, 20.89 , 18.33ppm. HRMS (ESI) for C₁₂H₁₆NO [M+H]⁺: calc.: 190.1226. Found: 190.1226.

6-Methyl-1-(p-tolyl)piperidin-2-one

Isolated yield: 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.94 – 3.77 (m, 1H), 2.52 (t, *J* = 6.6 Hz, 2H), 2.34 (s, 3H), 2.15 – 2.03 (m, 1H), 2.03 – 1.90 (m, 1H), 1.90 – 1.76 (m, 1H), 1.76 – 1.65 (m, 1H), 1.06 (d, *J* = 6.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 170.35, 138.95, 136.78, 129.81, 127.82, 55.73, 32.81, 30.86, 21.10, 20.89, 18.36 ppm. HRMS (ESI) for C₁₃H₁₈NO [M+H]⁺: calc.: 204.1383. Found: 204.1383.

1-(4-Methoxyphenyl)-6-methylpiperidin-2-one

Isolated yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.85 (dd, J = 12.1, 6.1 Hz, 1H), 3.80 (s, 3H), 2.52 (t, J = 6.6 Hz, 2H), 2.16 – 1.96 (m, 2H), 1.91 – 1.66 (m, 2H), 1.08 (d, J = 6.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 170.57, 158.26, 134.18, 128.94, 114.36, 55.84, 55.33, 32.67, 30.77, 20.78, 18.25 ppm. HRMS (ESI) for C₁₃H₁₈NO₂ [M+H]⁺: calc.:220.1332. Found: 220.1332.

1-(4-Chlorophenyl)-6-methylpiperidin-2-one

GI Isolated yield:85%. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 3.96 – 3.82 (m, 1H), 2.53 (t, J = 6.6 Hz, 2H), 2.18 – 1.65 (m, 4H), 1.07 (d, J = 6.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 170.32, 139.99, 132.67, 129.33 (d, J = 12.5 Hz), 55.69, 32.69, 30.78, 20.84, 18.27 ppm. HRMS (ESI) for C₁₂H₁₅ClNO [M+H]⁺: calc.:224.0837. Found: 224.0836.

8. NMR data of the resultant pyrrolidines

2-Methyl-1-phenylpyrrolidine

Isolated yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.8 Hz, 2H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.57 (d, *J* = 8.3 Hz, 2H), 3.86 (p, *J* = 6.1 Hz, 1H), 3.40 (dd, *J* = 11.6, 5.1 Hz, 1H), 3.14 (dd, *J* = 16.4, 8.0 Hz, 1H), 2.12 - 1.90 (m, 3H), 1.68 (dd, *J* = 10.1, 5.9 Hz, 1H), 1.16 (d, *J* = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 147.31, 129.22, 115.22, 111.85, 53.64, 48.21, 33.20, 23.36, 19.43 ppm. HRMS (ESI) for C₁₁H₁₆N [M+H]⁺: calc.:224.0837. Found: 224.0836.

2-Methyl-1-(p-tolyl)pyrrolidine

Isolated yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, J = 8.4 Hz, 2H), 6.52 (d, J = 8.5 Hz, 2H), 3.90 – 3.78 (m, 1H), 3.41 (dd, J = 11.4, 5.0 Hz, 1H), 3.13 (dd, J = 16.4, 8.0 Hz, 1H), 2.25 (s, 3H), 2.12 – 1.90 (m, 3H), 1.69 (dd, J = 4.7, 2.3 Hz, 1H), 1.17 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 145.27, 129.63, 124.15, 111.85, 53.68, 48.40, 33.13, 23.31, 20.19, 19.47 ppm. HRMS (ESI) for C₁₂H₁₈N [M+H]⁺: calc.: 176.1434. Found: 176.1434.

2-Methyl-1-(m-tolyl)pyrrolidine

Isolated yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (t, *J* = 8.1 Hz, 1H), 6.47 (d, *J* = 7.4 Hz, 1H), 6.40 (d, *J* = 5.0 Hz, 2H), 3.86 (p, *J* = 6.1 Hz, 1H), 3.40 (dd, *J* = 11.7, 5.1 Hz, 1H), 3.14 (dd, *J* = 16.4, 8.1 Hz, 1H), 2.30 (s, 3H), 2.13 – 1.87 (m, 3H), 1.67 (dd, *J* = 9.4, 6.3 Hz, 1H), 1.16 (d, *J* = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 147.29, 138.75, 128.99, 116.11, 112.44, 109.00, 53.51, 48.15, 33.07, 23.25, 21.87, 19.41 ppm. HRMS (ESI) for C₁₂H₁₈N [M+H]⁺: calc.: 176.1434. Found: 176.1434.

2-Methyl-1-(o-tolyl)pyrrolidine

Isolated yield:60%. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 9.1 Hz, 2H), 6.94 (d, J = 7.9 Hz, 1H), 6.87 (t, J = 7.3 Hz, 1H), 3.73 – 3.45 (m, 2H), 2.76 (m, J = 8.8, 4.5 Hz, 1H), 2.27 (s,

3H), 2.11 (dd, J = 7.9, 2.7 Hz, 1H), 1.83 (m, J = 16.8, 12.1, 8.1, 3.9 Hz, 2H), 1.56 (m, J = 17.9, 8.9 Hz, 1H), 0.99 (d, J = 6.0 Hz, 3H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 148.56, 132.02, 131.23, 126.12, 121.32, 118.36, 55.01, 53.10, 33.84, 23.62, 19.58, 19.12 ppm. HRMS (ESI) for C₁₂H₁₈N [M+H]⁺: calc.: 176.1434. Found: 176.1434.

1-(4-Fluorophenyl)-2-methylpyrrolidine

F Isolated yield:79%. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (t, J = 8.7 Hz, 2H), 6.47 (dd, J = 9.0, 4.3 Hz, 2H), 3.78 (dd, J = 12.5, 6.2 Hz, 1H), 3.37 (dd, J = 11.1, 5.0 Hz, 1H), 3.10 (dd, J = 16.0, 8.4 Hz, 1H), 2.13 – 1.90 (m, 3H), 1.75 – 1.61 (m, 1H), 1.14 (d, J = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.79, 153.48, 143.98, 115.55, 115.33, 112.17 (d, J = 7.1 Hz), 53.99, 48.68, 33.18, 23.36, 19.31ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -151.18 ppm.HRMS (ESI) for C₁₁H₁₅FN [M+H]⁺: calc.:180.1183.Found:180.1184

1-(4-Methoxyphenyl)-2-methylpyrrolidine

Isolated yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.8 Hz, 2H), 3.82 – 3.69 (m, 4H), 3.47 – 3.31 (m, 1H), 3.10 (q, *J* = 8.3 Hz, 1H), 2.12 – 1.85 (m, 3H), 1.75 – 1.57 (m, 1H), 1.15 (d, *J* = 6.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 150.63, 142.42, 115.11, 112.76, 56.05, 54.09, 48.94, 33.26, 23.43, 19.65 ppm.HRMS (ESI) for C₁₂H₁₈NO [M+H]⁺: calc.:192.1383.Found:192.1383

N-(4-chlorophenyl)-2-methylpyrrolidine

Isolated yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.5 Hz, 2H), 3.85 (m, J = 6.2 Hz, 1H), 3.39 (t, J = 8.1 Hz, 1H), 3.16 (m, J = 16.2, 7.8 Hz, 1H), 2.16-2.00 (m, 2H), 1.93 (m, 1H), 1.79-1.63 (m, 1H), 1.17 (d, J = 6.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 145.83, 128.96, 119.89, 112.82, 53.80, 48.31, 33.09, 23.33, 19.15 ppm. HRMS (ESI) for C₁₁H₁₅ClN [M+H]⁺: calc.:196.0888.Found:196.0888

1-(4-Bromophenyl)-2-methylpyrrolidine

Isolated yield:82%. ¹H NMR (400 MHz, CDCl₃):6 7.50 (d, 2H), 6.39 (d, 2H),

3.55 (m, J = 6.4, 3.2 Hz, 1H), 3.03 (m, J = 9.5, 7.6, 2.5 Hz, 1H), 2.88 – 2.74 (m, 1H), 1.87 – 1.52 (m, 3H), 1.46 – 1.24 (m, 1H), 1.00 (d, J = 6.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 146.23, 131.80, 113.41, 106.93, 53.79, 48.35, 33.21, 23.40, 19.17 ppm. HRMS (ESI) for C₁₁H₁₅BrN[M+H]⁺: calc.:240.0382. Found: 240.0383

2-Methyl-1-(4-(trifluoromethyl)phenyl)pyrrolidine

Isolated yield: 50%. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.7 Hz, 2H),

6.58 (d, J = 8.7 Hz, 2H), 4.07 – 3.80 (m, 1H), 3.45 (dd, J = 9.5, 7.6 Hz, 1H), 3.21 (d, J = 8.8 Hz, 1H), 2.20 – 1.96 (m, 3H), 1.82 – 1.69 (m, 1H), 1.20 (d, J = 6.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 149.11, 126.73, 126.43, 124.05, 116.63, 116.30, 111.02, 53.68, 47.96, 32.98, 23.14, 18.84 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -80.60 ppm. HRMS (ESI) for C12H15F3N [M+H]⁺: calc.:230.1151 . Found: 230.1151.

1-Benzyl-2-methylpyrrolidine

Isolated yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.15 (m, 5H), 4.01 (d, J = 12.8 Hz, 1H), 3.14 (d, J = 12.8 Hz, 1H), 2.90 (t, J = 8.6 Hz, 1H), 2.46 – 2.30 (m, 1H), 2.10 (q, J = 8.9 Hz, 1H), 2.02 – 1.86 (m, 1H), 1.80 – 1.53 (m, 2H), 1.52 – 1.36 (m, 1H), 1.16 (d, J = 6.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.64, 128.03, 127.10, 125.70, 58.56, 57.34, 53.04, 31.76, 20.51, 18.17 ppm. HRMS (ESI) for C₁₂H₁₈N [M+H]⁺: calc.: 176.1434. Found: 176.1434.

2-Methyl-1-phenylpiperidine

Isolated yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.4 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 3H), 6.81 (t, *J* = 7.2 Hz, 1H), 3.98 – 3.80 (m, 1H), 3.28 – 3.10 (m, 1H), 2.97 (dd, *J* = 15.3, 6.3 Hz, 1H), 1.99 – 1.47 (m, 6H), 0.99 (d, *J* = 6.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 151.48, 128.99, 119.25, 117.73, 51.49, 45.19, 31.87, 26.16, 19.88, 13.98 ppm. HRMS (ESI) for C₁₂H₁₈N [M+H]⁺: calc.: 176.1434. Found: 176.1434.

9. NMR spectra of the products

Figure S1 ¹H (top) and ¹³C (bottom) NMR spectra of 5-methyl-1-phenylpyrrolidin-2-one

Figure S2 ¹H (top) and ¹³C (bottom) NMR spectra of 5-methyl-1-(p-tolyl)pyrrolidin-2-one

Figure S3 ¹H (top) and ¹³C (bottom) NMR spectra of 5-methyl-1-(m-tolyl)pyrrolidin-2-one

Figure S4 ¹H (top) and ¹³C (bottom) NMR spectra of 5-methyl-1-(o-tolyl)pyrrolidin-2-one

Figure S5 1 H (top) and 13 C (bottom) NMR spectra of 1-(4-methoxyphenyl)-5-methylpyrrolidin-2-one

Figure S6 1 H (top), 13 C (middle) and 19 F (bottom) NMR spectra of 1-(4-fluorophenyl)-5-methylpyrrolidin-2-one

Figure S7 1 H (top) and 13 C (bottom) NMR spectra of 1-(4-chlorophenyl)-5-methylpyrrolidin-2-one

Figure S8¹H (top) and $^{13}\mathrm{C}$ (bottom) NMR spectra of 1-(4-bromophenyl)-5-methylpyrrolidin-2-one

Figure S9 ¹H (top),¹³C (middle) and ¹⁹F (bottom) NMR spectra of 5-methyl-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one

Figure S10 ¹H (top) and ¹³C (bottom) NMR spectra of 1-cyclohexyl-5-methylpyrrolidin-2-one

Figure S11 ¹H (top) and ¹³C (bottom) NMR spectra of 1-benzyl-5-methylpyrrolidin-2-one

Figure S12 ¹H (top) and ¹³C (bottom) NMR spectra of 5-methyl-1-(4-methylbenzyl)pyrrolidin-2-one

Figure S13 ¹H (top) and ¹³C (bottom) NMR spectra of 6-methyl-1-phenylpiperidin-2-one

Figure S14 ¹H (top) and ¹³C (bottom) NMR spectra of 6-methyl-1-(p-tolyl)piperidin-2-one

Figure S15 1 H (top) and 13 C (bottom) NMR spectra of 1-(4-methoxyphenyl)-6-methylpiperidin-2-one

Figure S16 ¹H (top) and ¹³C (bottom) NMR spectra of 1-(4-chlorophenyl)-6-methylpiperidin-2-one

Figure S17¹H (top) and ¹³C (bottom) NMR spectra of 2-methyl-1-phenylpyrrolidine

Figure S18 ¹H (top) and ¹³C (bottom) NMR spectra of 2-methyl-1-(p-tolyl)pyrrolidine

Figure S19 ¹H (top) and ¹³C (bottom) NMR spectra of 2-methyl-1-(m-tolyl)pyrrolidine

Figure S20 ¹H (top) and ¹³C (bottom) NMR spectra of 2-methyl-1-(o-tolyl)pyrrolidine

Figure S21 ¹H (top) and ¹³C (bottom) NMR spectra of 1-(4-methoxyphenyl)-2-methylpyrrolidine

Figure S22 1 H (top), 13 C (middle) and 19 F (bottom) NMR spectra of 1-(4-fluorophenyl)-2-methylpyrrolidine

Figure S23 ¹H (top) and ¹³C (bottom) NMR spectra of N-(4-chlorophenyl)-2-methylpyrrolidine

Figure S24 ¹H (top) and ¹³C (bottom) NMR spectra of 1-(4-bromophenyl)-2-methylpyrrolidine

Figure S25 1 H (top), 13 C(middle) and 19 F (bottom) NMR spectra of 2-methyl-1-(4-(trifluoromethyl)phenyl)pyrrolidine

Figure S26¹H (top) and ¹³C (bottom) NMR spectra of 1-benzyl-2-methylpyrrolidine

Figure S27 ¹H (top) and ¹³C (bottom) NMR spectra of 2-methyl-1-phenylpiperidine