Supporting Information

for

Base-Controlled Highly Selective Synthesis of Alkyl 1,2-Bis(boronates) or 1,1,2-Tris(boronates) from Terminal Alkynes

Guoliang Gao^a, Jianxiang Yan^a, Kai Yang^a, Fener Chen^b and Qiuling Song^{a, c*}

^a Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences at Huaqiao University, Xiamen, Fujian, 361021, P. R. China

^b Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.

^c Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China

Email: qsong@hqu.edu.cn

Table of Contents

General Information.	2
Condition Screenings	. 3
General Procedures.	. 4
X-Ray Crystallographic Data of Compound 15	7
Characterization Data for Products	8
References	35
Spectroscopic Data	36

General Information

All experiments were conducted with a Schlenk tube. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Bruker AVIII-500M spectrometers, chemical shifts (in ppm) were referenced to CDCl₃ (δ = 7.26 ppm) and DMSO-d₆ (δ = 2.50 ppm) as internal standards. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.0 ppm), DMSO-d₆ (δ = 39.6 ppm). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification, and the most starting materials were purchased from Energy.

Condition Screenings

Table S1. Optimization of reaction conditions.^a

	+ B ₂ pin ₂	Base, Solve Temp, CH ₃ OH (5	ent 5 equiv)	Bpin Bpin in +	Bpin	Bpin 3
			T	G	C yield (%)
Entry	Base	Solvent	Temperature (°C)	2	3	4
1	Cs ₂ CO ₃	CH ₃ CN	60	10	48	trace
2	Cs ₂ CO ₃	CH₃CN	80	0	(77) ^b	<5
3	Cs_2CO_3	CH₃CN	90	10	48	trace
4	Cs_2CO_3	CH₃CN	100	trace	46	12
5	CsF	CH₃CN	80	<5	50	<5
6	K ₃ PO ₄	CH₃CN	80	<5	42	<5
7	Na ₂ CO ₃	CH₃CN	80	0	55	<5
8	Li ₂ CO ₃	CH₃CN	80	<5	63	trace
9	K ₂ CO ₃	CH₃CN	80	38	44	<5
10 ^c	K ₂ CO ₃	Dioxane	80	44	32	<5
11 ^c	K ₂ CO ₃	THF	80	46	15	0
12 ^c	K ₂ CO ₃	$C_2H_5OC_2H_5$	80	60	<5	0
13 ^c	K ₂ CO ₃	MTBE	80	54	10	0
14 ^c	K ₂ CO ₃	$C_2H_5OC_2H_5$	70	68	trace	<5
15 ^c	K ₂ CO ₃	$C_2H_5OC_2H_5$	50	(82) ^b	<5	0
16 ^c	K ₂ CO ₃	$C_2H_5OC_2H_5$	40	67	trace	0
17 ^d	K ₂ CO ₃	C ₂ H ₅ OC ₂ H ₅	60	80 (72)) [¤] <5	0
18 ^e	Cs ₂ CO ₃	CH₃CN	80	0	(82) ^b	<5

^a Conditions: 3-phenyl-1-propyne (**1**) (0.2 mmol), B₂pin₂ (3 equiv), base (4 equiv), solvent (2 mL), 12 h, N₂. ^b Isolated yields. ^c 1.5 equiv of K₂CO₃ and 4.5 equiv of B₂pin₂ were used. ^d K₂CO₃ (0.6 equiv), B₂pin₂ (2.5 equiv), CH₃OH, Et₂O, 60 °C, 12 h. ^e 1.5 equiv of Cs₂CO₃ and 2 equiv of B₂pin₂ were used.

Table S2. Condition optimization for the synthesis of 1,1,2-Tris(boronates) from arylacetylenes

	+ B ₂ pin ₂	$\frac{K_2C}{CH_2CH_3C}$	O_3 , CH_3OH DCH_2CH_3 , N_2 ,	E 12h	3pin Bpin Bpin 5
Entry	K ₂ CO ₃ (equiv)	B ₂ pin ₂ (equi	v) Temp (°C)	Conversion (%)	Yield (%) ^a
1	1	3	50	100	92
2	0.5	3	50	100	93
3	0.2	3	50	>98	86
4	0.1	3	50	70	60
5	0.3	2	50	100	94 (90)
6	0.2	1.8	50	80	74
7	0.3	2	40	90	86
8	0.3	2	rt	60	50

Conditions: ^a only by GC

General Procedures

acyl chloride and propargylic amine: To a solution of propargylic amine (10 mmol, 1.0 equiv.) in CH₂Cl₂, trimethylamine (1.4 mL, 10 mmol, 1.0 equiv.) and 4-dimethylaminopyridine (24.4 mg, 0.2 mmol, 0.02 equiv.) were added. The resulting mixture was cooled to 0 °C, and the acid chloride (10 mmol, 1.0 equiv.) was added. The mixture was stirred for 30 min at 0 °C and 3 h at room temperature. H₂O (15 mL) was added, and the aqueous layer was extracted with another (3*15 mL) of CH₂Cl₂. The combined organic extracts were washed with saturated NaHCO₃, H₂O and brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by

column chromatography on silica.¹

$$R \xrightarrow{+} B_2 Pin_2 \xrightarrow{-} CH_3 OH, 50 °C, N_2 \xrightarrow{+} Bpin$$

General procedure B: the synthesis of alkyl 1,1,2-tris(boronates)

from terminal alkyl alkynes and B_2pin_2 : In air, a 25 mL Schlenk tube was charged with B_2pin_2 (2.5 equiv) and K_2CO_3 (0.6 equiv). The flask was evacuated and filled with nitrogen for three cycles. Et₂O (3 mL), terminal alkyl alkynes (0.2 mmol) and CH₃OH (40 uL, 5 equiv) were added. The reaction was allowed to stir at 50 °C for 12 hours. Upon completion, the reaction mixture was diluted with ethyl acetate, filtered through a silica gel plug, rinsed with ethyl acetate, and concentrated in vacuo. The crude reaction mixture was purified on silica gel to afford the desired product.

General procedure C: the synthesis of alkyl 1,1,2-tris(boronates)

from arylacetylenes and B_2pin_2 : In air, a 25 mL Schlenk tube was charged with B_2pin_2 (2.0 equiv) and K_2CO_3 (0.3 equiv). The flask was evacuated and filled with nitrogen for three cycles. Et₂O (3 mL), terminal alkyl alkynes (0.2 mmol) and CH₃OH (40 uL, 5 equiv) were added. The reaction was allowed to stir at 60 °C for 12 hours. Upon completion, the reaction mixture was diluted with ethyl acetate, filtered through a silica gel plug, rinsed with ethyl acetate, and concentrated in vacuo. The crude reaction mixture was purified on silica gel to afford the desired product.

$$R \xrightarrow{+} B_2 Pin_2 \xrightarrow{-} Cs_2 CO_3, CH_3 CN \xrightarrow{-} R \xrightarrow{-} Bpin Bpin$$

General procedure D: the synthesis of alkyl 1,2-bis(boronates) from

terminal alkyl alkynes and B₂pin₂ : In air, a 25 mL schlenk tube was charged with B₂pin₂ (101 mg, 2 equiv) and Cs₂CO₃ (98 mg, 1.5 equiv). The flask was evacuated and filled with nitrogen for three cycles. Then CH₃CN (3 mL), terminal alkyl alkynes (0.2 mmol) and CH₃OH (40 uL, 5 equiv) were added subsequently. The reaction was allowed to stir at 80 °C for 12 hours. Upon completion, the reaction mixture was diluted with ethyl acetate, filtered through a silica gel plug, rinsed with ethyl acetate, and concentrated in vacuo. The crude reaction mixture was purified on silica gel to afford the desired product.

X-Ray crystallographic data of compound 15

	15		CDC: 1551784
Bond precision	: C-C = 0.0060 A	Waveleng	th=0.71073
Cell:	a=10.7089(7)	b=11.6927(9)	c=13.5483(11)
Temperature:	alpha=114.506(8) 291 K	beta=99.354(6)	gamma=104.113(6)
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1428.7(2) P -1 -P 1 C26 H43 B3 06 C26 H43 B3 06 484.03 1.125 2 0.076 524.0 524.25 12,13,16 5032	Reporte 1428.70 P -1 -P 1 C26 H43 C26 H43 C26 H43 484.03 1.125 2 0.076 524.3 12,13,1 5025	ed (2) B3 06 B3 06
Correction met	hod= Not given		
Data completene	ess= 0.999	Theta $(max) = 25$.	000
R(reflections):	= 0.0702(3551)	wR2(reflections	(a) = 0.2191(5025)
S = 1.046	Npar=	328	

Characterization Data for Products

2,2',2''-(3-phenylpropane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane)³(CAS: 1638158-42-5). The reaction was performed following the general procedure B. Colorless oil, 82% yield (81.7 mg). ¹H NMR (500 MHz, CDCl3) δ 7.24 - 7.15 (m, 4H), 7.10 (t, J = 6.9 Hz, 1H), 2.79 (dd, J = 13.3, 6.9 Hz, 1H), 2.71 (dd, J = 13.3, 8.7 Hz, 1H), 1.68 (dd, J = 15.9, 8.9 Hz, 1H), 1.22 (s, 24H), 1.11 (d, J = 16.3 Hz, 12H), 0.85 (d, J = 9.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 142.6, 129.3, 127.8, 125.3, 82.8, 82.7, 39.1, 25.0, 24.9, 24.8, 24. ¹¹B NMR: δ = 36.4 (br).

2,2',2''-(4-phenylbutane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane)³(CAS: 1638158-43-6). The reaction was performed following the general procedure B. White solid, 77% yield (78.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 6.9 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 2.70 – 2.62 (m, 1H), 2.56 – 2.47 (m, 1H), 1.81 – 1.67 (m, 2H), 1.45 (dd, *J* = 15.5, 7.9 Hz, 1H), 1.24 (d, *J* = 2.8 Hz, 12H), 1.21 (d, *J* = 3.6 Hz, 24H), 0.95 (d, *J* = 10.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 128.4, 128.0, 125.2, 83.4, 82.7, 82.6, 35.6, 35.2, 25.1, 24.5. ¹¹B NMR: δ = 36.2 (br).

2,2',2''-(5-phenylpentane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane). The reaction was performed following the general procedure B. Colorless oil, 66% yield (69.4 mg). ¹H NMR (500 MHz, CDCl3) δ 7.23 (t, J = 7.5 Hz, 2H), 7.16 (s, 1H), 7.15 - 7.10 (m, 2H), 2.59 - 2.54 (m, 2H), 1.69 (dd, J = 9.3, 7.2 Hz, 2H), 1.62 - 1.53 (m, 2H), 1.21 (s, 24H), 1.18 (s, 1H), 1.16 (s, 12H), 1.05 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.3, 128.3, 128.1, 125.3, 82.8, 82.6, 36.9, 32.9, 29.5, 24.9, 24.7. ¹¹B NMR: δ = 36.3 (br). HRMS-(DART) for: ¹²C₂₉¹H₄₉¹⁰B₃¹⁶O₆[M+H]⁺: calculated: 524.3990, found: 524.3990.

2,2',2''-(2-cyclopropylethane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane)³(CAS: 1638158-32-3). The reaction was performed following the general procedure B. Colorless oil, 50% yield (44.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.25 (s, 24H), 1.21 (t, *J* = 4.0 Hz, 12H), 1.19 (s, 4H), 0.89 (dd, *J* = 34.6, 8.3 Hz, 1H), 0.66 (d, *J* = 5.6 Hz, 1H), 0.34 (d, *J* = 6.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 83.46, 82.9, 82.5, 24.9, 14.9, 6.2, 4.2. ¹¹B NMR: δ = 36.4 (br).

N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)thiophene-3-carboxamide. The reaction was performed following the general procedure B. Colorless oil, 70% yield (76.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (ddd, J = 6.1, 3.0, 1.3 Hz, 1H), 7.35 (dd, J = 5.1, 1.3 Hz, 1H), 7.30 – 7.27 (m, 1H), 6.80 (s, 1H), 3.68 – 3.56 (m, 1H), 3.32 (ddd, J = 12.9, 8.1, 4.5 Hz, 1H), 1.50 – 1.39 (m, 1H), 1.24 (d, J = 4.6 Hz, 12H), 1.22 (d, J = 6.5 Hz, 24H), 0.93 (d, J = 2.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 138.2, 127.7, 126.1, 125.9, 83.4, 83.2, 42.7, 24.8, 24.5. ¹¹B NMR: δ = 36.5 (br). HRMS-(DART) for: ${}^{12}C_{26}{}^{1}H_{44}{}^{10}B_{3}{}^{14}N{}^{16}O_{7}{}^{32}S[M+H]^+$: calculated: 545.3299, found: 545.3298.

yl)propyl)benzamide. The reaction was performed following the general procedure B. Colorless oil, 56% yield (63.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.36 (s, 1H), 3.75 (dt, J = 13.1, 6.5 Hz, 1H), 3.37 – 3.32 (m, 1H), 1.62 (dd, J = 14.2, 6.9 Hz, 1H), 1.23 – 1.21 (m, 24H), 1.20 (d, J = 1.5 Hz, 12H), 0.90 (d, J = 6.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 139.5, 132.2, 127.6, 118.2, 114.5, 83.5, 83.3, 42.8, 24.8, 24.6. ¹¹B NMR: δ = 36.7 (br). HRMS-(DART) for: ¹²C₂₉¹H₄₅¹⁰B₃¹⁴N₂¹⁶O₇[M+H]⁺: calculated: 564.3688, found: 564.3688.

4-(tert-butyl)-N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)benzamide. The reaction was performed following the general procedure B. Colorless oil, 67% yield (80.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.5 Hz, 2H), 7.41 (t, J = 8.1 Hz, 2H), 7.13 (s, 1H), 3.73 (dt, J = 12.8, 6.3 Hz, 1H), 3.36 – 3.29 (m, 1H), 1.62 (dd, J = 14.3, 7.5 Hz, 1H), 1.32 (s, 9H), 1.26 (s, 12H), 1.21 (d, J = 5.9 Hz, 24H), 0.90 – 0.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 154.4, 132.3, 126.6, 125.3, 83.4, 83.2, 42.9, 34.8, 31.2, 25.26, 24.51. ¹¹B NMR: δ = 36.4 (br). HRMS-(DART) for: ${}^{12}C_{32}{}^{1}H_{54}{}^{10}B_{3}{}^{14}N^{16}O_7[M+H]^+$: calculated: 595.4361, found: 595.4361.

3-chloro-N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)benzamide. The reaction was performed following the general procedure B. Colorless oil, 60% yield (69.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 1.7 Hz, 1H), 7.68 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 7.2 Hz, 1H), 7.06 (s, 1H), 3.76 – 3.64 (m, 1H), 3.36 – 3.30 (m, 1H), 1.25 (d, *J* = 9.7 Hz, 12H), 1.22 (t, *J* = 5.1 Hz, 24H), 0.96 (t, *J* = 7.4 Hz, 1H), 0.91 – 0.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 137.3, 134.5, 131.0, 129.7, 127.1, 125.2, 83.5, 83.2, 43.1, 24.9, 24.5. ¹¹B NMR: $\delta = 36.5$ (br). HRMS-(DART) for: ¹²C₂₈¹H₄₅¹⁰B₃Cl¹⁴N¹⁶O₇[M+H]⁺: calculated: 573.3345, found: 573.3345.

4-(trifluoromethyl)-N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propyl)benzamide. The reaction was performed following the general procedure B. Colorless oil, 55% yield (67.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.09 (s, 1H), 3.66 (dt, J = 13.1, 6.5 Hz, 1H), 3.40 – 3.34 (m, 1H), 1.51 – 1.47 (m, 1H), 1.25 (d, J = 1.8 Hz, 12H), 1.22 (t, J = 4.8 Hz, 24H), 0.98 – 0.95 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 138.6, 127.4, 125.4, 123.2, 83.5, 83.3, 43.2, 24.8, 24.2. ¹¹B NMR: δ = 36.7 (br). HRMS-(DART) for: ¹²C₂₉¹H₄₅¹⁰B₃¹⁸F₃¹⁴N¹⁶O₇[M+H]⁺: calculated: 607.3609, found: 607.3609.

4-methyl-N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propyl)benzenesulfonamide. The reaction was performed following the general procedure B. Colorless oil, 44% yield (52.0 mg). ¹H NMR (500 MHz, CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 5.50 (s, 1H), 3.06 (dt, J = 11.5, 6.8 Hz, 1H), 2.92 (ddd, J = 11.6, 7.4, 4.5 Hz, 1H), 2.40 (s, 3H), 1.48 - 1.42 (m, 1H), 1.19 (s, 1H), 1.19 (s

24H), 1.17 (d, J = 4.8 Hz, 12H), 0.75 (d, J = 6.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 142.6, 137.3, 129.4, 127.2, 83.5, 77.3, 76.8, 46.1, 24.8, 24.6. ¹¹B NMR: δ = 36.5 (br). HRMS-(DART) for: ¹²C₂₈¹H₄₈¹⁰B₃¹⁴N¹⁶O₈³²S[M+H]⁺: calculated: 589.3562, found: 589.3563.

4-chloro-N-(2,3,3-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)benzamide. The reaction was performed following the general procedure B. Colorless oil, 50% yield (57.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.71 (m, 2H), 7.37 (d, J = 8.6 Hz, 2H), 7.21 (s, 1H), 3.74 (dt, J = 13.0, 6.4 Hz, 1H), 3.35 – 3.30 (m, 1H), 1.24 (d, J = 1.7 Hz, 12H), 1.22 (d, J = 2.3 Hz, 24H), 0.95 (dd, J = 10.1, 7.1 Hz, 1H), 0.91 – 0.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 137.1, 133.6, 128.6, 128.3, 83.5, 83.3, 43.1, 25.1, 24.4. ¹¹B NMR: δ = 36.8 (br). HRMS-(DART) for: ¹²C₂₈¹H₄₅¹⁰B₃Cl¹⁴N¹⁶O₇[M+H]⁺: calculated: 573.3345, found: 573.3346.

2,2',2''-(2-phenylethane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane)³(CAS: 1638158-49-2). The reaction was performed following the general procedure C. Colorless oil, 90% yield (87.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (dd, *J* = 8.1, 1.2 Hz, 2H), 7.15 (t, *J* = 7.7 Hz, 2H), 7.02 (t, *J* = 7.2 Hz, 1H), 2.66

(d, J = 12.8 Hz, 1H), 1.45 – 1.41 (m, 1H), 1.23 (d, J = 6.4 Hz, 12H), 1.13 (d, J = 10.6 Hz, 12H), 0.93 (d, J = 9.3 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 128.5, 127.8, 124.6, 83.0, 82.61, 24.9, 24.8, 24.6, 24.5. ¹¹B NMR: $\delta = 37.1$ (br).

2,2',2''-(2-(4-fluorophenyl)ethane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane). The reaction was performed following the general procedure C. Colorless oil, 92% yield (92.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (dd, J = 8.7, 5.6 Hz, 2H), 6.86 (t, J = 8.8 Hz, 2H), 2.64 (d, J = 12.8 Hz, 1H), 1.42 – 1.37 (m, 1H), 1.23 (d, J = 6.0 Hz, 12H), 1.13 (d, J = 9.1 Hz, 12H), 0.95 (d, J = 12.4 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 161.7, 159.8, 140.9, 129.7, 114.5, 114.4, 83.1, 82.7, 24.8, 24.6, 24.4, 24.2. ¹¹B NMR: δ = 37.5 (br). HRMS-(DART) for: ¹²C₂₆¹H₄₂¹⁰B₃¹⁸F¹⁶O₆[M+H]⁺: calculated: 500.3426, found: 500.3425.

2,2',2''-(2-(4-propylphenyl)ethane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane). The reaction was performed following the general procedure C. Colorless oil, 93% yield (97.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.09 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 2.61 (d, J = 12.8 Hz, 1H), 2.47 (t, J = 7.5 Hz, 2H), 1.54 (dd, J = 15.4, 7.0 Hz, 2H), 1.41 (d, J = 12.8 Hz, 1H), 1.23 (d, J = 7.0 Hz, 12H), 1.14 (d, J = 10.7 Hz, 12H), 0.92 (s, 12H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 142.3, 138.7, 128.3, 127.9, 82.9, 82.6, 37.6, 25.0, 24.8, 24.3, 13.7. ¹¹B NMR: $\delta = 37.2$ (br). HRMS-(DART) for: ¹²C₂₉¹H₄₉¹⁰B₃¹⁶O₆[M+H]⁺: calculated: 524.3990, found: 524.3989.

2,2',2''-(2-(thiophen-2-yl)ethane-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane). The reaction was performed following the general procedure C. Colorless oil, 89% yield (87.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (dd, J = 5.1, 1.1 Hz, 1H), 6.81 (dd, J = 5.1, 3.4 Hz, 1H), 6.78 (d, J = 3.4 Hz, 1H), 3.00 (d, J = 12.3Hz, 1H), 1.28 (s, 1H), 1.22 (d, J = 3.8 Hz, 12H), 1.17 (d, J = 5.6 Hz, 12H), 1.03 (d, J = 8.3 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 126.2, 123.5, 121.9, 83.3, 83.1, 82.8, 31.4, 29.7, 24.9, 24.3. ¹¹B NMR: $\delta = 37.4$ (br). HRMS-(DART) for: ¹²C₂₄¹H₄₁¹⁰B₃¹⁶O₆³²S[M+H]⁺: calculated: 488.3085, found: 488.3085.

2,2'-(3-phenylpropane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)² (CAS: 1172611-59-4). The reaction was performed following the general procedure D. Colorless oil, 82% yield (61.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.21 (m, 2H), 7.19 (t, *J* = 4.1 Hz, 2H), 7.13 (t, *J* = 6.9 Hz, 1H), 2.79 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.60 (dd, *J* = 13.4, 8.4 Hz, 1H), 1.45 (dt, *J* = 12.7, 6.4 Hz, 1H), 1.22 (s, 13H), 1.17 (d, J = 11.0 Hz, 12H), 0.82 (d, J = 7.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 142.3, 129.1, 127.9, 125.4, 82.9, 39.5, 24.9, 24.8, 24.6. ¹¹B NMR: $\delta = 30.4$ (br).

2,2'-(4-phenylbutane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)⁵ (CAS:1888337-29-8). The reaction was performed following the general procedure D. Colorless oil, 78% yield (60.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J* = 7.5 Hz, 2H), 7.19 (d, *J* = 7.0 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H), 2.63 (t, *J* = 8.3 Hz, 2H), 1.84 – 1.76 (m, 1H), 1.69 – 1.61 (m, 1H), 1.25 (d, *J* = 9.3 Hz, 24H), 0.97 (dd, *J* = 15.8, 9.7 Hz, 1H), 0.90 (dd, *J* = 9.5, 6.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.3, 128.4, 128.1, 125.4, 82.9, 35.9, 35.3, 29.7, 24.8, 24.6. ¹¹B NMR: δ = 30.3 (br).

2,2'-(5-phenylpentane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane).⁵ The reaction was performed following the general procedure D. Colorless oil, 81% yield (64.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 7.4 Hz, 2H), 7.17 (s, 1H), 7.17 - 7.12 (m, 2H), 2.61 - 2.57 (m, 2H), 1.63 (d, J = 5.1 Hz, 2H), 1.40 - 1.28 (m, 2H), 1.22 (d, J = 8.5 Hz, 24H), 0.89 – 0.84 (m, 1H), 0.80 (dd, J = 15.8, 5.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.0, 128.4, 128.1, 125.4, 82.8, 83.2, 36.1, 33.5, 30.6 30.7. 24.8, 24.6. ^{11}B NMR: δ = (br). HRMS-(DART) for: ¹²C₂₃¹H₃₈¹⁰B₂¹⁶O₄[M+H]⁺: calculated: 399.2056, found: 399.2057.

2,2'-(hexane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)⁶(CAS:

1198172-03-0). The reaction was performed following the general procedure D. Colorless oil, 76% yield (51.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.35 – 1.28 (m, 2H), 1.26 (dd, J = 6.7, 3.3 Hz, 4H), 1.22 (d, J = 3.2 Hz, 24H), 0.87 – 0.84 (m, 3H), 0.83 (d, J = 3.9 Hz, 1H), 0.78 (dd, J = 15.7, 5.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 82.7, 82.5, 82.2, 33.5, 31.1, 24.8, 24.4, 22.9, 14.1. ¹¹B NMR: $\delta = 30.6$ (br).

2,2'-(octane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)⁷(CAS:

1240790-15-1). The reaction was performed following the general procedure D. Colorless oil, 68% yield (49.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.35 – 1.28 (m, 2H), 1.26 (dd, J = 6.7, 3.3 Hz, 4H), 1.22 (d, J = 3.2 Hz, 24H), 0.87 – 0.84 (m, 3H), 0.83 (d, J = 3.9 Hz, 1H), 0.78 (dd, J = 15.7, 5.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 82.7, 82.4, 33.8, 31.8, 29.5, 28.8, 24.8, 24.4, 22.6, 14.1. ¹¹B NMR: $\delta = 30.2$ (br).

2,2'-(1-cyclopropylethane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane).⁸ The reaction was performed following the general procedure D. Colorless oil, 77% yield (49.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.23 (d, J = 11.1 Hz, 24H), 0.93 (d, J = 7.9 Hz, 2H), 0.69 (td, J = 8.1, 3.9 Hz, 1H), 0.45 (dd, J = 17.3,

8.0 Hz, 1H), 0.37 (dt, J = 8.0, 6.6 Hz, 2H), 0.14 – 0.08 (m, 1H), 0.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 82.8, 82.4, 25.1, 24.6, 14.8, 4.7, 4.2. ¹¹B NMR: $\delta = 29.5$ (br). HRMS-(DART) for: ¹²C₁₇¹H₃₂¹⁰B₂¹⁶O₄[M+H]⁺: calculated: 321.3258, found: 321.3257.

2,2'-(3-cyclohexylpropane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane). The reaction was performed following the general procedure D. Colorless oil, 78% yield (59.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.69 – 1.63 (m, 5H), 1.32 (s, 2H), 1.26 (d, *J* = 11.5 Hz, 4H), 1.22 (d, *J* = 3.6 Hz, 24H), 1.15 – 1.08 (m, 2H), 0.79 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 82.7, 82.4, 41.4, 36.4, 33.6, 33.3, 26.8, 26.5, 24.8. ¹¹B NMR: δ = 30.0 (br). HRMS-(DART) for: ¹²C₂₁¹H₄₀¹⁰B₂¹⁶O₄[M+H]⁺: calculated: 377.3258, found: 377.3257.

2,2'-(3,3-dimethylbutane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane)⁹(CAS: 1391742-85-0). The reaction was performed following the general procedure D. Colorless oil, 69% yield (46.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 1.23 (s, 24H), 1.20 – 1.17 (m, 9H), 1.10 – 1.04 (m, 1H), 0.99 (s, 1H), 0.88 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 83.5, 82.8, 32.3, 29.1, 25.3, 24.9, 24.6. ¹¹B NMR: δ = 29.4 (br).

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)benzamide.

The reaction was performed following the general procedure D. Colorless oil, 80% yield (66.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.2 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 5.34 (s, 1H), 4.04 – 4.01 (m, 2H), 3.92 – 3.86 (m, 1H), 1.21 (d, *J* = 6.1 Hz, 24H), 1.13 – 1.05 (m, 1H), 0.87 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 135.2, 130.9, 128.3, 126.8, 83.43 , 83.2, 43.1, 24.8. 24.7. ¹¹B NMR: δ = 33.3 (br). HRMS-(DART) for: ¹²C₂₂¹H₃₅¹⁰B₂¹⁴N¹⁶O₅[M+H]⁺: calculated: 414.2847, found: 414.2847.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

methoxybenzamide. The reaction was performed following the general procedure D. Colorless oil, 89% yield (79.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.9 Hz, 2H), 6.90 (s, 1H), 6.88 (s, 2H), 3.83 (s, 3H), 3.62 (dt, J = 13.0, 6.5 Hz, 1H), 3.41 – 3.23 (m, 1H), 1.52 – 1.41 (m, 1H), 1.24 – 1.21 (m, 24H), 0.94 (qd, J = 16.3, 7.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 161.8, 128.6, 127.5, 113.5, 83.4, 83.2, 55.3, 43.0 , 24.8. ¹¹B NMR: δ = 33.4 (br). HRMS-(DART) for: ¹²C₂₃¹H₃₇¹⁰B₂¹⁴N¹⁶O₆[M+H]⁺: calculated: 444.2952, found: 444.2953.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

fluorobenzamide. The reaction was performed following the general procedure D. Light yellow oil, 81% yield (70.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 8.8, 5.3 Hz, 2H), 7.07 (t, J = 8.6 Hz, 2H), 5.43 (s, 1H), 3.61 (dt, J = 13.0, 6.5 Hz, 1H), 3.41 – 3.21 (m, 1H), 1.23 – 1.20 (m, 24H), 0.94 (qd, J = 16.3, 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 129.1, 115.4, 115.2, 83.5, 83.3, 82.9, 75.0, 43.1, 24.8, 24.5. ¹¹B NMR: δ = 33.5 (br). HRMS-(DART) for: ¹²C₂₂¹H₃₄¹⁰B₂¹⁸F¹⁴N¹⁶O₅[M+H]⁺: calculated: 432.2753, found: 432.2573.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

methylbenzamide. The reaction was performed following the general procedure D. Colorless oil, 70% yield (60.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 3.63 (dt, J = 13.0, 6.5 Hz, 1H), 3.36 (ddd, J = 12.8, 8.0, 4.4 Hz, 1H), 2.38 (s, 3H), 1.23 (dd, J = 10.7, 3.0 Hz, 24H), 0.99 – 0.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 141.3, 129.0, 126.8, 83.4, 83.2, 43.0, 24.8, 21.4. ¹¹B NMR: $\delta = 33.7$ (br). HRMS-(DART) for: ¹²C₂₃¹H₃₇¹⁰B₂¹⁴N¹⁶O₅[M+H]⁺: calculated: 428.3003, found: 428.3003.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

bromobenzamide. The reaction was performed following the general procedure D. Light yellow oil, 77% yield (76.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.64 (m, 2H), 7.57 – 7.53 (m, 2H), 6.98 (s, 1H), 3.63 (dt, J = 13.1, 6.5 Hz, 1H), 3.39 – 3.31 (m, 1H), 1.50 – 1.43 (m, 1H), 1.26 – 1.19 (m, 24H), 0.95 (qd, J = 16.3, 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 134.1, 131.6, 128.5, 125.6, 83.5, 83.3, 43.2, 24.8. ¹¹B NMR: δ = 33.4 (br). HRMS-(DART) for: ¹²C₂₂¹H₃₄¹⁰B₂Br¹⁴N¹⁶O₅[M+H]⁺: calculated: 492.1952, found: 492.1953.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

(trifluoromethyl)benzamide. The reaction was performed following the general procedure D. Light yellow oil, 77% yield (74.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.11 (s, 1H), 3.65 (dt, J = 13.1, 6.5 Hz, 1H), 3.39 – 3.33 (m, 1H), 1.47 (dd, J = 14.1, 7.2 Hz, 1H), 1.22 (dd, J = 14.9, 3.2 Hz, 24H), 0.99 – 0.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 138.4, 132.6, 127.3, 125.38 (q, J = 3.7 Hz), 83.5, 83.3, 43.2, 24.8. ¹¹B NMR: $\delta = 33.4$ (br). HRMS-(DART) for: ¹²C₂₃¹H₃₄¹⁰B₂¹⁸F₃¹⁴N¹⁶O₅[M+H]⁺: calculated: 482.2721, found: 482.2720.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-(tert-

butyl)benzamide. The reaction was performed following the general procedure D. Colorless oil, 88% yield (82.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 6.93 (s, 1H), 3.62 (dt, J = 13.0, 6.5 Hz, 1H), 3.35 (ddd, J = 12.8, 8.0, 4.4 Hz, 1H), 2.93 (dd, J = 13.8, 6.9 Hz, 1H), 1.45 (t, J = 6.7 Hz, 1H), 1.26 - 1.22 (m, 24H), 1.21 (d, J = 4.5 Hz, 9H), 0.93 (qd, J = 16.3, 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) & 166.9, 152.1, 132.7, 126.9, 126.4, 83.4, 83.2, 42.9, 34.0, 24.8, 24.5, 23.8. ^{11}B NMR: $\delta = 33.5$ (br). HRMS-(DART) for: ${}^{12}C_{26}{}^{1}H_{43}{}^{10}B_{2}{}^{14}N{}^{16}O_{5}[M+H]^{+}$: calculated: 469.3316, found: 469.3316.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

cyanobenzamide. The reaction was performed following the general procedure D. Light yellow oil, 90% yield (79.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.12 (s, 1H), 3.64 (dt, J = 13.1, 6.5 Hz, 1H), 3.40 – 3.33 (m, 1H), 1.23 (dd, J = 12.6, 2.9 Hz, 24H), 1.00 – 0.90 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 139.1, 132.3, 127.5, 118.1, 114.6, 83.6, 83.3, 43.3, 24.8. ¹¹B NMR: $\delta = 33.5$ (br). HRMS-(DART) for: ¹²C₂₃¹H₃₄¹⁰B₂¹⁴N₂¹⁶O₅[M+H]⁺: calculated: 439.2799, found: 439.2804.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-3,4-

dimethylbenzamide. The reaction was performed following the general procedure D. Colorless oil, 80% yield (70.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 1.4 Hz, 1H), 7.49 (dd, J = 7.8, 1.7 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H), 3.63 (dt, J = 7.8 Hz, 1H), 6.92 (s, 1H) 13.0, 6.5 Hz, 1H), 3.34 (ddd, J = 12.9, 8.2, 4.4 Hz, 1H), 2.28 (s, 6H), 1.50 - 1.42 (m, 1H), 1.23 (dd, J = 10.3, 6.3 Hz, 24H), 0.94 (qd, J = 16.3, 7.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 139.9, 136.6, 132.6, 129.5, 128.1, 124.2, 83.4, 83.2, 42.9, 24.9, 19.8. 24.6, 24.5, ^{11}B NMR: $\delta = 33.5$ (br). HRMS-(DART) for: ${}^{12}C_{24}H_{39}B_{2}H_{39}O_{5}[M+H]^{+}$: calculated: 442.3160, found: 442.3157.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)benzo[d][1,3]dioxole-5-carboxamide. The reaction was performed following the general procedure D. Colorless oil, 77% yield (70.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 1.7 Hz, 1H), 7.28 (d, J = 1.7 Hz, 1H), 7.25 (d, J = 1.6 Hz, 1H), 6.89 (s, 1H), 5.98 (s, 2H), 3.57 (dt, J = 13.0, 6.5 Hz, 2H), 3.34 – 3.28 (m, 2H), 1.20 (s, 24H), 0.94 – 0.91 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 149.9, 147.7, 129.3, 121.3, 107.8, 107.5, 101.5, 83.4, 83.2, 74.9, 43.1, 24.7, 24.5. ¹¹B NMR: $\delta = 33.6$ (br). HRMS-(DART) for: ¹²C₂₃¹H₃₅¹⁰B₂¹⁴N¹⁶O₇[M+H]⁺: calculated: 458.2745, found: 458.2751.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2,6-

difluorobenzamide. The reaction was performed following the general procedure D. Light yellow oil, 82% yield (74.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (ddd, J = 8.4, 7.4, 4.2 Hz, 1H), 6.93 – 6.89 (m, 2H), 6.75 (s, 1H), 3.60 (dt, J = 13.2, 6.6 Hz, 1H), 3.46 – 3.41 (m, 1H), 1.46 (p, J = 7.0 Hz, 1H), 1.20 (d, J = 15.7 Hz, 24H), 0.98 – 0.89 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 160.9, 160.0, 158.9 (d, J = 7.2 Hz), 131.1 (t, J = 10.2 Hz), 115.0, 111.8, 83.5, 83.2, 74.9, 43.0, 24.9, 24.6. ¹¹B NMR: δ = 33.6 (br). HRMS-(DART) for: ¹²C₂₂¹H₃₃¹⁰B₂¹⁸F₂¹⁴N¹⁶O₅[M+H]⁺: calculated: 450.2658, found: 450.2655.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)thiophene-3carboxamide. The reaction was performed following the general procedure D. Light yellow oil, 86% yield (72.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 3.0, 1.2Hz, 1H), 7.32 (dd, J = 5.1, 1.2 Hz, 1H), 7.27 (dd, J = 4.8, 2.7 Hz, 1H), 6.85 (s, 1H), 3.55 (dt, J = 13.1, 6.5 Hz, 1H), 3.32 – 3.26 (m, 1H), 1.18 (s, 24H), 0.89 (t, J = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 138.2, 127.6, 126.1, 125.9, 83.4, 83.2, 42.7, 25.1, 24.6, 24.5. ¹¹B NMR: δ = 33.4 (br). HRMS-(DART) for: ¹²C₂₀¹H₃₃¹⁰B₂¹⁴N¹⁶O₅³²S[M+H]⁺: calculated: 420.2411, found: 420.2410.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)thiophene-2carboxamide. The reaction was performed following the general procedure D. Light yellow oil, 79% yield (66.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 3.7 Hz, 1H), 7.41 (d, J = 5.0 Hz, 1H), 7.03 (t, J = 4.3 Hz, 1H), 6.82 (s, 1H), 3.60 (dt, J = 13.0, 6.5 Hz, 1H), 3.30 (ddd, J = 12.9, 8.3, 4.5 Hz, 1H), 1.48 – 1.41 (m, 1H), 1.24 – 1.20 (m, 24H), 0.97 – 0.86 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 139.7, 129.2, 127.5, 127.3, 83.4, 83.2, 42.9, 24.8. ¹¹B NMR: $\delta = 33.7$ (br). HRMS-(DART) for: ¹²C₂₀¹H₃₃¹⁰B₂¹⁴N¹⁶O₅³²S[M+H]⁺: calculated: 420.2411, found: 420.2410.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)furan-3-

carboxamide. The reaction was performed following the general procedure D. Colorless oil, 82% yield (66.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.36 (s, 1H), 6.67 (s, 1H), 6.53 (s, 1H), 4.06 (q, J = 7.2 Hz, 1H), 3.52 (dt, J = 13.1, 6.5 Hz, 1H), 3.24 (ddd, J = 13.0, 8.3, 4.5 Hz, 1H), 1.18 (s, 24H), 0.87 (t, J = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 144.5, 143.4, 122.9, 108.1, 83.4, 83.2, 82.8, 74.9, 42.4, 24.8, 24.5, 24.4. ¹¹B NMR: $\delta = 33.7$ (br). HRMS-(DART) for: ¹²C₂₀¹H₃₃¹⁰B₂¹⁴N¹⁶O₆[M+H]⁺: calculated: 404.2639, found: 404.2640.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-1H-indole-2carboxamide. The reaction was performed following the general procedure D. Light yellow oil, 66% yield (60.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 9.73 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.3 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.12 (t, J = 5.9 Hz, 1H), 6.83 (d, J = 34.8 Hz, 1H), 5.71 – 5.50 (m, 1H), 4.28 – 4.11 (m, 1H), 3.68 (dt, J =13.1, 6.6 Hz, 1H), 3.40 (ddd, J = 12.9, 8.1, 4.6 Hz, 1H), 1.28 – 1.25 (m, 24H), 1.03 – 0.88 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4, 136.3, 131.4, 127.6, 124.0, 121.6, 120.3, 112.0, 101.4, 83.5, 83.3, 75.0, 42.7, 24.8, 24.5. ¹¹B NMR: δ = 33.6 (br). HRMS-(DART) for: ¹²C₂₄¹H₃₆¹⁰B₂¹⁴N₂¹⁶O₅[M+H]⁺: calculated: 453.2956, found: 453.2957.

(3r,5r,7r)-N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propyl)adamantane-1-carboxamide. The reaction was performed following the general procedure D. Colorless oil, 61% yield (57.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 6.27 (s, 1H), 3.40 (dt, J = 12.7, 6.2 Hz, 1H), 3.10 (ddd, J = 13.0, 8.7, 4.4 Hz, 1H), 2.00 (s, 3H), 1.82 (d, J = 2.6 Hz, 6H), 1.71 – 1.65 (m, 6H), 1.24 – 1.21 (m, 24H), 0.88 – 0.81 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 83.3, 83.1, 42.3, 40.5, 39.2, 36.6, 28.2, 24.8, 24.4. ¹¹B NMR: δ = 33.1 (br). HRMS-(DART) for: ¹²C₂₆¹H₄₅¹⁰B₂¹⁴N¹⁶O₅[M+H]⁺: calculated: 472.3629, found: 472.3629.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2-(4-

isobutylphenyl)propanamide. The reaction was performed following the general procedure D. Colorless oil, 66% yield (65.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.17 (d, J = 7.8 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 5.94 (s, 1H), 3.49 (dd, J = 7.2, 3.5 Hz, 1H), 3.33 (dt, J = 12.9, 6.4 Hz, 1H), 3.10 (ddd, J = 12.9, 8.6, 4.1 Hz, 1H), 2.41 (d, J = 7.1 Hz, 2H), 1.83 (dd, J = 13.4, 6.7 Hz, 1H), 1.47 (d, J = 7.1 Hz, 3H), 1.23 (d, J = 14.0 Hz, 24H), 0.88 (d, J = 6.6 Hz, 6H), 0.76 (dd, J = 16.2, 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 140.3, 138.8, 129.5, 127.4, 83.1, 75.0, 46.9, 45.0, 42.6, 30.2, 24.9, 24.4, 22.4, 18.6. ¹¹B NMR: δ = 33.9 (br). HRMS-(DART) for: ${}^{12}C_{28}{}^{1}H_{47}{}^{10}B_{2}{}^{14}N{}^{16}O_{5}[M+H]^{+}$: calculated: 498.3786, found: 498.3790.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-2-

phenoxyacetamide. The reaction was performed following the general procedure D. Colorless oil, 60% yield (53.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.16 (s, 1H), 6.98 (t, J = 7.3 Hz, 1H), 6.88 (d, J = 8.3 Hz, 2H), 4.44 (s, 2H), 3.50 (dt, J = 13.0, 6.5 Hz, 1H), 3.24 (ddd, J = 13.2, 8.5, 4.8 Hz, 1H), 1.20 (s, 24H), 0.90 – 0.79 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 157.4, 129.7, 121.8, 114.6, 83.4, 83.1, 67.4, 41.9, 24.8, 24.5. ¹¹B NMR: δ = 33.5 (br). HRMS-(DART) for: ¹²C₂₃¹H₃₇¹⁰B₂¹⁴N¹⁶O₆[M+H]⁺: calculated: 444.2952, found: 444.2953.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)pivalamide.

The reaction was performed following the general procedure D. Colorless oil, 70% yield (55.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 6.39 (s, 1H), 3.37 (dt, *J* = 12.6, 6.2 Hz, 1H), 3.05 (ddd, *J* = 13.1, 8.9, 4.3 Hz, 1H), 1.20 (s, 9H), 1.18 (s, 24H), 0.85 – 0.76 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 83.3, 83.1, 82.9, 75.0, 42.5, 38.6, 27.5, 24.9, 24.5, 24.5. ¹¹B NMR: δ = 33.2 (br). HRMS-(DART) for: ¹²C₂₀¹H₃₉¹⁰B₂¹⁴N¹⁶O₅[M+H]⁺: calculated: 394.3160, found: 394.3172.

3,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 3-methylbutanoate. The reaction was performed following the general procedure D. Colorless oil, 66% yield (54.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 4.08 (dd, J = 13.6, 6.9 Hz, 2H), 2.15 (d, J = 6.8 Hz, 2H), 2.07 (dd, J = 13.2, 6.8 Hz, 1H), 1.80 (dd, J = 13.1, 7.0 Hz, 1H), 1.62 (dd, J = 13.8, 6.9 Hz, 1H), 1.22 (d, J = 1.5 Hz, 24H), 0.93 (d, J = 6.6 Hz, 6H), 0.88 (d, J = 6.2 Hz, 1H), 0.85 (d, J = 6.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 129.6, 115.3, 83.5, 82.9, 63.8, 43.5, 32.1, 25.7, 25.07, 24.55, 22.4. ¹¹B NMR: $\delta = 33.4$ (br). HRMS-(DART) for: ¹²C₂₁¹H₄₀¹⁰B₂¹⁶O₆[M+H]⁺: calculated: 409.3156, found: 409.3173.

3,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 4-bromobenzoate. The reaction was performed following the general procedure D. Colorless oil, 78% yield (79.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 4.36 – 4.30 (m, 2H), 1.94 (dd, J = 13.9, 6.5 Hz, 1H), 1.76 (dd, J = 13.8, 6.9 Hz, 1H), 1.23 (d, J = 3.4 Hz, 24H), 0.96 – 0.92 (m, 1H), 0.92 – 0.88 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 131.5, 131.2, 129.6, 83.1, 82.7, 65.0, 32.1, 24.8, 24.4. ¹¹B NMR: δ = 33.6 (br). HRMS-(DART) for: ¹²C₂₃¹H₃₅¹⁰B₂Br¹⁶O₆[M+H]⁺: calculated: 507.1949, found: 507.1951.

3,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butylbenzoate.The reaction was performed following the general procedure D. Colorless oil, 67% yield (57.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 9.5 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.0 Hz, 2H), 4.30 (dd, J = 17.1, 7.2 Hz, 2H), 1.92 (dd, J = 13.8, 6.4 Hz, 1H), 1.74 (dd, J = 13.8, 6.9 Hz, 1H), 1.22 (s, 24H), 0.89 (dd, J = 11.5, 7.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 132.6, 130.7, 129.58, 128.2, 83.5, 83.0, 64.7, 32.1, 25.1, 24.6, 24.5. ¹¹B NMR: δ = 33.6 (br). HRMS-(DART) for: ¹²C₂₃¹H₃₆¹⁰B₂¹⁶O₆[M+H]⁺: calculated: 429.2843, found: 429.2841.

3,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 3-phenylpropanoate. The reaction was performed following the general procedure D. Colorless oil, 67% yield (61.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.20 (d, *J* = 1.4 Hz, 2H), 7.19 (s, 1H), 3.67 (s, 2H), 2.94 (d, *J* = 8.1 Hz, 2H), 2.65 – 2.62 (m, 2H), 1.65 (s, 1H), 1.49 – 0.97 (m, 24H), 0.07 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 139.6, 129.2, 127.5, 127.3, 83.4, 83.2, 60.3, 42.8, 25.1, 24.6, 24.5, 20.9, 14.1. ¹¹B NMR: δ = 33.4 (br). HRMS-(DART) for: ¹²C₂₅¹H₄₀¹⁰B₂¹⁶O₆[M+H]⁺: calculated: 457.3156, found: 457.3158.

N-(2,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-4-

chlorobenzenesulfonamide. The reaction was performed following the general procedure D. Light yellow oil, 60% yield (58.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.48 – 7.44 (m, 2H), 5.29 (s, 1H), 3.02 – 2.90 (m, 2H), 1.20 (t, *J* = 3.7 Hz, 24H), 0.85 (dd, *J* = 16.7, 7.6 Hz, 1H), 0.79 (dd, *J* = 16.3, 6.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 138.7 (d, *J* = 8.4 Hz), 129.2, 128.6, 83.6, 83.4, 46.4, 24.8, 24.4. ¹¹B NMR: δ = 33.9 (br). HRMS-(DART) for: ¹²C₂₁¹H₃₄¹⁰B₂Cl¹⁴N¹⁶O₆³²S[M+H]⁺: calculated: 484.2127, found: 484.2126.

To an oven-dried 25 mL round bottom flask with magnetic stir bar in the dry box was added the 1,2-bis(boronate) 39 (84.2mg, 0.2 mmol), toluene (2 mL), KOt-Bu (54 mg, 0.6 mmol), Pd(OAc)₂ (1.2 mg, 5 µmol), RuPhos (2.8 mg, 6 µmol) and iodobenzene (32 μ L, 0.3 mmol). The flask was sealed with a rubber septum, removed from the dry box, and heated to 80 °C in an oil bath for 12 hours. The reaction mixture was cooled to room temperature and H₂O (2 mL) was added. The layers were allowed to seperate and the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude material was purified on SiO₂ gel to afford compound **51** as a colorless oil (46.9 mg, 63% yield).¹⁰ ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, J = 5.0, 1.1 Hz, 1H), 7.37 (dd, J = 3.7, 1.1 Hz, 1H), 7.26 (t, J = 3.5 Hz, 2H), 7.23 (d, J = 3.5 Hz, 2H), 7.25 (d, J = 3.5 (d, J = 36.7 Hz, 2H), 7.17 (t, J = 7.0 Hz, 1H), 7.05 (dd, J = 4.9, 3.7 Hz, 1H), 6.51 (s, 1H), 3.54 -3.45 (m, 2H), 2.88 (dd, J = 13.9, 6.9 Hz, 1H), 2.71 (dd, J = 13.9, 8.4 Hz, 1H), 1.22 (d, J = 1.3 Hz, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5, 141.1, 139.4, 129.4, 128.9, 128.3, 127.6, 126.0, 83.7, 40.5, 34.9 24.8. HRMS-(DART) for: ${}^{12}C_{19}{}^{1}H_{24}{}^{10}B{}^{14}N{}^{16}O_{3}{}^{32}S[M+H]^{+}$: calculated: 371.1836, found: 371.1837.

The 1,2-bis(boronate) **39** (84.2 mg, 0.2 mmol) was transferred to a 25-mL round bottom flask and cooled to 0 $^{\circ}$ C (ice/water) and charged with 3 M sodium hydroxide (2 mL), and 30% hydrogen peroxide (1 mL). The reaction was gradually warmed to room temperature and allowed to stir for 4 h at which time the vial was diluted with

ethyl acetate and the aqueous and organic layers were separated. The aqueous layer was extracted with ethyl acetate (3 x 10 mL) and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude material was purified on flash chromatography to afford compound **52** as a white solid (35.4 mg, 88% yield).¹⁰ ¹H NMR (500 MHz, DMSO) δ 8.46 (t, J = 5.7 Hz, 1H), 7.79 (dd, J = 3.7, 1.1 Hz, 1H), 7.73 (dd, J = 5.0, 1.1 Hz, 1H), 7.13 (dd, J = 5.0, 3.7 Hz, 1H), 4.86 (s, 1H), 4.60 (s, 1H), 3.63 – 3.59 (m, 1H), 3.32 (s, 1H), 3.17 – 3.11 (m, 1H), 1.23 (s, 2H). 13C NMR (125 MHz, DMSO) δ 161.5, 140.2, 130.7, 128.2, 127.9, 70.5, 64.0, 42.9.

To an oven-dried 25 mL round bottom flask with magnetic stir bar in the dry box was added the 1,2-bis(boronate) **21** (80.0 mg, 0.2 mmol), THF (2 mL), KOH (54 mg, 0.6 mmol), Pd(OAc)₂ (1.2 mg, 2 μ mol), RuPhos (2.8 mg, 3 μ mol) and bromobenzene (29 μ L, 0.3 mmol). The flask was sealed with a rubber septum, removed from the dry box, and heated to 70°C in an oil bath for 12 hours. The reaction mixture was cooled to room temperature and H₂O (2 mL) was added. The layers were allowed to be separated and the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude material was purified by flash chromatography to afford compound **53** as a colorless oil, (63.0 mg, 90% yield).¹⁰ ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.7 Hz, 2H), 7.26 – 7.20 (m, 4H), 7.17 (d, *J* = 7.2 Hz, 4H), 2.71 (qd, *J* = 13.5, 7.9 Hz, 2H), 2.59 (dt, *J* = 13.7, 8.0 Hz, 2H), 1.72 – 1.62 (m, 2H), 1.50 (dd, *J* = 9.5, 5.3 Hz, 1H), 1.17 (s, 6H), 1.14 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 142.7, 142.2, 128.8, 128.3, 128.2, 128.0, 125.6, 125.5, 82.9, 37.3, 36.1, 31.0, 30.8, 24.8, 24.7.

The boronates **53** (0.16 mmol, 52.5 mg) was transferred to a 25-mL round bottom flask and cooled to 0 °C (ice/water) and charged with 3 M sodium hydroxide (2 mL), and 30% hydrogen peroxide (1 mL). The reaction was gradually warmed to room temperature and allowed to stir for 4 h at which time the vial was diluted with ethyl acetate and the aqueous and organic layers were separated. The aqueous layer was extracted with ethyl acetate (3 x 10 mL) and the combined organics were dried over Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude material was purified by flash chromatography to afford compound **54** as a white solid, (38.1 mg, 88% yield).¹² ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, *J* = 15.3, 7.6 Hz, 3H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.1 Hz, 5H), 3.88 – 3.81 (m, 1H), 2.83 (dd, *J* = 13.5, 4.2 Hz, 1H), 2.65 (dd, *J* = 13.6, 8.3 Hz, 3H), 1.91 – 1.81 (m, 1H), 1.72 (ddd, *J* = 21.1, 14.5, 6.8 Hz, 1H), 1.59 – 1.56 (m, 1H), 1.52 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 142.3 , 138.5, 129.4, 128.6, 128.4, 128.3, 126.5, 125.7, 72.5, 44.0, 36.4, 35.8, 27.6.

To an oven-dried 2-dram vial equipped with magnetic stir bar in the glovebox was added 1,1,2-tris(boronates) **15** (96.8 mg, 0.2 mmol) and NaOt-Bu (5.0 equiv.), followed immediately by t-BuOH (2 equiv.), and the toluene (2 mL) was added. The vial was sealed with a polypropylene cap, taped, and removed from the glovebox. The mixture was reacted at room temperature for 12 hours. The pure 1,2-bis(boronates) product **55** was isolated by flash chromatography as a colorless oil (60.1mg, 84% yield).¹² ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 4.4 Hz, 4H), 7.11 – 7.07 (m, 1H), 2.52 (dd, *J* = 11.0, 5.7 Hz, 1H), 1.38 (dd, *J* = 16.0, 11.1 Hz, 1H), 1.20 (s, 12H), 1.18

(d, *J* = 7.7 Hz, 12H), 1.11 (dd, *J* = 16.0, 5.7 Hz, 1H). ¹³C NMR (125MHz, CDCl₃) δ 145.4, 128.1, 127.9, 124.9, 83.2, 83.0, 24.9, 24.7, 24.6, 24.5.

To an oven-dried 2-dram vial equipped with magnetic stir bar in the glovebox was added alkyne (1.1 equiv, 28 uL) and pinacol borane (1.0 mmol, 20 uL), followed immediately by Schwartz's reagent (0.10 equiv, 18mg). The vial was sealed with a polypropylene cap, taped, and removed from the glovebox. The mixture was heated in an oil bath to 60°C for 14 hours, at which point it was cooled to room temperature. The pure vinyl(boronate) products were isolated by flash chromatography to afford compound **59** as a colorless oil (47.9 mg, 88% yield).¹² ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.4 Hz, 2H), 7.20 – 7.16 (m, 3H), 6.70 (dt, *J* = 18.0, 6.2 Hz, 1H), 5.50 (d, *J* = 18.0 Hz, 1H), 2.76 – 2.71 (m, 2H), 2.48 (dd, *J* = 16.0, 7.9 Hz, 2H), 1.27 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 141.7, 128.2, 125.8, 82.9, 82.1, 37.4, 34.5, 24.7, 24.4. ¹¹B NMR: δ = 28.5 (br).

References

- (1) N. S. Gulykina, T. M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, Russian J. Org. Chem. 2003, 39, 797-807.
- (2) A. Bonet, C. Sole, H. Gulyás, E. Fernández, Org. Biomol.
- Chem., 2012, 10, 6621 6623.
- (3) O. V. Gutov, W. Bury, D. A. Gomez-Gualdron, V. Krungleviciute, D. Fairen-Jimenez, J. E. Mondloch, A. A. Sarjeant, S. S. Al-Juaid, R. Q. Snurr, J. T. Hupp, T. Yildirim, O. K. Farha, *Chem. Eur. J.* **2014**, *20*, 12389-12393.
- (4) M. C.Hsu, A. J. Junia, A. R. Haight, W. Zhang, J. Org. Chem. 2004, 69, 3907-3911.
- (5) C. Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2012, 134, 9541-9544.
- (6) A. Bonet, H. Gulyás, E. Fernández, Angew. Chem. Int. Ed. 2010, 49, 5130-5134.
- (7) Y. Lee, H. Jang, A. Hoveyda, J. Am. Chem. Soc. 2009, 131, 18234-18235.
- (8) S. R. Inglis, E. C. Y. Woon, A. L. Thompson, C. J. Schofield, *J. Org. Chem.* 2010, 75, 468-471.
- (9) K. K. Tanabe, M. S. Ferrandon, N. A. Siladke, S. J. Kraft, G. Zhang, J. Niklas, O.
- G. Poluektov, S. J. Lopykinski, E. E. Bunel, T. R. Krause, J. T. Miller, A. S. Hock, S.
- T. Nguyen, Angew. Chem. Int. Ed. 2014, 53, 12055-12058.
- (10) Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137, 8712-8715.
- (11) K. Yang and Q. L. Song. Green Chem. 2016, 18, 932-936.
- (12) J. R. Coombs, L. Zhang, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 16140-16143.

Spectroscopic Data

a 200 a 200

110 100 f1 (ppm)

