Electronic Supplementary Information (ESI)

Gold and palladium oxidation/complexation in water by the thioamide-iodine system

Francesco Isaia,^{*a} Maria Carla Aragoni,^a Massimiliano Arca,^a Claudia Caltagirone,^a Carlo Castellano,^b Greta De Filippo,^a Alessandra Garau,^a Vito Lippolis,^a and Tiziana Pivetta^a

^{*a*}Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy. Fax: +39 070 6754456; Tel: +39 070 6754496. E-mail: <u>isaia@unica.it</u>

^bDipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano. Italy.

Adduct	Metal	Solvent	Main product/s	Ref.
$bmitm \cdot 2I_2$	Sn	Et ₂ O	$[Sn(bmitm)_2I_2](I_3)_2 \cdot 2/3I_2$	3
$Me_2dazdt \cdot 2I_2$	Au	THF	$[Au(Me_2dazdt)I_2]I_3$	1
$Me_2 daz dt \cdot 2IBr$	Au	THF	$[Au(Me_2dazdt)Br_2]IBr_2$	4
$Me_2 daz dt \cdot 2I_2$	Hg	THF	[Hg(Me ₂ dazdt)I ₂]	2
$Me_2dazdt \cdot 2I_2$	Pd	THF	$[Pd(Me_2dazdt)_2](I_3)_2$	5
$HN(SPPh_2)_2 \cdot I_2$	Sb	Et ₂ O	$[(N(SPPh_2)_2)Sb(\mu-S)(\mu-I)_2Sb(N(SPPh_2)_2)]$	6
$HN(SPPh_2)_2 \cdot I_2$	Co	Et ₂ O	$[Co(N(SPPh_2)_2)_2]$	7
$HN(SPPh_2)_2 \cdot I_2$	Cu	Et ₂ O	[Cu(HN(SPPh ₂) ₂) ₂]I ₃ ·MeCN	8
			$[Cu_4(N(SPPh_2)_2)_3]I_3$	
$HN(SPPh_2)_2 \cdot I_2$	Au	Et ₂ O	$[Au(N(SPPh_2)_2)I_2]$	9
$HN(SPPh_2)_2 \cdot I_2$	In	Et ₂ O	[In(N(SPPh ₂) ₂)I ₂]	10
$HN(SPPh_2)_2 \cdot I_2$	Hg	Et ₂ O	[Hg(HN(SPPh ₂) ₂)I ₂]	11
			[Hg(N(SPPh ₂) ₂) ₂]	11
$HN(SPPh_2)_2 \cdot I_2$	Pd	Et ₂ O	[Pd(HN(SPPh ₂) ₂)I ₂]	12
			$[Pd(N(SPPh_2)_2)_2]$	12
HN(SPPh ₂)(OPPh ₂)·I ₂	Co	Et ₂ O	$[Co(\{HN(SPPh_2)(OPPh_2)\}_2I_2]$	13
			[Co(N(SPPh ₂)(OPPh ₂)) ₂]	13
$MeImSH{\cdot}I_2$	Hg	CH_2Cl_2	[Hg ₂ I ₄ (MeImSH) ₂]	14
$MeImSH{\cdot}I_2$	Zn	CH_2Cl_2	[Zn(MeImSH)I ₂	15
$PTU \cdot I_2$	Hg	CH_2Cl_2	$[Hg(PTU)_2I_2 \cdot HgI_2]$	14
$mbtt{\cdot}I_2$	Au	Et ₂ O	[Au(mbtt) ₂]I ₃	16

Table S1. Structurally characterised metal complexes obtained by using IX-adducts (X = I, Br) of *S*-donor molecules^{*a,b*} as oxidising reagents towards metal powders.

^{*a*} S-donors molecules: bmitm = 1,1'-bis(3-methyl-4-imidazoline-2-thione)methane; $Me_2dazt = N,N'$ -dimethylperhydro-1,4-diazepine-2,3-dithione; $HN(SPPh_2)_2$ = tetraphenyldithioimidodiphosphine; $HN(SPPh_2)(OPPh_2)$ = tetraphenylthiooxoimidodiphosphine; MeImSH = methimazole, 1-methyl-3*H*-imidazole-2-thione; PTU = propylthiouracil, 6-propyl-2-sulfanylpyrimidin-4-one; mbtt = 3-methyl-benzothiazole-2-thione

^b S-donor molecules chemical structure:

Figure S1. ESI-MS (+) spectrum of the solid obtained from the reaction in water of gold powder and the leaching mbtt + I_2 system (1/2/2 reaction molar ratio). Sample dissolved in CH₃OH:H₂O 1:1 (v/v).

Figure S2. ESI-MS (+) spectrum of the solid obtained from the reaction in water of palladium powder and the leaching mbtt + I_2 system (1/2/2 reaction molar ratio). Sample dissolved in CH₃OH:H₂O 1:1 (v/v).

Figure S3. MS-MS spectrum of $[PdL_3I]^+$ (the *m/z* 778 signal is due to ¹⁰⁸Pd).

Figure S4. Calculated (red line) and experimental (black line) isotope distribution for $[Pd(mbtt)_2I]^+$ (*m/z* 596) and $[Pd(mbtt)_3I]^+$ (*m/z* 777).

Figure S5. Absorbances recorded at different time for the reaction in water of I₂ with mbtt (1:1 reaction molar ratio, 23°C, λ = 460 nm), [I₂] = 1.28x10⁻³ M. [Time (min), Abs: 0, 0.960; 15, 0.607; 30, 0.541; 120, 0.449; 360, 0.367; 1440, 0.272].

Figure S6. Calculated percentage of iodine that reacts in the course of 24 hours with mbtt to form the adduct $mbtt-I_2$. Data from caption Figure S5.

Figure S7. Image of gold deposited on magnesium powder.

References

- 1 F. Bigoli, P. Deplano, M.L. Mercuri, M. A. Pellinghelli, G. Pintus, A. Serpe, E.F. Trogu, *Chem. Commun.*, 1998, 2351–2352.
- 2 F. Bigoli, M.C. Cabras, P. Deplano, M.L. Mercuri, L. Marchiò, A. Serpe, E.F. Trogu, *Eur. J. Inorg. Chem.*, 2004, **5**, 960–963;
- 3 F. Bigoli, P. Deplano, F. A. Devillanova V. Lippolis, M.L. Mercuri, M. A. Pellinghelli, E.F. Trogu, *Inorg. Chim. Acta*, 1998, 267, 115–121.
- 4 L. Cau, P. Deplano, L. Marchiò, M.L. Mercuri, L. Pilia, A. Serpe, E.F. Trogu, J. Chem. Soc. Dalton Trans., 2003, 1969–1974.
- 5 A. Serpe, F. Bigoli, M. C. Cabras, P. Fornasiero, M. Graziani, M. L. Mercuri, T. Montini, L. Pilia, E. F. Trogu, P. Deplano, *Chem. Commun.*, 2005, 1040–1042.
- 6 M. Arca, A. Garau, F. A. Devillanova, F. Isaia, V. Lippolis, G. Verani, G. L. Abbati, A. Cornia, Z. Anorg. Allg. Chem., 1999, **625**, 517–520.
- 7 M. C. Aragoni, M. Arca, A. Garau, F. Isaia, V. Lippolis, G. L. Abbati, A.C. Fabretti, Z. *Anorg. Allg. Chem.*, 2000, **626**, 1454–1459.
- 8 M. C. Aragoni, M. Arca, M. B. Carrea, F. Demartin, F. A. Devillanova, A. Garau, M. B. Hursthouse, F. Isaia, V. Lippolis, G. Verani. *Eur. J. Inorg. Chem.*, 2006, **1**, 200–206.
- 9 M. C. Aragoni, M. Arca, M. B. Carrea, F. Demartin, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, M. Marcelli, C. Silvestru, G. Verani, *Eur. J. Inorg. Chem.*, 2005, 589–596.
- 10 G. L. Abbati, M. C. Aragoni, M. Arca, F. A. Devillanova, C. Fabretti, A. Garau, F. Isaia, V. Lippolis, G. Verani, *Dalton Trans.*, 2003, 1515-1519.
- 11 M. C. Aragoni, M. Arca, M. B. Carrea, F. Demartin, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani, *Eur. J. Inorg. Chem.*, 2004, 4660–4668.
- 12 G. L. Abbati, M. C. Aragoni, M. Arca, C. Fabretti, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani, *J. Chem. Soc. Dalton Trans.*, 2001, 1105–1110.

- M. C. Aragoni, M. Arca, M. B. Carrea, A. Garau, F. A. Devillanova, F. Isaia, V. Lippolis, G. L. Abbati, F. Demartin, C. Silvestru, S. Demeshko, F. Meyer, *Eur. J. Inorg. Chem.*, 2007, 29, 4607–4614.
- 14 F. Isaia, M. Carla Aragoni, M. Arca, C. Caltagirone, C. Castellano, F. Demartin, A. Garau, V. Lippolis, A. Pintus, *Dalton Trans.*, 2011, 40, 4505–4513.
- 15 F. Isaia, M. C. Aragoni, M. Arca, C. Caltagirone, A. Garau, P. G. Jones, V Lippolis, R. Montis, *CrystEngComm.*, 2014, **16**, 3613–3623.
- 16 F. Isaia, M. C. Aragoni, M. Arca, C. Caltagirone, F. Demartin, A. Garau, V. Lippolis, *Dalton Trans.*, 2013, **42**(2), 492–498.