Supporting Information

Catalytic hydrogenolysis of Kraft lignin to monomers at high yield in alkaline water

Shi-Chao Qi, Jun-ichiro Hayashi,* Shinji Kudo and Lu Zhang

Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, Fukuoka 816-8580, Japan

*Corresponding author. E-mail address: junichiro_hayashi@cm.kyushu-u.ac.jp

No	<i>t</i> /min	Compound	KL-M	OKL-M	
190.		Compound	S _i /%	S _i /%	
1	28.0	Phenol	2.2	1.6	
2	28.8	Guaiacol	40.8	33.4	
3	32.4	2-Methoxy-4-methylphenol	5.1	7.2	
4	35.3	2-Methoxy-4-ethylphenol	13.9	19.9	
5	38.0	2-Methoxy-4-propylphenol	2.7	7.5	
6	42.1	Vanillin	14.1	6.7	
7	44.4	1-(4-Hydroxy-3-methoxyphenyl)ethanone	7.1	3.9	
8	45.8	1-(4-Hydroxy-3-methoxyphenyl)propanone	5.4	7.2	
9	49.2	2-(4-Hydroxy-3-methoxyphenyl)acetic acid	8.7	12.6	
$a, S_i = \frac{\text{The intergrated GC-MS area of product (i)}}{\text{The total intergrated area of all detected products in GC-MS}} \times 100\%$					

Table S1. Selectivity (S_i) of monomer products from KL and OKL-M.^{*a*}

No.	Compound	wt%-KL	wt%-oil
1	Phenol	1.8	2.2
2	Guaiacol	38.0	45.6
3	2-Methoxy-4-methylphenol	3.7	4.4
4	2-Methoxy-4-ethylphenol	9.5	11.4
5	2-Methoxy-4-propylphenol	2.4	2.9
6	Vanillin	8.2	9.8
7	1-(4-Hydroxy-3-methoxyphenyl)ethanone	3.6	4.3
8	1-(4-Hydroxy-3-methoxyphenyl)propanone	2.2	2.6
9	2-(4-Hydroxy-3-methoxyphenyl)acetic acid	6.7	8.0
	Total	76.1	91.2

Table S2. Individual yields of the nine monomers in OKL-M.^a

a, The yields were determined quantitatively by GC/MS

No.	Assignment		Wavenumber (cm ⁻¹)			
			OKL	HR	OHR	
1	-OH stretching	3300	3290	3384	3380	
2	C-H of -CH ₃ /-CH ₂ - stretching	2940	2946	2936	2940	
3	Non-conjugated C=O stretching	1700	1716	1711	1710	
4	Conjugated C=O stretching	1600	1595	1612	1601	
5	Aromatic ring stretching	1513	1520	1512	1515	
6	Deformation of -CH ₃ /-CH ₂ -	1450	1452	1448	1463	
7	Deformation of aromatic C-H	1427	1400	1419	1431	
8	Aliphatic C-H and phenolic -OH stretching	1368	1361	1385	1368	
9	Guaiacyl and C=O stretching	1268	1267	1268	1269	
10	C-C, C-O, and C=O stretching	1222	1222	1222	1222	
11	Guaiacyl C–C and C–O stretching, secondary alcohol C–O stretching, and aromatic C-H out-of-plain bending	1130	1117	1140	1143	
12	In-plain bending of aromatic C-H	1030	1020	1027	1025	
13	Aromatic 2,6-C-H out-of-plain bending	840	870	858	858	

Table S3. FTIR bands assignment of KL, OKL, KL-R, and OKL-R.

Fig. S1 Solid ¹³C-NMR spectra of KL, OKL, KL-R, and OKL-R.

Assignment	δ (ppm)				
Assignment	KL	OKL	KL-R	OKL-R	
-CH ₃	15.7	17.3	16.0	16.3	
$-CH_2Me$	21.7	25.4	25.3	29.0	
Tertiary carbon	33.2	34.6	34.4	35.9	
-CH ₂ Et or Tertiary carbon	42.3	46.3	45.0	45.2	
-O-CH ₃	55.8	55.8	55.1	55.2	
-CH ₂ -OH	60.1	62.7	58.8	58.9	
C_{γ} of β - β ' pinoresinol	71.2	69.8	72.3	71.3	
CH(OH)	75.4	72.8	80.6	77.7	
C_{α} of β - β ' pinoresinol	83.6	81.0	86.6	82.3	
	99.4	101.2	94.9	98.2	
	111.5	113.6	111.6	111.6	
	115.5	118.2	114.7	116.1	
	122.0	122.9	120.2	121.9	
Ar (C) bonding with C_{α} in β -O-4	129.9	130.6	125.7	130.5	
Ar (C)–(C) Ar			135.7		
Ar (C)–O of dibenzodioxocin			142.0	141.6	
Ar (C) bonding with O in β -O-4	147.2	146.6	146.5	146.5	
Ar (C)–O–CH ₃	155.4	158.9	151.8	154.2	
-COO-			164.7	167.6	
-СООН	179.0	173.0	175.7	176.6	
-CO-	189.1	180.3	181.6	184.0	
-CHO		207.8	208.0	208.2	

Table S4. ¹³C-NMR bands assignment of KL, OKL, KL-R, and OKL-R.

Atomic Coordinates For the Molecules Involved In This Paper

(Please download the file of the atomic coordinates via the following link:)