Electronic Supplementary Information

PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo₂S₄ for efficient oxygen evolution reaction

Jingyun Jiang,^a Chuanyu Yan,^a Xinhui Zhao,^a Hongxia Luo,^a Zhimin Xue,^b and Tiancheng Mu^{*a}

^aDepartment of Chemistry, Renmin University of China, Beijing 100872, China. ^bBeijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China. *Corresponding author. Tel: 86-10-62514925, Email: <u>tcmu@ruc.edu.cn</u>

Contents

Fig. S1 IR spectra (a), ¹H NMR spectra (b), and differential scanning calorimetry spectra (c) of thiourea (black), PEG 200 (red), and the obtained deep eutectic solvent (green).

Fig. S2 XRD patterns of the other as-synthesized catalysts: $NiCo_2O_4$ (black), NiS_2 (red), CoS_2 (green), Ni_2CoS_4 +CoS₂ (olive), and Ni_2CoS_4 (blue).

Fig. S3 Scanning electron microscopy (SEM) images of the NiCo₂O₄ at low magnification a) and high magnification b); c) High-resolution transmission electron microscopy (HRTRM) image of hierarchically structured NiCo₂O₄ with numerous pores; and d) HRTRM image and the corresponding lattice fringes of NiCo₂O₄.

Fig. S4 SEM images of the Ni_2CoS_4 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured Ni_2CoS_4 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of Ni_2CoS_4 .

Fig. S5 SEM images of the $Ni_2CoS_4 + CoS_2$ at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured $Ni_2CoS_4 + CoS_2$ with numerous pores; and d) HRTRM image and the corresponding lattice fringes of Ni_2CoS_4 .

Fig. S6 SEM images of the NiS_2 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured NiS_2 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of NiS_2 .

Fig. S7 SEM images of the CoS_2 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured CoS_2 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of CoS_2 .

Fig. S8 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the flower-like $NiCo_2O_4$. And the result showed that $NiCo_2O_4$ had multi pore size distribution.

Fig. S9 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the NiS_2 nanoparticles. And the result showed that NiS_2 had multi pore size distribution.

Fig. S10 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the CoS_2 nanoparticles. And the result showed that CoS_2 had multi pore size distribution.

Fig. S11 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the mixture of CoS_2 and Ni_2CoS_4 . And the result showed that the mixture CoS_2 and Ni_2CoS_4 had nearly single pore size distribution.

Fig. S12 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the Ni₂CoS₄ nanorods. And the result showed that Ni₂CoS₄ had nearly single pore size distribution.

Fig. S13 Polarization curve of the bare glassy carbon electrode in 1 M KOH at 5 mV·s⁻¹ by utilizing Ag/AgCl (3 M KCl) electrode and Pt wire as reference and counter electrode, respectively.

Fig. S14 Equivalent circuit used to model the AC-impedance of the working electrode/electrolyte. R_s stands for the uncompensated series resistance; R_{ct} stands for low-frequency response can be assigned to charge-transfer process of oxygen evolution at the catalyst interface; C_{dl} represents the accompanying capacitance of R_{ct} ; and CPE epresents a constant-phase element.

Fig. S15 SEM image of the $NiCo_2S_4$ at low magnification after thirty hours chronopotentiometry test.

Fig. S16 Chronoamperometry test of $NiCo_2S_4$ modified GC electrode at 1.6 V (vs. RHE) without iR compensation.

Fig. S17 Experimental (red dots, from GC analysis) and theoretical (black line, from transferred charge) amounts of O_2 evolved during controlled potential electrolysis at 1.6 V (vs. RHE) with the NiCo₂S₄ modified GC electrode.

Fig. S18 Chronopotentiometry test (a) of OER by $NiCo_2O_4$, NiS_2 , CoS_2 , $Ni_2CoS_4 + CoS_2$, and Ni_2CoS_4 modified GC in 1 M KOH at a current density of 10 mA·cm⁻²; Chronoamperometry test (b) of $NiCo_2O_4$, NiS_2 , CoS_2 , $Ni_2CoS_4 + CoS_2$, and Ni_2CoS_4 modified GC in 1 M KOH at 1.6 V (*vs.* RHE) without iR compensation.

Table S1 Related solvent, different ratio of Ni source and Co source of the as-prepared samples.

Table S2 Brunauer-Emmett-Teller (BET) surface areas and mean pore diameters obtained by N_2 absorption-desorption curves; R_s , R_{ct} and C_{dl} values obtained from electrochemical impedance spectroscopy (EIS) analysis of the synthesized samples.

Synthetic procedures

Synthesis of the NiCo₂O₄. The NiCo₂O₄ was obtained by the similar procedure described as NiCo₂S₄ except using PEG 200 instead of PEGylated DES as solvent media.

Synthesis of the NiS₂. The NiS₂ was obtained by the similar procedure described as NiCo₂S₄ except only adding 10 mmol Ni(NO₃)₂· $6H_2O$ without Co(NO₃)₂· $6H_2O$.

Synthesis of the CoS₂. The CoS₂ was obtained by the similar procedure described as NiCo₂S₄ except only adding 10 mmol Co(NO₃)₂·6H₂O without Ni(NO₃)₂·6H₂O.

Synthesis of the CoS₂ + Ni₂CoS₄. The CoS₂ + Ni₂CoS₄ were obtained by the similar procedure described as NiCo₂S₄ except using 10 mmol Ni(NO₃)₂·6H₂O and 10 mmol Co(NO₃)₂·6H₂O.

Synthesis of the Ni₂CoS₄. The Ni₂CoS₄ was obtained by the similar procedure described as NiCo₂S₄ except using 20 mmol Ni(NO₃)₂·6H₂O and 10 mmol Co(NO₃)₂·6H₂O.

Fig. S1 IR spectra (a), ¹H NMR spectra (b), and differential scanning calorimetry spectra (c) of thiourea (black), PEG 200 (red), and the obtained deep eutectic solvent (green).

Fig. S2 XRD patterns of the other as-synthesized catalysts: $NiCo_2O_4$ (black), NiS_2 (red), CoS_2 (green), Ni_2CoS_4 + CoS_2 (olive), and Ni_2CoS_4 (blue).

Fig. S3 Scanning electron microscopy (SEM) images of the $NiCo_2O_4$ at low magnification a) and high magnification b); c) High-resolution transmission electron microscopy (HRTRM) image of hierarchically structured $NiCo_2O_4$ with numerous pores; and d) HRTRM image and the corresponding lattice fringes of $NiCo_2O_4$.

Fig. S4 SEM images of the Ni_2CoS_4 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured Ni_2CoS_4 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of Ni_2CoS_4 .

Fig. S5 SEM images of the $Ni_2CoS_4 + CoS_2$ at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured $Ni_2CoS_4 + CoS_2$ with numerous pores; and d) HRTRM image and the corresponding lattice fringes of Ni_2CoS_4 .

Fig. S6 SEM images of the NiS_2 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured NiS_2 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of NiS_2 .

Fig. S7 SEM images of the CoS_2 at low magnification a) and high magnification b); c) HRTRM image of hierarchically structured CoS_2 with numerous pores; and d) HRTRM image and the corresponding lattice fringes of CoS_2 .

Fig. S8 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the flower-like $NiCo_2O_4$. And the result showed that $NiCo_2O_4$ had multi pore size distribution.

Fig. S9 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the NiS_2 nanoparticles. And the result showed that NiS_2 had multi pore size distribution.

Fig. S10 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the CoS_2 nanoparticles. And the result showed that CoS_2 had multi pore size distribution.

Fig. S11 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the mixture of CoS_2 and Ni_2CoS_4 . And the result showed that the mixture CoS_2 and Ni_2CoS_4 had nearly single pore size distribution.

Fig. S12 Nitrogen adsorption and desorption isotherms and inserted corresponding pore size distribution of the Ni_2CoS_4 nanorods. And the result showed that Ni_2CoS_4 had nearly single pore size distribution.

Fig. S13 Polarization curve of the bare glassy carbon electrode in 1 M KOH at 5 mV·s⁻¹ by utilizing Ag/AgCl (3 M KCl) electrode and Pt wire as reference and counter electrode, respectively.

Fig. S14 Equivalent circuit used to model the AC-impedance of the working electrode/electrolyte. R_s stands for the uncompensated series resistance; R_{ct} stands for low-frequency response can be assigned to charge-transfer process of oxygen evolution at the catalyst interface; C_{dl} represents the accompanying capacitance of R_{ct} ; and CPE epresents a constant-phase element.

Fig. S15 SEM image of the $NiCo_2S_4$ at low magnification after thirty hours chronopotentiometry test.

Fig. S16 Chronoamperometry test of $NiCo_2S_4$ modified GC electrode at 1.6 V (vs. RHE) without iR compensation.

Fig. S17 Experimental (red dots, from GC analysis) and theoretical (black line, from transferred charge) amounts of O_2 evolved during controlled potential electrolysis at 1.6 V (vs. RHE) with the NiCo₂S₄ modified GC electrode.

Fig. S18 Chronopotentiometry test (a) of OER by NiCo₂O₄, NiS₂, CoS₂, Ni₂CoS₄ + CoS₂, and Ni₂CoS₄ modified GC in 1 M KOH at a current density of 10 mA·cm⁻²; Chronoamperometry test (b) of NiCo₂O₄, NiS₂, CoS₂, Ni₂CoS₄ + CoS₂, and Ni₂CoS₄ modified GC in 1 M KOH at 1.6 V (*vs.* RHE) without iR compensation.

Table S1 Related solvent, different ratio of Ni source and Co source of the as-preparedsamples.

Sample	Solvents	Ni source	Co source	Ratio
NiCo ₂ S ₄	DES	Ni(NO ₃) ₂ ·6H ₂ 0	Co(NO ₃)₂·6H₂0	1:2
NiCo ₂ O ₄	PEG 200	Ni(NO ₃) ₂ ·6H ₂ 0	$Co(NO_3)_2 \cdot 6H_20$	1:2
NiS ₂	DES	Ni(NO ₃) ₂ ·6H ₂ 0	a_	a_
CoS ₂	DES	a_	Co(NO ₃) ₂ ·6H ₂ 0	a_
$Ni_2CoS_4 + CoS_2$	DES	Ni(NO ₃) ₂ ·6H ₂ 0	Co(NO ₃) ₂ ·6H ₂ 0	1:1
Ni ₂ CoS ₄	DES	Ni(NO ₃) ₂ ·6H ₂ 0	$Co(NO_3)_2 \cdot 6H_20$	2:1

^aIndicates no data.

Table S2 Brunauer-Emmett-Teller (BET) surface areas and mean pore diameters obtained by N_2 absorption-desorption curves; R_s , R_{ct} and C_{dl} values obtained from electrochemical impedance spectroscopy (EIS) analysis of the synthesized samples.

Sample	BET area	mean pore diameter	R _s	R _{ct}	C _{dl} (μF⋅cm⁻²)
	(m²⋅g⁻¹)	(nm)	(′Ω·cm⁻²)	(′Ω·cm⁻²)	
NiCo ₂ S ₄	33.10	8.931	0.04739	7.046	9.950
NiCo ₂ O ₄	112.6	15.77	0.04842	10.37	8.699
NiS ₂	11.33	17.35	0.04834	17.70	9.637
CoS ₂	6.511	12.15	0.05007	32.68	9.090
$Ni_2CoS_4 + CoS_2$	6.346	5.995	0.04791	65.98	9.264
Ni ₂ CoS ₄	8.265	5.632	0.04956	63.06	9.008