## Supporting Information

Synthesis of Isoquinolones via Rh-Catalyzed C-H Activation of Substituted Benzamides Using Air as the Sole Oxidant in Water
Nitinkumar Satyadev Upadhyay, Vijaykumar H. Thorat, Ryota Sato, Annamalai Pratheepkumar, Chuang, Shih-Ching* and Chien-Hong Cheng*
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
chcheng@mx.nthu.edu.tw
Table of Contents ..... Page No
Experimental Section ..... S-2
Synthesis of Compound 1a-d ..... S-3
Synthesis of Compound 1a-d5 ..... S-4
Reversible D/H exchange ..... S-5
Intermolecular Kinetic Isotope Effect ..... S-7
Intramolecular Kinetic Isotope Effect ..... S-9
Gram-scale Synthesis of Isoquinolones ..... S-10
Evaluation of Green metrics of the process ..... S-10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR Data ..... S-14
References ..... S-26
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra ..... S-27
ORTEP Diagram and X-ray Data ..... S-58

General. All reactions were conducted under a nitrogen atmosphere on a dualmanifold Schlenk line unless otherwise mentioned and in oven-dried glass wares. All solvents were dried according to known methods and distilled prior to use ${ }^{[1]}$. $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right]$ was prepared from $\mathrm{RhCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ following a literature procedure. ${ }^{[2]}$ Other reagents were commercially available and used as purchased.

## General Procedure for the Synthesis of Isoquinolones by Rhodium-Catalyzed C-H Activation.

To a screw-capped glass tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right]$ ( $4.0 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol}), N$-alkyl benzamide $\mathbf{1}(0.40 \mathrm{mmol})$, and acetylene $2(0.50 \mathrm{mmol})$ was added water ( 2.0 mL ) via syringe and the reaction mixture was allowed to stir at $110{ }^{\circ} \mathrm{C}$ under one atmosphere of air filled in a balloon for 16 h . After completion, the reaction mixture was cooled and extracted with E.A. (ethyl acetate, $3 \times 10 \mathrm{~mL}$ ). The combined organic phase was washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. $(10 \mathrm{~mL})$. After filtration and evaporation of the solvents in vacuo, the crude product was purified by a silica gel column using hexane/ethyl acetate (90/10) as eluent to yield the desired pure product 3 .

The spectral data and a copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds 3 are listed below (p. S26)

## Synthesis of 2-deuteriobromobenzene. ${ }^{4}$



To a stirred solution of 1-bromo-2-iodobenzene ( $5.00 \mathrm{~g}, 17.7 \mathrm{mmol}$ ) in a mixture of THF and $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL}, 1: 1)$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise isopropyl magnesium chloride ( 2 M in $\mathrm{Et}_{2} \mathrm{O}, 10.6 \mathrm{~mL}, 21.2 \mathrm{mmol}$ ). The mixture was stirred at that temperature for 2 h and then, $\mathrm{CD}_{3} \mathrm{OD}(2.2 \mathrm{~mL}, 53.0 \mathrm{mmol})$ was added. The solution was slowly warmed to room temperature, then an aq. $\mathrm{HCl}(10 \%, 100 \mathrm{~mL})$ solution was added and the resulting mixture was stirred for 30 min at room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{MgSO}_{4}$, filtered and the solvents were removed under reduced pressure. The pure 2-deuteriobromobenzene was obtained by distillation.

## Synthesis of 2-deuteriobenzoic acid. ${ }^{4}$



To a stirred solution of 2-deuteriobromobenzene ( $1.00 \mathrm{~g}, 6.32 \mathrm{mmol}$ ) in dry THF (20 mL ) was added a solution of $n$-BuLi in $n$-hexane ( $3.0 \mathrm{~mL}, 2.5 \mathrm{M}, 7.59 \mathrm{mmol}$ ) dropwise at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was stirred at the same temperature for 30 min , and then $\mathrm{CO}_{2}$ was bubbled through the mixture at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was allowed to warm to ambient temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, acidified to $\mathrm{pH}=1$ with 1 M HCl , and extracted with EtOAc ( $2 \times 30 \mathrm{~mL}$ ). The combined organic phase was dried over $\mathrm{MgSO}_{4}$, filtered and the solvents were removed in vacuum to give product 2-deuteriobenzoic acid ( $550 \mathrm{mg}, 70 \%$ ).

## Synthesis of $\boldsymbol{N}$-methyl -2-deuteriobenzamide 1a-d $\mathbf{d}_{\mathbf{1}}{ }^{4}$

To the solution of the 2-deuteriobenzoic acid ( $550 \mathrm{mg}, 4.47 \mathrm{mmol}$ ) in dry E.A. ( 20 mL ) at $0^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ were added dropwise oxalyl chloride ( $372 \mathrm{mg}, 6.70 \mathrm{mmol}$ ) and a catalytic amount of dry DMF ( 2 drops). The reaction was allowed to stir at room temperature for 5 h . The solvent was then removed under reduced pressure to afford the corresponding crude deuterated acid chloride. Methyl amine hydrochloride (450 $\mathrm{mg}, 5.36 \mathrm{mmol})$ was added to a biphasic mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.23 \mathrm{~g}, 8.92 \mathrm{mmol})$ in a 2:1 mixture of EtOAc $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of the unpurified deuterated acid chloride dissolved in a minimum amount of EtOAc. The reaction was allowed to stir at room temperature for 10 h . Afterwards the phases were extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic phases were dried over $\mathrm{MgSO}_{4}$, filtered and evaporated under reduced pressure to give the desired product without any further purification. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ): $\delta 7.75-7.72$ (m, 1 H ), 7.40-7.36 (m, 1 H ), 7.31-7.7.27 (m, 2 H), 7.19 (br, $1 \mathrm{H}, \mathrm{NH}$ ), 2.88 (d, 3 H ). HRMS ( $\mathrm{FAB}+$ ) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{DNO}$ 136.074, found 136.073.


Synthesis of $N$-methyl-2,3,4,5,6-pentadeuteriobenzamide 1a-d ${ }_{5}{ }^{4}$

$N$-methyl-2,3,4,5,6-pentadeuteriobenzamide was prepared from 2,3,4,5,6pentadeuteriobenzene using the same procedure as the synthesis of $N$-methyl-2deuteriobenzamide, ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ): $\delta 6.18$ (s, $1 \mathrm{H}, \mathrm{NH}$ ), $2.99(\mathrm{~d}, 3 \mathrm{H})$.


## Reversible D/H exchange:



To a sealed tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}^{2}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.20$ mmol ), $N$-methyl-2,3,4,5,6-pentadeueriobenzamide $\mathbf{1 a - d} \mathbf{d}_{5}(0.40 \mathrm{mmol})$ was added water $(2.0 \mathrm{~mL})$ via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air filled in a balloon for 16 h , when the reaction was complete, the mixture was cooled and the reaction mixture was extracted with E.A. ( $3 \times 10 \mathrm{~mL}$ ). The combined organic phase was washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. $(10 \mathrm{~mL})$. After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Hexane /E.A.: 90/10) to yield 1a'- $\mathbf{d}_{5}$.

The $\mathrm{D} / \mathrm{H}$ incorporation in $\mathbf{1 a}{ }^{\prime}-\mathbf{d}_{5}$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.


## Rh-Catalyzed Isoquinolones from 1a-d $\mathbf{5}$ :



A sealed tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol})$, $N$-methyl-2,3,4,5,6-pentadeueriobenzamide 1a-d $\mathbf{d}_{5}(0.40 \mathrm{mmol})$, diphenyl acetylene 2a $(0.50 \mathrm{mmol})$ then water $(2.0 \mathrm{~mL})$ was added to the system via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air in filled a balloon for 16 h , when the reaction was complete, the mixture was cooled and the reaction mixture was diluted and extracted with E.A. ( 3 x 10 mL ). The combined organic phase was washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. ( 10 mL ). After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Hexane /E.A.: 90/10) to yield 3aa-d 4 . The ortho deuterium content $92 \%$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectra of compound 3aa-d ${ }_{4}$.


## Intermolecular Kinetic Isotope Effect



Competition Experiment:
A sealed tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol})$, $N$-methyl benzamide 1a ( 0.20 mmol ), $N$-methyl-2,3,4,5,6-pentadeueriobenzamide 1a$\mathbf{d}_{5}(0.20 \mathrm{mmol})$, diphenyl acetylene $\mathbf{2 a}(0.50 \mathrm{mmol})$ then water $(2.0 \mathrm{~mL})$ was added to the system via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air filled in a balloon for 30 min , then the mixture was cooled and the reaction mixture was diluted and extracted with E.A. ( $3 \times 10 \mathrm{~mL}$ ). The combined organic phase was washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. ( 10 mL ). After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Hexane /E.A.: 90/10) to afford a
mixture of products $\mathbf{3 a a}$ and $\mathbf{3 a a}_{\mathbf{a}} \mathbf{4}$ in $26 \%$ yield. The ratio of two compounds was determined by ${ }^{1} \mathrm{H}$ NMR integration to give intermolecular kinetic isotopic effect (KIE)

## $k_{H} / k_{D}=2.5$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectra of compound




Parallel Experiment:
A sealed tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol})$, $N$-methyl benzamide 1a ( 0.40 mmol ), diphenyl acetylene $2(0.50 \mathrm{mmol})$ was sealed with a septum, then water $(2.0 \mathrm{~mL})$ was added to the system via syringe and similarly in another sealed tube $N$-methyl-2,3,4,5,6-pentadeueriobenzamide 1a-d $\mathbf{5}$ ( 0.40 mmol ) was added instated of $N$-methyl benzamide 1a ( 0.40 mmol ), both tubes were allowed to stir at $110{ }^{\circ} \mathrm{C}$ under one atmosphere of air filled a balloon for 30 min , then the mixtures were cooled and both reaction mixtures were extracted with E.A. ( $3 \times 10$ $\mathrm{mL})$. The combined organic layer was washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. ( 10 mL ). After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Hexane /E.A.: 90/10) to afford a mixture of products $\mathbf{3 a a}$ and $\mathbf{3 a a}_{\mathbf{-}} \mathbf{d}_{\mathbf{4}}$ in $27 \%$ yield. The ratio of two compounds was determined by ${ }^{1} \mathrm{H}$ NMR integration to give intermolecular kinetic

## isotopic effect (KIE) $\boldsymbol{k}_{\boldsymbol{H}} \boldsymbol{k}_{\boldsymbol{D}}=\mathbf{1 . 3}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) crude spectra of compound 3aa and 3aa-d $\mathbf{d}_{\mathbf{4}}$.

## 



## Intramolecular Kinetic Isotope Effect-



A sealed tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol})$, $N$-methyl benzamide [ $\left.\mathbf{D}_{\mathbf{1}}\right]-\mathbf{1 a}(0.40 \mathrm{mmol})$, diphenyl acetylene $2(0.50 \mathrm{mmol})$ was sealed with a septum, then water $(2.0 \mathrm{~mL})$ was added to the system via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air filled a balloon for 30 min , then the mixture was cooled and the reaction mixture was extracted with E.A. ( $3 \times 10 \mathrm{~mL}$ ). The combined organic phase was washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. ( 10 mL ). After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Hexane /E.A.: 90/10) to afford a mixture of products 3aa and 3aa-d in $26 \%$
yield. The ratio of two compounds was determined by ${ }^{1} \mathrm{H}$ NMR integration to give intermolecular kinetic isotopic effect (KIE) $k_{H} / k_{D}=3.7$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectra of compound 3aa and 3aa-d $\mathbf{d}_{\mathbf{1}}$.




## Gram-scale Synthesis of Isoquinolones via Rhodium-Catalyzed C-H Activation.

To a screw-capped glass tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right]$ ( $4.0 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(4.4$ $\mathrm{mmol})$, $N$-alkyl benzamide $\mathbf{1 a}(1 \mathrm{~g}, 7.4 \mathrm{mmol})$, and acetylene $\mathbf{2}(1.32 \mathrm{~g}, 7.4 \mathrm{mmol})$ was added water ( 20.0 mL ) via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air filled in a balloon for 20 h . After completion, the reaction solution was cooled to room temperature, the precipitate was collected and was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20$ mL ) and dried in vacuum to give the crude product which was further purified by a silica gel column using hexane/ethyl acetate (90/10) as eluent to yield the desired pure product $\mathbf{3}$ in $86 \%(1.99 \mathrm{~g})$.

## Evaluation of Green metrics of the process.

Atom economy defined as "how much of the reactants remain in the final desired product"

Atom economy $(A E)=\frac{\text { Molecular mass of desired product }}{\text { Molecular mass of all reactants }} \times 100$

Reaction mass efficiency (RME) defined as "the percentage of the mass of the reactants that remain in the product"
Reaction mass efficiency $=\frac{\text { mass of desired product }}{\text { mass of all reactants }} \times 100.1$ (RME)

## Evaluation of Green metrics for the current methodology.

Reaction scheme


Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$
Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}$
Molecular Weight: 135.1632
Molecular Weight: 311.38
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{10}$ Molecular Weight: 178.2292

Product Yield: 86\%
Total $=135.16+178.23=313.39$

| Reactant <br> 1 | N-methylbenzamide (1g) | 1 g | 0.0074 <br> mol | FW 135.16 |
| :---: | :--- | :--- | :--- | :--- |
| Reactant <br> 2 | 1,2-diphenylethyne (1.32g) | 1.32 g | 0.0074 <br> mol | FW 178.22 |
| Base | Potassium Carbonate (0.51g) | 0.51 g | 0.0037 <br> mol | FW 138.20 |
| Solvent | $\mathrm{H}_{2} \mathrm{O}$ | 20 g | --- | --- |
| Auxiliary | --- | --- | --- | --- |
| Product | 2-methyl-3,4-diphenylisoquinolin- <br> $1(2 \mathrm{H})$-one (3aa) | 1.99 g | 0.0064 <br> mol | FW 311.37 |


| Product yield $=\mathbf{8 6 \%}$ |  |
| :--- | :--- | :--- |
| E-factor $=\frac{1 \mathrm{~g}+1.32 \mathrm{~g}+20 \mathrm{~g}+0.51 \mathrm{~g}-1.99 \mathrm{~g}}{1.99 \mathrm{~g}}$ $=10.47 \mathrm{~kg}$ waste/ 1 kg product <br> Atom economy $=\frac{311}{313} \times 100$ $=99.4 \%$ <br> Atom efficiency $=$ $86 \times(99.4 / 100)$ $=85.5 \%$ <br> Carbon efficiency $=\frac{22}{8+14} \times 100$ $=100 \%$  <br> Reaction mass $=\frac{1.99 \mathrm{~g}}{1 \mathrm{~g}+1.32 \mathrm{~g}} \times 100$ $=85.8 \%$  |  |

## Evaluation of Green metrics for the reported methodology ${ }^{6}$.

## Reaction scheme



## Product yield= 68\%

$$
\begin{array}{ll}
\text { E-factor }=\frac{1 \mathrm{~g}+1.32 \mathrm{~g}+40.25 \mathrm{~g}+2.95 \mathrm{~g}-1.56 \mathrm{~g}}{1.56 \mathrm{~g}} & =28.18 \mathrm{~kg} \text { waste/ } 1 \mathrm{~kg} \text { product } \\
\text { Atom economy }=\frac{311}{313} \times 100 & =99.4 \% \\
\text { Atom efficiency }= & =67 \times(99.4 / 100) \\
\text { Carbon efficiency }=\frac{22}{8+14} \times 100 & =100 \% \\
\begin{array}{ll}
\text { Reaction mass }=\frac{1.56 \mathrm{~g}}{1 \mathrm{~g}+1.32 \mathrm{~g}} \times 100 & =67.2 \%
\end{array} \\
\begin{array}{ll}
\text { efficiency }
\end{array} &
\end{array}
$$

Procedure for the Synthesis of 5,6,13-Triphenyl-8H-isoquinolino[3,2-a]isoquinolin-8-one (3ta).
To a screw-capped glass tube containing $\left.\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}\right](4.0 \mathrm{~mol} \%)$, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol})$, primary benzamide $\mathbf{1 t}(0.40 \mathrm{mmol})$, and diphenylacetylene 2a $(1.50 \mathrm{mmol})$ was added water $(3.0 \mathrm{~mL})$ via syringe and the reaction mixture was allowed to stir at $110^{\circ} \mathrm{C}$ under one atmosphere of air filled in a balloon for 16 h . After completion, the reaction mixture was cooled and extracted with ethyl acetate, ( $3 \times 10$ $\mathrm{mL})$. The combined organic phase was washed with brine ( 10 mL ) and dried over $\mathrm{MgSO}_{4}$. The mixture was filtered through a Celite pad and the Celite pad was washed with E.A. $(10 \mathrm{~mL})$. After filtration and evaporation of the solvents in vacuo, the crude product was purified by a silica gel column using hexane/ethyl acetate (80/20) as eluent to yield the desired pure product 3ta.

The spectral data and a copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds 3ta are listed below (p. S56)

## 2-Methyl-3,4-diphenylisoquinolin-1(2H)-one (3aa)



White solid, m.p. $245-248{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.55 (d, $J=9.2 \mathrm{~Hz} 1 \mathrm{H}), 7.52-7.45$ (m, 2 H ), 7.23-7.09 (m, 9 H ), 7.05-7.03 (m, 2 H ), $3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.7$ (C), 141.2 (C), 137.1 (C), 136.4 (C), $135.0(\mathrm{C}), 131.9(\mathrm{CH}), 131.5(2 \mathrm{CH}), 129.9(2 \mathrm{CH}), 128.1(3 \mathrm{CH}), 127.8(2 \mathrm{CH})$, $127.7(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 125.3(\mathrm{CH}), 124.9(\mathrm{C}), 118.8(\mathrm{C}), 34.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}$ 311.1310, found 311.1310; IR (KBr): 2923, 1648, 1604, 1550, 1425, 1030, $925,698 \mathrm{~cm}^{-1}$

## 2-Ethyl-3,4-diphenylisoquinolin-1(2H)-one (3ba)



Yellow solid, m.p. $246-248{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.55-8.53 (m, 1 H$), ~ 7.51-7.45$ (m, 2 H), 7.23-7.09 (m, 9 H), 7.04-7.02 (m, 2 H), 3.963.90 (q, 2 H ), 1.15 (t, $J=14.0 \mathrm{~Hz} 3 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 160.0(\mathrm{C})$, 141.0 (C), 137.1 (C), 136.5 (C), 134.7 (C), 131.9 (CH), 131.5 ( 2 CH ), 130.1 (2 CH), $128.1(\mathrm{CH}), 127.8(2 \mathrm{CH}), 127.8(2 \mathrm{CH}), 127.7(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 125.3$
$(\mathrm{CH}), 125.2(\mathrm{C}), 119.0(\mathrm{C}), 41.3\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}$ 325.1467, found 325.1467; IR (KBr): 2923, 1645, 1604, 1548, 1427, 1080, 925, 771, $698 \mathrm{~cm}^{-1}$

## 2,3,4-Triphenylisoquinolin-1(2H)-one (3ca)



White solid, m.p. $167-170{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ): $\delta$ $8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.08(\mathrm{~m}, 11 \mathrm{H}), 6.87(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3): $\delta 162.6$ (C), 141.0 (C), 139.4 (C), 137.6 (C), 136.3 (C), $134.7(\mathrm{CH}), 132.5(\mathrm{CH}), 131.6(2 \mathrm{CH}), 131.0(2 \mathrm{CH}), 129.5(2 \mathrm{CH}), 128.5(2 \mathrm{CH})$, $128.2(\mathrm{CH}), 127.9(2 \mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 127.0(2 \mathrm{CH}), 126.8(\mathrm{CH}), 125.5$ (2 CH), 118.8 (C); HRMS (ESI) cal. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{NO}$ 373.1467, found 373.1466; IR (KBr): 2923, 1648, 1604, 1550, 1425, 1030, 925, $698 \mathrm{~cm}^{-1}$

## 2-Benzyl-3,4-diphenylisoquinolin-1(2H)-one (3da)



Yellow solid, m.p. $167-170{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.61-8.59 (m 1 H), 7.56-7.19 (m, 2 H$), ~ 7.17-7.09$ (m, 8 H ), 7.06-7.02 (m, 4 H$), ~ 6.89-$ $6.82(\mathrm{~m}, 4 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.6$ (C), 141.3 (C), 137.7 (C), 137.3 (C), 136.4 (C), 134.3 (C), 132.2 (CH), $131.4(2 \mathrm{CH}), 130.4(2 \mathrm{CH})$, $128.2(\mathrm{CH}), 128.1(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(2 \mathrm{CH}), 126.9(2 \mathrm{CH})$, $126.8(2 \mathrm{CH}), 126.7(\mathrm{CH}), 126.7(\mathrm{CH}), 125.4(\mathrm{CH}), 125.1(\mathrm{C}), 119.4(\mathrm{C}), 49.0\left(\mathrm{CH}_{2}\right)$ HRMS (ESI) cal. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}$ 387.1623, found 387.1620; IR (KBr): 2854, 1645, 1604, 1548, 1427, 1080, $925,771,698 \mathrm{~cm}^{-1}$

## 2-(4-Methoxyphenyl)-3,4-diphenylisoquinolin-1(2H)-one (3ea)



Yellow solid, m.p. $219-221{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 8.59-8.56(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 2$ H), $6.90(\mathrm{~m}, 5 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
162.7 (C), 158.3 (C), 141.2 (C), 137.4 (C), 136.2 (C), 134.7 (C), 132.3 (CH), 132.0 (C), $131.4(2 \mathrm{CH}), 130.8(2 \mathrm{CH}), 130.2(2 \mathrm{CH}), 128.1(\mathrm{CH}), 127.8(2 \mathrm{CH}), 127.0(2$ $\mathrm{CH}), 127.0(2 \mathrm{CH}), 126.6(\mathrm{CH}), 125.4(\mathrm{CH}), 125.3(\mathrm{CH}), 118.5(\mathrm{C}), 113.7(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2} 403.1572$, found 403.1572; IR ( KBr ): 2923, 1655, 1604, 1508, 1323, 1229, 1030, $771 \mathrm{~cm}^{-1}$

## 2,6-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3fa)



White solid, m.p. $263-265{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.44(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.31-7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.21-7.02(\mathrm{~m}, 10 \mathrm{H}), 6.90(\mathrm{~s}$, 1 H ), 3.32 (s, 3 H ), $2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.6$ (C), 142.4 (C), 141.2 (C), 137.1 (C), 136.5 (C), 135.1 (C), 131.4 (2 CH), 131.3 (2 CH), 129.8 (2 $\mathrm{CH}), 128.1(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH}), 124.9(\mathrm{CH})$, 122.7 (C), $118.6(\mathrm{C}), 34.1\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}$ 325.1467, found 325.1469; IR (KBr): 2931,1645, 1604, 1548, 1425, 1080, 925, 830, $771,698 \mathrm{~cm}^{-1}$

6-Methoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3ga)


Yellow solid, m.p. $220-223{ }^{\circ} \mathrm{C},{ }^{\mathbf{1}} \mathbf{H}$ NMR ( 400 MHz ,
$\mathrm{CDCl}_{3}$ ): $\delta 8.47(\mathrm{~d}, J=8.8 \mathrm{~Hz} 1 \mathrm{H}), 7.22-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3$ H), 3.30 (s, 3 H ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.5$ (C), 162.3 (C), 141.8 (C), 139.1 (C), 136.4 (C), 135.1 (C), 131.4 (2 CH), 129.9 ( 2 CH ), 129.8 (2 CH), 128.1 (2 $\mathrm{CH}), 127.8(2 \mathrm{CH}), 126.7(\mathrm{CH}), 118.9$ (C), 118.5 (C), $115.4(\mathrm{CH}), 106.9(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{3}\right), 34.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$ 341.1416, found 341.1414; IR (KBr): 2923, 1645, 1604, 1548, 1427, 1030, 1080, 925, 813, 771, $698 \mathrm{~cm}^{-1}$
6-Chloro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3ha)


Yellow solid, m.p. $267-270{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz} 1$ H), 7.41-7.38 (m, 1 H), 7.23-7.08 (m, 9 H ), 7.03-7.01 (m, 2 H ), $3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 162.1$ (C), 142.6 (C), 138.6 (C), 138.4 (C), 135.6 (C), 134.7 (C), $131.3(2 \mathrm{CH}), 129.6(3 \mathrm{CH}), 128.3(\mathrm{CH}), 128.2(2 \mathrm{CH}), 128.1(2 \mathrm{CH})$, $127.0(2 \mathrm{CH}), 124.6(\mathrm{CH}), 123.2(\mathrm{C}), 117.9(\mathrm{C}), 34.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO} 345.0920$, found 345.0918; IR (KBr): 2923, 2854, 1651, 1614, 1548, 1427, 1002, 875, 833, $782 \mathrm{~cm}^{-1}$

2-Methyl-3,4-diphenyl-6-(trifluoromethyl)isoquinolin-1(2H)-one (3ia)


White solid, m.p. $175-178{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.66(\mathrm{~d}, J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.26-7-14(\mathrm{~m}, 7 \mathrm{H}), 7.12-$ 7.09 (m, 2 H ), 7.04-7.02 (m, 2 H ), 3.35 ( $\mathrm{s}, 3 \mathrm{H}$ ) ; ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 161.9 (C), 142.9 (C), 137.2 (C), 135.4 (C), 134.5 (C), $133.6\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=321 \mathrm{~Hz}\right)$, $131.3(2 \mathrm{CH}), 129.7(2 \mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(3 \mathrm{CH}), 128.2(2 \mathrm{CH})$, $127.3(\mathrm{CH}), 126.9(\mathrm{C}), 125.1(\mathrm{C}), 122.5\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=222 \mathrm{~Hz}\right), 123.2(\mathrm{CH}), 118.6(\mathrm{C})$, $34.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}$ 379.1184, found 379.1183; IR (KBr): 2854, 1645, 1604, 1548, 1427, 1313, 1008, 785, $740 \mathrm{~cm}^{-1}$

## 6-(Tert-butyl)-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3ja)



White solid, m.p. $135-138{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.48$ (d, $J=8.0 \mathrm{~Hz} 1 \mathrm{H}$ ), 7.56 (dd, $J=8.0 \mathrm{~Hz} 1 \mathrm{H}$ ), 7.22-7.08 (m, 12 H ), 3.32 ( $\mathrm{s}, 3$ H), 1.20 (t, 9 H ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.5$ (C), 155.3 (C), $141.0(\mathrm{C})$, 136.9 (C), 136.4 (C), 135.1 (C), 131.4 ( 2 CH ), 129.9 ( 2 CH ), 128.0 ( 2 CH ), 128.0 $(\mathrm{CH}), 127.7(2 \mathrm{CH}), 127.5(\mathrm{CH}), 126.6(\mathrm{CH}), 124.6(\mathrm{CH}), 122.6(\mathrm{C}), 121.2(\mathrm{CH})$, 119.1 (C), $35.0(\mathrm{C}), 34.1\left(\mathrm{CH}_{3}\right), 30.9\left(3 \mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}$ 367.1936, found 367.1934; IR (KBr): 2960.20, 1654.00, 1588.20, 1480.03, 1080.20, 925.40, 760.30, $698.30 \mathrm{~cm}^{-1}$


Yellow solid, m.p. 220-224 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.31-7.29(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.18 (m, 9 H), 7.16-7.08 (m, 2 H ), 7.04-6.95 (m, 1 H ), 3.28 ( $\mathrm{s}, 3 \mathrm{H}$ ), $3.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 163.4$ (C), 141.5 (C), 141.1 (C), 138.8 (C), 137.1 (C), $135.2(\mathrm{C}), 131.5(2 \mathrm{CH}), 131.1(\mathrm{CH}), 129.7(3 \mathrm{CH}), 128.0(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 127.8$ $(\mathrm{CH}), 126.6(\mathrm{CH}), 123.6(\mathrm{CH}), 123.4(\mathrm{CH}), 118.7(\mathrm{C}), 34.2\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}$ 325.1467, found 325.1467; IR (KBr): 2854, 1645, 1499, 1497, 1145, 948, 771, $730 \mathrm{~cm}^{-1}$

## 8-Fluoro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (31a)



White solid, m.p. $228-230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.00(\mathrm{~m}, 11 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}$ $1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 161.8\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=381 \mathrm{~Hz}\right), 161.1$ (C), 142.5 (C), 139.7 (C), 136.3 (C), $134.7(\mathrm{C}), 132.5\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 131.4$ (2 $\mathrm{CH}), 129.5(2 \mathrm{CH}), 128.2(\mathrm{CH}), 128.1(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 126.8(\mathrm{CH}), 121.2(\mathrm{CH}$, $\left.J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 117.0(\mathrm{C}), 114.1\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 113.2\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 34.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FNO}$ 329.1216, found 329.1216; IR (KBr): 2923, 1651, $1611,1483,1417,1134,1048,925,781 \mathrm{~cm}^{-1}$

## 8-Chloro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3ma)



White solid, m.p. $220-222{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 7.48-7.47 (m, 1 H$), 7.46-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.00(\mathrm{~m}, 11 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 160.8(\mathrm{C}), 142.3$ (C), 140.1 (C), 136.4 (C), 135.2 (C), $134.6(\mathrm{C}), 131.4(2 \mathrm{CH}), 131.3(2 \mathrm{CH}), 129.6(2 \mathrm{CH}), 129.4(2 \mathrm{CH}), 128.1(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.9(\mathrm{CH}), 126.8(\mathrm{CH}), 124.5(\mathrm{CH}), 121.2(\mathrm{C}), 117.9(\mathrm{C}), 34.46\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO} 345.0920$, found 345.0919; IR (KBr): 2931, 1649, 1597, 1443, 1417, 1380, 1070, 935, 861, $784 \mathrm{~cm}^{-1}$

## 7,8-Dimethoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3na)



White solid, m.p. 221-223 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 8 7.20-7.09 (m, 7 H),, 7.08-7.05 (m, 2 H), 7.01-6.99 (m, 2 H), 6.85-6.83 (d, $J=8.4 \mathrm{~Hz}$ 1 H ), $4.02(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 160.7$ (C), 151.4 (C), 149.2 (C), 139.5 (C), 136.9 (C), 135.1 (C), 132.8 (C), 131.5 ( 2 CH ), $129.9(2 \mathrm{CH}), 128.0(2 \mathrm{CH}), 127.9(\mathrm{CH}), 127.8(2 \mathrm{CH}), 126.6(\mathrm{CH}), 121.6(\mathrm{CH})$, $119.8(\mathrm{C}), 118.1(\mathrm{CH}), 117.8(\mathrm{C}), 61.5\left(\mathrm{OCH}_{3}\right), 56.6\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{3}\right), 55.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$ 371.1521, found 371.1520; IR (KBr): 2954, 1647, 1610, 1483, 1427, 1070, 1001, $771 \mathrm{~cm}^{-1}$

## 6-Methyl-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one (30a)




Yellow solid, m.p. 242-243 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.59(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.09(\mathrm{~m}$, $5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=5.2 \mathrm{~Hz} 1 \mathrm{H}), 3.37(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 158.8$ (C), 145.5 (C), 142.3 (C), 136.8 (C), 134.6 (C), 132.7 (CH), $130.6(\mathrm{CH}), 130.1(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.4(\mathrm{CH}), 128.3(\mathrm{C}), 127.8(\mathrm{CH}), 126.7(\mathrm{CH}), 124.7(\mathrm{CH}), 117.7(\mathrm{C}), 34.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NOS} 317.0874$, found 317.0872; IR (KBr): 2923, 1640, 1577, 1490, 1440, 780, $698 \mathrm{~cm}^{-1}$

## 5-Fluoro-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3pa)



Yellow solid, m.p. $244-246{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 7 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 161.6(\mathrm{C}), 158.1\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}\right)$, $142.6(\mathrm{C}), 138.3(2 \mathrm{C}), 134.6(\mathrm{C}), 130.6\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 129.8(2 \mathrm{CH}), 128.2(\mathrm{CH})$, $128.1(2 \mathrm{CH}), 127.1(3 \mathrm{CH}), 126.3(\mathrm{CH}), 125.9\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 124.0\left(\mathrm{CH} J_{\mathrm{C}-\mathrm{F}}=4\right.$ $\mathrm{Hz}), 119.0(\mathrm{CH}), 118.7(\mathrm{CH}), 114.6(\mathrm{C}), 34.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FNO}$ 329.1216, found 329.1215; IR (KBr): 2954, 1651, 1611, 1548, 1416, $1002,833,782 \mathrm{~cm}^{-1}$

## 2,7-Dimethyl-3,4-diphenylisoquinolin-1(2H)-one (3qa)



White solid, m.p. $232-234^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.02(\mathrm{~m}, 11 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.6$ (C), 140.2 (C), 136.6 (2 C), 135.1 (C), 134.8 (C), $133.4(\mathrm{CH}), 131.4(2 \mathrm{CH}), 130.0(\mathrm{CH}), 128.1(3 \mathrm{CH}), 127.8(2 \mathrm{CH}), 127.3(2 \mathrm{CH})$, $126.6(\mathrm{CH}), 125.3(\mathrm{CH}), 124.8(\mathrm{C}), 118.7(\mathrm{C}), 34.3\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}$ 325.1467, found 325.1467; IR (KBr): 2923, 1645, 1499, 1340, $1142,948,770,730 \mathrm{~cm}^{-1}$
6,7-Dimethoxy-2-methyl-3,4-diphenylisoquinolin-1(2H)-one (3ra)


White solid, m.p. $240-242{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.00(\mathrm{~m}, 10 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3$ H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 161.9$ (C), 153.0 (C), 149.0 (C), 139.8 (C), 136.6 (C), 135.1 (C), 132.5 (2 CH), $131.3(2 \mathrm{CH}), 130.0(2 \mathrm{CH})$, $128.0(2 \mathrm{CH})$, $128.0(2 \mathrm{CH}), 127.8(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 118.9(\mathrm{CH}), 118.4(\mathrm{CH}), 107.6(\mathrm{C}), 105.5(\mathrm{C}), 55.6\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{OCH}_{3}\right), 34.3$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \quad 371.1521$, found 371.1520; IR (KBr): 2954, $1645,1604,1483,1415,1230,1143,1072,1001,856,781 \mathrm{~cm}^{-1}$

7-Methyl-8,9-diphenyl-[1,3]dioxolo[4,5-f]isoquinolin-6(7H)-one (3sa)


White solid, m.p. $248-250{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.21(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 7.21-7.16(\mathrm{M}, 3 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 8 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 3.26$ (s, 3 H ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.0$ (C), 150.5 (C), 142.0 (C), 141.8 (C), $137.4(\mathrm{C}), 134.8(\mathrm{C}), 131.2(2 \mathrm{CH}), 129.9(2 \mathrm{CH}), 128.0(2 \mathrm{CH}), 126.9(2 \mathrm{CH}), 126.4$ $(\mathrm{CH}), 123.6(\mathrm{CH}), 121.6(\mathrm{C}), 120.3(\mathrm{C}), 114.5(\mathrm{C}), 108.9(\mathrm{CH}), 101.4\left(\mathrm{CH}_{2}\right), 34.1$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{3}$ 355.1208, found 355.1206; IR (KBr): 2931, 1720, 1634, 1248, 1227, 1180, 925, 771, $705 \mathrm{~cm}^{-1}$

## 2-Methyl-3,4-di-p-tolylisoquinolin-1(2H)-one (3ab)



Yellow solid, m.p. 197-198 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.53(\mathrm{~d}, J=7.2 \mathrm{~Hz} 1 \mathrm{H}), 7.80-7.43(\mathrm{M}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.91(\mathrm{~m}$, $8 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.8$ (C), 141.3 (C), 137.8 (C), 137.4 (C), 136.1 (C), 133.5 (C), 132.2 ( 2 CH ), 131.8 ( 2 CH ), $131.3(2 \mathrm{CH}), 129.7(2 \mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 127.7(\mathrm{CH}), 126.4(\mathrm{CH}), 125.3$ $(\mathrm{CH}), 124.8(\mathrm{C}), 118.7(\mathrm{C}), 34.2\left(\mathrm{CH}_{3}\right)$, $21.2\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO} 339.1623$, found 339.1621; IR (KBr): 2854, 1640, 1592, 1480, 1411, 1080, $817,773 \mathrm{~cm}^{-1}$.

## 3,4-Bis(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (3ac)



Yellow solid, m.p. $161-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.52(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=$ $7.6 \mathrm{~Hz} 2 \mathrm{H}), 6.99$ (dd, $J=7.6 \mathrm{~Hz} 2 \mathrm{H}$ ), 6.75-6.71 (m, 4 H ), 3.73 (s, 6 H$), 3.32$ (s, 3 H); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.7$ (C), 159.0 (C), 158.1 (C), 141.2 (C), 137.5 (C), 132.4 (2 CH), 131.8 (CH), $131.0(2 \mathrm{CH}), 128.8$ (C), 127.7 (CH), 127.5 (C), 126.3 $(\mathrm{CH}), 125.3(\mathrm{CH}), 124.8(\mathrm{C}), 118.7(\mathrm{C}), 113.5(2 \mathrm{CH}), 113.3(2 \mathrm{CH}), 55.0\left(\mathrm{OCH}_{3}\right)$, $55.0\left(\mathrm{OCH}_{3}\right), 34.2\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) cal. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} 371.1521$, found 371.1518; IR (KBr): 2923, 1730, 1644, 1644, 1548, 1427, 1180, 925, 862, $731 \mathrm{~cm}^{-1}$

## 2-Methyl-3,4-bis(4-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one (3ad)



White solid, m.p. $198-200{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.56-8.54(\mathrm{~m}, 1 \mathrm{H})$, 7.57-7.46 (m, 8 H), 7.27-7.25 (m, 2 H), 7.19-7.17 (m,2 H), 7.05-7.03 (m, 1 H), 3.31 (s, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.4$ (C), 139.9 (2 C), 138.1 (C), 136.3 (C), $132.4(\mathrm{CH}), 131.8(2 \mathrm{CH}), 130.8\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 130.3(2 \mathrm{CH}), 129.1\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=32\right.$ $\mathrm{Hz}), 129.0(\mathrm{C}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 125.5(\mathrm{CH}), 125.2(\mathrm{CH}), 125.1(\mathrm{CH}), 125.0$ $(\mathrm{CH}), 122.3\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=35 \mathrm{~Hz}\right), 117.7(\mathrm{C}), 34.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NO} 447.1058$, found 447.1057; IR (KBr): 2923, 2399, 1639, 1604, 1548, 1447, 1080, 817, 771, $728 \mathrm{~cm}^{-1}$

## 3,4-Bis(4-bromophenyl)-2-methylisoquinolin-1(2H)-one (3ae)



White solid, m.p. 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.53$ (d, $J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 7.39$ (dd, $J=16.8 \mathrm{~Hz} 2 \mathrm{H}), 7.39-$
$7.33(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.4 \mathrm{~Hz} 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz} 2 \mathrm{H})$, 3.30 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.5$ (C), 140.1 (C), 136.6 (C), 135.1 (C), 133.6 (C), $133.0(2 \mathrm{CH}), 132.2(\mathrm{CH}), 131.7(2 \mathrm{CH}), 131.4(4 \mathrm{CH}), 127.9(\mathrm{CH})$, $127.0(\mathrm{CH}), 125.0(\mathrm{CH}), 124.9(\mathrm{C}), 122.8(\mathrm{C}), 121.3(\mathrm{C}), 117.8(2 \mathrm{C}), 34.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO} 468.9520$, found 468.9519; IR (KBr): 2954, 1640, 1604, 1548, 1427, 1159, 1054, $771,730 \mathrm{~cm}^{-1}$

## 3,4-Bis(4-fluorophenyl)-2-methylisoquinolin-1(2H)-one (3af)



White solid, m.p. $173-175^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $8.54(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.11-7.06(m, 3 H ), 7.01-6.87 (m, 6 H), $3.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.6$ (C), $162.2\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}\right.$ ), $161.6\left(\mathrm{C}, J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}\right), 140.4(\mathrm{C}), 136.9(\mathrm{C}), 133.0\left(2 \mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 132.2(\mathrm{C})$, $132.1(\mathrm{CH}), 131.7\left(2 \mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 130.9(\mathrm{C}), 127.9(\mathrm{CH}), 126.8(\mathrm{CH}), 125.1$ (CH), 124.4 (C), 118.1 (C), 115.6 (CH), 115.4 (CH), $115.2(\mathrm{CH}), 115.0(\mathrm{CH}), 34.2$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO} 347.1122$, found 347.1121; IR (KBr): 2928,

1640, 1604, 1508, 1482, 1080, 817, 771, $728 \mathrm{~cm}^{-1}$

## 2-Methyl-3,4-di(thiophen-2-yl)isoquinolin-1(2H)-one (3ag)



Brown solid, m.p. 228-230 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.51(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H})$, 6.94-6.91 (m, 3 H ), 6.83-6.82 (m, 1 H ), $3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 162.6 (C), 137.1 (C), 136.9 (C), 136.2 (C), 134.9 (C), 132.3 (CH), 130.1 (CH), 129.7 $(\mathrm{CH}), 127.7(2 \mathrm{CH}), 127.3(\mathrm{CH}), 126.6(\mathrm{CH}), 126.5(2 \mathrm{CH}), 125.4(\mathrm{CH}), 125.1(\mathrm{C})$, 114.2 (C), $34.2\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) cal. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NOS}_{2} 323.0439$, found 323.0441; IR (KBr): 2957, 1640, 1604, 1548,1470, 780, 760, $700 \mathrm{~cm}^{-1}$

## 2-Methyl-3,4-dipropylisoquinolin-1(2H)-one (3ah)



Yellow solid, m.p. $60-62{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.44 (d, $J=8.0 \mathrm{~Hz} 1 \mathrm{H}$ ), $7.60-7.59$ (m, 2 H ), 7.41-7.36 (m, 1 H ), 3.60 (s, 3 H ), 2.71$2.64(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.9$ (C), 139.8 (C), 136.4 (C), 131.8 (C), 128.2 (C), $125.5(2 \mathrm{CH}), 124.7(\mathrm{CH})$, $122.5(2 \mathrm{CH}), 113.8(4 \mathrm{CH}), 31.7(\mathrm{CH}), 31.2(\mathrm{CH}), 29.76(\mathrm{CH}), 23.60(\mathrm{C}), 22.5(\mathrm{C})$, 14.3 (C), $14.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO} 243.1623$, found 243.1622; IR (KBr): 2931, 1645, 1547, 1457, 1057, 898, $740 \mathrm{~cm}^{-1}$

## 4-Ethyl-2-methyl-3-phenylisoquinolin-1(2H)-one (3ai)



Yellow solid, m.p. $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 8.52-8.50 (m, 1 H), 7.84-7.65 (m, 2 H), 7.52-7.44 (m, 4 H), 7.28-7.24 (m, 2 H), 3.21 (s, 3 H ), $2.40(\mathrm{q}, 2 \mathrm{H}), 1.05(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.5$ (C), 140.1 (C), 136.0 (C), 135.6 (C), 132.1 (CH), 129.1 (CH), 129.0 ( 2 CH ), 128.7 (CH), 128.4
$(\mathrm{CH}), 127.7(\mathrm{CH}), 126.3(\mathrm{CH}), 125.7(\mathrm{C}), 123.1(\mathrm{CH}), 116.7(\mathrm{C}), 34.11\left(\mathrm{CH}_{3}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO} 263.1310$, found 263.1310; IR (KBr): 3010, 1641, 1485, 1409, 1186, 1007, 840, 787, $704 \mathrm{~cm}^{-1}$
4-Butyl-3-(4-methoxyphenyl)-2-methylisoquinolin-1(2H)-one (3aj)


White semi-solid, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.51-$ $8.49(\mathrm{~m}, 1 \mathrm{H})$, , 7.67-7.61 (m, 2 H$), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96$ (m, 2 H ), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.37$ (m, 2 H$), 1.20-$ 1.16 (m, 2 H ), 0.77-0.73 (m, 3 H ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.4$ (C), 159.6 ( C), 140.0 (C), 136.2 (C), 131.8 (CH), 130.3 ( 2 CH ), 128.1 (CH), 127.7 (C), 126.1 $(\mathrm{CH}), 123.1(\mathrm{CH}), 115.9(\mathrm{C}), 114.1(2 \mathrm{CH}), 113.9(\mathrm{C}), 55.22\left(\mathrm{OCH}_{3}\right), 33.96\left(\mathrm{CH}_{3}\right)$, $32.49\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{1} \mathrm{H}_{23} \mathrm{NO}_{2}$ 321.1729, found 321.1729; IR (KBr): 2957, 1642, 1611, 1518, 1411, 1180, 840, 771, $700 \mathrm{~cm}^{-1}$

## Ethyl 2-methyl-1-oxo-3-phenyl-1,2-dihydroisoquinoline-4-carboxylate (3ak)



White solid, m.p. $167-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ :
$\delta 8.49(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 3 \mathrm{H})$, 7.36-7.33 (m, 2 H ), 3.94 (q, 2 H ), 3.30 ( $\mathrm{s}, 3 \mathrm{H}$ ), 0.84 (t, 3 H ); ${ }^{13} \mathbf{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 166.9$ (C), 162.5 (C), 143.5 (C), 134.4 (C), 133.3 (C), 132.7 (CH), 129.3 $(\mathrm{CH}), 129.0(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.2(\mathrm{CH}), 124.5(\mathrm{C}), 123.9(\mathrm{CH})$, $112.5(\mathrm{C}), 61.0\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$ 307.1208, found 307.1208; IR (KBr): 2923, 1730, 1644, 1284, 1247, 1193, 761, 705 $\mathrm{cm}^{-1}$
 phenylisoquinolin-1(2H)-one (3fj)

White solid, m.p. $167-170{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.40(\mathrm{~d}, J=8.8 \mathrm{~Hz} 1$ H), 7.46-7.40 (m, 3 H ), $7.19-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H})$, 3.81 (s, 3 H ), 3.64 (s, 3 H ), 3.24 ( s, 2 H ), 1.23 ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 162.8$ (C), 162.2 (C), 139.0 (C), 137.2 (C), 136.9 (C), 131.6 (2 CH), 129.9 (CH), $128.5(2 \mathrm{CH}), 127.6(\mathrm{CH}), 119.7$ (C), 118.9 (C), $115.1(\mathrm{CH}), 107.3(\mathrm{CH}), 57.8$ $\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{CH}_{2}\right), 44.6\left(2 \mathrm{CH}_{3}\right), 31.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) cal. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ 322.1681, found 322.1682; IR (KBr): 2954, 1730.00, 1644.60, 1284.02, 1247.03, 1193.10, $761.80,705.00 \mathrm{~cm}^{-1}$

5,6,13-Triphenyl-8H-isoquinolino[3,2-a]isoquinolin-8-one (3ta)


Yellow solid, m.p. $165-167^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 7.61-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=$ 8.0 Hz 1 H ), $7.27-7.06$ (m, 13 H ), 6.86 (t, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( 100 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 162.2$ (C), 138.6 (C), 137.1 (2 C), 136.3 (C), 136.2 (C), 133.8 (C), 133.1 (C), $132.3(\mathrm{CH}), 132.2(2 \mathrm{CH}), 131.5(2 \mathrm{CH}), 129.7(2 \mathrm{CH}), 129.0(\mathrm{CH}), 128.9(2 \mathrm{CH})$, $128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(2 \mathrm{CH}), 127.6(\mathrm{C}), 127.4(\mathrm{CH}), 127.1(2 \mathrm{CH}), 126.9$ (CH), 126.8 (CH), 126.7 (C), $126.4(\mathrm{CH}), 126.3(\mathrm{CH}), 125.8(\mathrm{C}), 125.6(\mathrm{CH}), 125.5$ (CH), 116.9 (C); HRMS (ESI) cal. for $\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{NO} 473.1780$, found 473.1778; IR (KBr): 2923, 1644, 1538, 1180, 925, 862, $701 \mathrm{~cm}^{-1}$

References

1. D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
2. B. Li and P. H. Dixneuf, Chem. Soc. Rev., 2013

3 J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740
4. L. Ackermann, A. V. Lygin and N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379
5. C.-C. Liu, K. Parthasarathy and C.-H. Cheng, Org. Lett., 2010, 12, 3518

6- T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132, 10565
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3aa.







${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ba

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ca.


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3da.



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ea.





${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 f a}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ga.




${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 h}$.



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ia.




${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 j a}$



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 k}$.



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 31a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ma.


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 n a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3oa
~
~
NNNNNNNNNNNNNN心NO
NNNNNNNNNNNNNN心NO






${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3pa.


|  |
| :---: |




${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3qa.






.${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3}$ ra.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3sa


|  |
| :---: |





${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ab.
Me


$\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ac.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a d}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a e}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3af.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ag.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ah.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ai.





${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a j}$

## $\rightarrow$ -




UN


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a k}$


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 f l}$.




${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 t a}$.








Table 1. Crystal data and structure refinement for mo_150714lt_0m (3aa).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

## Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
mo_150714lt_0m
C22 H17 N O
311.36

100(2) K
0.71073 Å

Triclinic
P-1
$a=9.3178(12) \AA$
$\mathrm{b}=9.5222(12) \AA$
$\mathrm{c}=10.9385(14) \AA$
789.02(18) $\AA^{3}$

2
$1.311 \mathrm{Mg} / \mathrm{m}^{3}$
$0.080 \mathrm{~mm}^{-1}$
328
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}^{3}$
2.102 to $26.485^{\circ}$.
$-11<=\mathrm{h}<=8,-11<=\mathrm{k}<=11,-13<=1<=13$
12357
$3208[\mathrm{R}(\mathrm{int})=0.0214]$
99.3 \%

Semi-empirical from equivalents
0.9485 and 0.8621

Full-matrix least-squares on $\mathrm{F}^{2}$
3208 / 0 / 218
1.043

Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$R 1=0.0354, w R 2=0.0897$
$R 1=0.0422, w R 2=0.0944$
n/a
0.277 and -0.191 e. $\AA^{-3}$

## ORTEP diagram of compound 3ak



Table 2. Crystal data and structure refinement for mo_160743_0m_a (3ak).
Identification cod
mo_160743_0m_a
Empirical formula
C19 H17 N O3
Formula weight
307.33

Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
296(2) K
$0.71073 \AA$
Monoclinic
P 21/c
$\mathrm{a}=9.4992(7) \AA$
$\mathrm{b}=12.0176(9) \AA$
$\mathrm{c}=14.7148(11) \AA$
1600.6(2) $\AA^{3}$

4
$1.275 \mathrm{Mg} / \mathrm{m}^{3}$
$0.087 \mathrm{~mm}^{-1}$
648
$0.22 \times 0.18 \times 0.16 \mathrm{~mm}^{3}$
2.232 to $26.457^{\circ}$.

Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$-11<=\mathrm{h}<=11,-14<=\mathrm{k}<=15,-18<=1<=18$
13301
$3284[\mathrm{R}(\mathrm{int})=0.0487]$
99.8 \%

Semi-empirical from equivalents
0.9485 and 0.8834

Full-matrix least-squares on $\mathrm{F}^{2}$
3284 / 0 / 210
1.030
$\mathrm{R} 1=0.0588, \mathrm{wR} 2=0.1424$
$R 1=0.1079, w R 2=0.1690$
n/a
0.309 and -0.329 e. $\AA^{-3}$

## ORTEP diagram of compound $\mathbf{3 f l}$



Table 3. Crystal data and structure refinement for 160602LT_0M (3fl).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

1606021t_0m
C20 H22 N2 O2
322.39

100(2) K
$0.71073 \AA$
Monoclinic
P 21/n
$\mathrm{a}=10.0712(6) \AA$
$\mathrm{b}=9.0247(5) \AA$

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{c}=19.0587(9) \AA$
$1706.90(16) \AA^{3}$
4
$1.255 \mathrm{Mg} / \mathrm{m}^{3}$
$0.082 \mathrm{~mm}^{-1}$
688
$0.20 \times 0.18 \times 0.18 \mathrm{~mm}^{3}$
2.169 to $26.406^{\circ}$.
$-12<=\mathrm{h}<=12,-11<=\mathrm{k}<=11,-23<=\mathrm{l}<=23$
14501
$3493[\mathrm{R}(\mathrm{int})=0.0362]$
99.8 \%

Semi-empirical from equivalents
0.9485 and 0.8976

Full-matrix least-squares on $\mathrm{F}^{2}$
3493 / 0 / 221
1.076
$R 1=0.0424, w R 2=0.1059$
$R 1=0.0539, w R 2=0.1133$
n/a
0.325 and -0.327 e. $\AA^{-3}$

