Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Hydrolytic hydrogenation of chitin to amino sugar alcohol

Hirokazu Kobayashi, Kota Techikawara, Atsushi Fukuoka Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

Table of contents

Fig. S1	XRD patterns of catalysts. S2	
Fig. S2	Difference XRD pattern of Pt/TiO ₂ – TiO ₂ S2	
Fig. S3	TEM image of 5wt% Ru/TiO ₂ S2	
Fig. S4	¹ H NMR spectrum of <i>Oligomer-H</i> ₂ SO ₄ in D ₂ O (a)	
	and its enlarged image (b)S3	
Fig. S5	UV-vis spectrum of NAG in H ₂ SO ₄ aq. (blue) and	
	<i>Oligomer-H</i> ₂ SO ₄ aq . (red) at 0.1 mM (a) and 10 mM (b)S4	
Fig. S6	¹ H NMR spectra of standard ADS (blue) and our product	
	accumulated by fraction collector (red) in D ₂ OS4	
Fig. S7	¹³ C– ¹ H HMQC spectrum of ADS produced in our experimentsS5	
NMR assignment for ADS		
Fig. S8	GC/MS standard data of silylated ADS (a) and analytical data	
	of our major product after silylation of reaction mixture (b)S6	
Fig. S9	Time course of hydrogenation of chitin hydrolysate at pH 3.0	
	by used Ru/TiO_2 after the experiment shown in Fig. 3bS6	
Scheme S1	Speculated mechanism for the decomposition of amide by acid	
	and Ru under H ₂ pressureS7	
Table S1	Effect of milling time in the mechanocatalytic hydrolysisS7	
Table S2	Effect of milling revolution rate in the mechanocatalytic hydrolysisS8	
Table S3	Effect of amount of H_2SO_4 in the mechanocatalytic hydrolysisS8	
Table S4	BET specific surface area of catalystsS8	
Differential equation of kinetics		
References	S10	

Fig. S1. XRD patterns of catalysts.

No peak of Ru can be seen for all the Ru catalysts due to formation of amorphous Ru oxide. The intensity for Ni/TiO₂ was reduced to be 20%. Crystallite size of Ni on Ni/TiO₂ was 43 nm, determined from (111) peak at 44.5°.

Fig. S2. Difference XRD pattern of $Pt/TiO_2 - TiO_2$. Crystallite size of Pt is 6 nm, determined from (111) peak at 39.7°.

A mean diameter to give the same surface area/volume ratio was 2.4 nm, corresponding to the dispersion of 46%.

Fig. S4. ¹H NMR spectrum of *Oligomer-H*₂*SO*₄ in D₂O (a) and its enlarged image (b). Peaks at 2–6 ppm are mainly due to oligomers of NAG and HDO, those at 6–8 ppm are ascribed to aromatic C-H and those at 9–10 ppm are attributed to aldehyde.

Fig. S5. UV-vis spectrum of NAG in H_2SO_4 *aq*. (blue) and *Oligomer-H₂SO₄ aq*. (red) at 0.1 mM (a) and 10 mM (b).

The peak at 192 nm is attributed to π - π * transition of amide group in NAG unit, while that at 283 nm is typical absorption of π - π * transition of furfural derivatives.^{S1}

Fig. S6. ¹H NMR spectra of standard ADS (blue) and our product accumulated by fraction collector (red) in D_2O . *Contamination of the NMR tube with acetone. Assignment is available below.

Fig. S7. ¹³C–¹H HMQC spectrum of ADS produced in our experiments. ¹³C signal at 50 ppm and ¹H signal at 3.3 ppm are derived from internal standard (MeOH). Assignment is available below.

NMR assignment for ADS from Fig. S6, Fig. S7, ¹³C–¹H HMBC and ¹³C DEPT.

Assignment (¹H, 400 MHz, D₂O): δ 4.05 (ddd, J = 6.4, 6.4, 4.8 Hz, 1H, H-C2), 3.94 (dd, J = 6.4, 2.4 Hz, 1H, H-C3), 3.80 (dd, J = 12, 2.8 Hz, 1H, H-C6), 3.73 (m, 1H, H-C5), 3.70 (dd, J = 12, 4.4 Hz, 1H, H-C1), 3.63 (dd, J = 6.0, 5.6 Hz, 1H, H-C6), 3.62 (dd, J = 6.0, 5.6 Hz, 1H, H-C1), 3.57 (dd, J = 8.0, 2.4 Hz, 1H, H-C4), 2.02 (s, 3H, H-C8)

Assignment (¹³C, 100 MHz, D₂O): δ 175.0 (C, C7), 71.7 (CH, C5), 71.5 (CH, C4), 68.9 (CH, C3), 63.4 (CH₂, C6), 61.4 (CH₂, C1), 54.4 (CH, C2), 22.7 (CH₃, C8)

Fig. S8. GC/MS standard data of silvlated ADS (a) and analytical data of our major product after silvlation of reaction mixture (b).

Fig. S9. Time course of hydrogenation of chitin hydrolysate at pH 3.0 by used Ru/TiO_2 after the experiment shown in Fig. 3b.

Fig. S10. XRD patter of used Ru/TiO₂ after the experiment shown in Fig. 3b. Normalised by the peak at 25° .

Scheme S1. Speculated mechanism for the decomposition of amide by acid and Ru under H_2 pressure.

Time /h	Yield of product /%-NAG unit		Solubility /%
	NAG	Oligomers	
		(DP = 2-5)	
3	4.2	28	>99
6	5.3	42	>99
12	6.3	45	>99

Table S1. Effect of milling time in the mechanocatalytic hydrolysis.^a

^{*a*}Milling conditions: S/C = 8.2, 500 rpm, water content *ca*. 1.5 wt%

Rate /rpm	Yield of product /%-NAG unit		Solubility /%
	NAG	Oligomers	_
		(DP = 2-5)	
300	1.9	18	68
400	3.8	31	>99
500	5.3	42	>99

Table S2. Effect of milling revolution rate in the mechanocatalytic hydrolysis.^a

^{*a*}Milling conditions: S/C = 8.2, 6 h, water content *ca*. 1.5 wt%.

Table S3. Effect of amount of H₂SO₄ in the mechanocatalytic hydrolysis.^a

S/C	Yield of produ	Solubility /%	
	NAG	Oligomers	
		(DP = 2-5)	
16.6	1.6	20	81
8.2	5.3	42	>99
4.1	10	38	>99
2.0	18	27	>99

^aMilling conditions: 500 rpm, 6 h, water content *ca*. 1.5 wt%.

Table S4. BET specific surface area of catalysts.

Catalyst	BET surface area $/m^2 g^{-1}$
TiO ₂	51
Ru/TiO ₂	48
Pt/TiO ₂	44
Ni/TiO ₂	19
ZrO ₂	27
Ru/ZrO_2	30
С	1362
Ru/C	1300

Differential equations of kinetics

$$NAG \xrightarrow{k_1} ADS \xrightarrow{k_3} By-products$$

$$\frac{d[NAG]}{dt} = -(k_1 + k_2)[NAG]$$
(S1)

$$\frac{d[ADS]}{dt} = k_1[NAG] - k_3[ADS]$$
(S2)

$$\frac{d[By - products]}{dt} = k_2[NAG] + k_3[ADS]$$
(S3)

$$(S1) \Leftrightarrow [NAG] = [NAG]_0 e^{-(k_1 + k_2)t}$$
(S4)

Thus, eq. S2 can be descried as
$$\frac{d[ADS]}{dt} = k_1 [NAG]_0 e^{-(k_1 + k_2)t} - k_3 [ADS]$$
(S5)

When $k_1 + k_2 \neq k_3$,

$$\Leftrightarrow [ADS] = \frac{k_1 [NAG]_0}{-(k_1 + k_2) + k_3} \left\{ e^{-(k_1 + k_2)t} - e^{-k_3 t} \right\}$$
(S6)

Differentiating eq. S6, at the local maximum of [ADS],

$$\frac{d[ADS]}{dt} = \frac{k_1[NAG]_0}{-(k_1 + k_2) + k_3} \left\{ (k_1 + k_2)e^{-(k_1 + k_2)t} + k_3e^{-k_3t} \right\} = 0$$
(S7)

$$\Leftrightarrow t = \frac{1}{-(k_1 + k_2) + k_3} \ln \frac{k_3}{k_1 + k_2}$$
(S8)

Combining eqs. S6 and S8,

$$[ADS]_{max} = \frac{k_1 [NAG]_0}{-(k_1 + k_2) + k_3} \left\{ e^{\frac{k_1 + k_2}{k_1 + k_2 - k_3} \ln \frac{k_3}{k_1 + k_2}} - e^{\frac{k_3}{k_1 + k_2 - k_3} \ln \frac{k_3}{k_1 + k_2}} \right\}$$
(S9)

$$\Leftrightarrow [ADS]_{\max} = \frac{\frac{k_1}{k_1 + k_2} [NAG]_0}{-1 + \frac{k_3}{k_1 + k_2}} \left\{ \left(\frac{k_3}{k_1 + k_2}\right)^{1 - \frac{k_3}{k_1 + k_2}} - \left(\frac{k_3}{k_1 + k_2}\right)^{1 - \frac{k_3}{k_1 + k_2}} \right\}$$
(S10)

$$\Leftrightarrow [ADS]_{max} = [NAG]_0 \frac{k_1}{k_1 + k_2} \frac{1}{R - 1} \left\{ R^{\frac{1}{1-R}} - R^{\frac{R}{1-R}} \right\}, \text{ where } R = \frac{k_3}{k_1 + k_2}$$
 (S11)

When
$$k_1 + k_2 = k_3$$
, $[ADS]_{max} = [NAG]_0 \frac{k_1}{k_1 + k_2} e^{-1}$ (S12)

 $[NAG]_0$ can be changed to M_{NAG} , where M_{NAG} is the initial amount of NAG (%), and then $[ADS]_{max}$ is converted to the maximum ADS yield.

References

S1 (a) R. Boopathy, H. Bokang and L. Daniels, J. Ind. Microbiol., 1993, 11, 147-150; (b) X.
 Chen, S. L. Chew, F. M. Kerton and N. Yan, Green Chem., 2014, 16, 2204-2212.