Electronic Supplementary Information

Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy density

Jie Pang ^{a, c}, Wenfeng Zhang ^{b, c, *}, Jinliang Zhang ^{a, c}, Gaoping Cao ^{b, c}, Minfang Han ^a, Yusheng Yang ^{b, c}

a. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

b. Research Institute of Chemical Defense, Beijing 100191, China. E-mail: wenfengzh@163.com

c. Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Beijing 100191, China.

S1 Electrochemical measurements

The gravimetric (C_g, F g⁻¹), volumetric (C_v, F cm⁻³) and areal (C_a, μ F cm⁻²) specific capacitance of a single electrode was calculated from the discharge curves according to the following equations:^{1, 2}

$$C_g = \frac{2I\Delta t}{m\Delta V} \tag{1}$$

$$C_v = C_g \rho \tag{2}$$

$$\rho = \frac{1}{V_{total} + (1/\rho_{carbon})} \tag{3}$$

$$C_a = \frac{100 \times C_g}{S_{BET}} \tag{4}$$

where I (A) is the constant discharge current, Δt (s) is the discharge time, m (g) is the mass of the active material in a single electrode, ΔV (V) is the potential change in discharge, ρ (g cm⁻³) is the particle density of the carbon sample, V_{total} (cm³ g⁻¹) is the total pore volume of the carbon sample measured by N₂ isotherms, ρ_{carbon} (2 g cm⁻³) is the true density of carbon, and S_{BET} (m² g⁻¹) is the specific surface area of the carbon sample obtained from the BET method.

The gravimetric/volumetric energy density (E_g , Wh kg⁻¹; E_v , Wh L⁻¹) and power density (P_g , W kg⁻¹; P_v , W L⁻¹) of the two-electrode symmetric supercapacitors were also calculated according to equation (5 – 8):

$$E_g = \frac{C_g \Delta V^2}{8 \times 3.6} \tag{5}$$

$$P_{g} = \frac{5600 \times E_{g}}{\Delta t}$$

$$E_{v} = E_{g}\rho$$

$$P_{v} = P_{g}\rho$$
(6)
(7)
(8)

where C_g (F g⁻¹) represents the gravimetric specific capacitance of a single electrode obtained from equation (1), ΔV (V) is the potential change in discharge, Δt (s) is the discharge time, and ρ (g cm⁻³) is the particle density of the carbon sample.

Table S1 Elemental analysis of SLS from EDS and ICP-AES.

	EDS									ICP-AES				
Sample	Nonmetal element (wt.%)				Metal element (wt.%)				Metal element (wt.%)					
	С	0	S	Cl	•	Na	Κ	Mg	Ca		Na	K	Mg	Ca
SLS	41.85	42.04	4.17	1.33		9.01	1.38	-	-		13.35	3.23	0.07	0.24

Fig. S1 (a-b) SEM images at different magnifications of the product by carbonization of SLS at 800 °C for 1h (before washing).

Fig. S2 SEM images of (a-b) HPCSLS-600-1, (c-d) HPCSLS-700-1, (e-f) HPCSLS-900-1 and (g-h) HPCSLS-1000-1 at different magnifications.

Fig. S3 (a) Nitrogen adsorption-desorption isotherms and (b) DFT pore size distributions of the HPCSLS-700-Y samples. (c) Nitrogen adsorption-desorption isotherms and (d) DFT pore size distributions of the HPCSLS-800-Y samples.

	N2 adsorption-desorption						XPS				G •	G •	
Sample	$SSA (m^2 g^{-1})$			Pore v	Pore volume (cm ³ g ⁻¹)			Elemental content (at.%)				C _v ^g	C_a^g
	$\mathbf{S}_{\text{BET}}^{a}$	S _{micro} ^b	S _{ext} ^c	V_{total}^{d}	V _{micro} e	$V_{\text{meso}}{}^{\mathrm{f}}$	С	N	0	S	• (F g ·)	(F cm ³)	(µF cm ²)
HPCSLS-700-2	1006	832	174	0.61	0.33	0.06	92.04	1.60	6.10	0.26	201	181	20.0
HPCSLS-700-4	884	610	274	0.59	0.26	0.08	92.63	1.32	5.80	0.24	172	158	19.5
HPCSLS-800-2	1028	805	223	0.61	0.33	0.07	91.71	0.99	7.05	0.26	161	145	15.7
HPCSLS-800-4	1164	921	244	0.66	0.39	0.08	93.59	0.87	5.32	0.21	149	128	12.8

Table S2 Textural properties, surface elemental contents and electrochemical performances of HPCSLS-700-Y and HPCSLS-800-Y.

a: Specific surface area (S $_{\text{BET}}$) calculated by BET method.

b, c: Specific micropore area (S_{micro}) and specific external surface area (S_{ext}) calculated by t-plot method.

d: Total pore volume (V_{total}) determined at a relative pressure (P/P₀) of 0.97.

e, f: Micropore volume (V_{micro}) and mesopore volume (V_{meso}) calculated by DFT model.

g: The C_g, C_v and C_a values calculated from discharge curves at a current density of 0.05 A $g^{-1}.$

Fig. S4 C 1s XPS spectra of (a) HPCSLS-600-1, (b) HPCSLS-800-1, (c) HPCSLS-900-1 and (d) HPCSLS-1000-1.

Fig. S5 (a) O 1s and (b) N 1s XPS spectra of the HPCSLS-X-1 samples.

Table S3 Surface C, O and N configurations of HPCSLS-X-1 by XPS.

Sample	C configuration ^a (at.%)				O conf	O configuration ^b (at.%)			N configuration ^c (at.%)				
	C-I	C-II	C-III	C-IV	O-I	O-II	O-III	N-6	N-5	N-Q	N-X		
HPCSLS-600-1	80.68	13.14	3.01	3.17	11.45	59.25	29.30	18.05	48.58	20.04	13.33		
HPCSLS-700-1	81.09	10.04	6.04	2.83	8.45	58.76	32.79	22.48	38.08	26.03	13.41		
HPCSLS-800-1	81.40	10.91	6.13	1.56	6.52	59.36	34.12	11.76	43.46	35.49	9.29		
HPCSLS-900-1	82.38	7.65	6.20	3.77	5.14	62.82	32.04	10.47	51.12	25.28	13.13		
HPCSLS-1000-1	83.80	7.16	6.54	2.49	5.54	59.52	34.94	13.10	48.67	29.65	8.58		

a: C sp² and sp³ (C-I), C=O (C-II), C=O (C-III) and O=C=O (C-IV).

b: C=O (O-I), C-OH and/or C-O-C (O-II), -COOH (O-III).

c: Pyridinic nitrogen (N-6), pyrrolic nitrogen (N-5), quaternary-N (N-Q), N-oxides group (N-X).

Fig. S6 CV curves tested at $5 - 100 \text{ mV s}^{-1}$ of (a) HPCSLS-600-1, (b) HPCSLS-800-1, (c) HPCSLS-900-1 and (d) HPCSLS-1000-1.

Fig. S7 CV curves tested at a scan rate of 1 mV s⁻¹ of (a) HPCSLS-700-Y and (b) HPCSLS-800-Y. Charge-discharge rate performance of (c) HPCSLS-700-Y and (d) HPCSLS-800-Y.

Table S4 Equivalent series resistance (ESR), charge transfer resistance (R_{ct}), and diffusion resistance (R_d) of HPCSLS-X-1 obtained from the equivalent circuit model fitting.

Samula	Re	sistance (Ω)
Sample	R _{esr}	R _{ct}	R _d
HPCSLS-600-1	1.323	0.403	0.722
HPCSLS-700-1	1.042	0.226	0.692
HPCSLS-800-1	0.681	0.081	0.659
HPCSLS-900-1	0.605	0.063	0.529
HPCSLS-1000-1	0.469	0.030	0.420

Fig. S8 XPS spectra of HPCSLS-700-1 based electrodes before and after long-term cycling test.

Draauraar	Droporation	Electrolyte	Test condition	C_g	C_{v}	C_a	Dofa
Fiecuisoi	rieparation	Electrolyte	Test condition	$(F g^{-1})$	(F cm ⁻³)	$(\mu F \ cm^{-2})$	Kels.
Lignin	Hard templating + electro-oxidation	$1 \ M \ H_2 SO_4$	$0.05 \ A \ g^{-1}$	249	149	29	3
Lignin	Physical activation	$1 \ M \ H_2 SO_4$	10 mV s^{-1}	201	214	20.0	4
Lignin	Hard-soft templating	6 M KOH	0.1 A g ⁻¹	208.4	153.2	26.0	5
Lignin	Chemical activation	6 M KOH	0.5 A g ⁻¹	268	205	18.6	6
Kraft lignin	Soft templating + physical activation	6 M KOH	1 mV s^{-1}	102.3	83.2	16.4	7
Kraft lignin	Without activation and templating	$1 \text{ M} \text{H}_2 \text{SO}_4$	0.5 A g ⁻¹	91	NA	8.3	8
Alkali lignin	Polymer blending	6 M KOH	$0.4 \ A \ g^{-1}$	64	81	11	9
Alkali lignin	Chemical activation	$1 \ M \ H_2 SO_4$	$0.05 \ A \ g^{-1}$	165.0	162.6	18.2	10
Alkali lignin	Chemical activation	6 M KOH	0.2 A g ⁻¹	286.7	89.5	7.6	11
Alkali lignin	Chemical activation	6 M KOH	$10 \text{ mV} \text{ s}^{-1}$	240	-	17.1	12
Solvent lignin	Chemical activation + N-doped	6 M KOH	0.1 A g ⁻¹	248	NA	11.0	13
Solvent lignin	Chemical activation + N-doped	6 M KOH	$20 \text{ mV} \text{ s}^{-1}$	333	NA	14.7	14
Solvent lignin	Chemical activation + N-doped	6 M KOH	0.1 A g ⁻¹	273	126	8.7	15
Lignin-derived byproduct	Chemical activation	6 M KOH	$1 \mathrm{A} \mathrm{g}^{-1}$	312	NA	14.1	16
Calcium lignosulfonate	Without activation and templating	6 M KOH	1 mA cm ⁻²	182	137	13.4	17
Lignosulfonate	Hard templating + chemical activation	6 M KOH	$0.25 \ A \ g^{-1}$	286	265	33.4	18
Fruit stone	Chemical activation + P-doped	$1 \ M \ H_2 SO_4$	0.05 A g ⁻¹	131	112	10.4	19
Wood sawdust	Chemical activation	6 M KOH	$0.5 \ A \ g^{-1}$	225	118	9.8	20
Shells of broad beans	Chemical activation + N, S dual doped	6 M KOH	$0.5 \ A \ g^{-1}$	202	229	30.8	21
Cashmere	Chemical activation + N, O dual doped	6 M KOH	$0.5 \ A \ g^{-1}$	144	83	10.6	22
Cellulose	Chemical activation	6 M KOH	0.1 A g ⁻¹	253	135	13.4	23
Loblolly pine	Chemical activation	6 M KOH	$20 \text{ mV} \text{ s}^{-1}$	74	80	7.7	24
Waste Coca Cola®	Chemical activation + O, N, S co-doped	6 M KOH	$1 \mathrm{A} \mathrm{g}^{-1}$	352.7	256.9	17.7	25
Rice straw	Chemical activation	6 M KOH	0.5 A g ⁻¹	269	151	10.2	26
Cattail biomass	Physical activation	6 M KOH	0.5 A g ⁻¹	126.5	152.4	28.7	27
Sodium lignosulfonate	Wide a stratic be bei	7.4.200	0.05 A g ⁻¹	247	240	27.4	This 1
(HPCSLS-700-1)	without activation and templating	/ М КОН	$0.4 \ A \ g^{-1}$	227	220	25.1	This work

Table S5 Performance comparison of lignin/biomass based porous carbons for supercapacitor application reported in the literatures.

References

- 1. J. W. Lang, X. B. Yan, W. W. Liu, R. T. Wang and Q. J. Xue, J. Power Sources, 2012, 204, 220-229.
- 2. J. Hou, C. Cao, X. Ma, F. Idrees, B. Xu, X. Hao and W. Lin, Sci. Rep., 2014, 4, 1-6.
- R. Ruiz-Rosas, M. J. Valero-Romero, D. Salinas-Torres, J. Rodriguez-Mirasol, T. Cordero, E. Morallon and D. Cazorla-Amoros, *ChemSusChem*, 2014, 7, 1458-1467.
- R. Berenguer, F. J. Garcia-Mateos, R. Ruiz-Rosas, D. Cazorla-Amoros, E. Morallon, J. Rodriguez-Mirasol and T. Cordero, *Green Chem.*, 2016, 18, 1506-1515.
- H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong and C. He, *Carbon*, 2016, 100, 151-157.
- 6. Z.-z. Chang, B.-j. Yu and C.-y. Wang, J. Solid State Electrochem., 2016, 20, 1405-1412.
- 7. D. Saha, Y. Li, Z. Bi, J. Chen, J. K. Keum, D. K. Hensley, H. A. Grappe, H. M. Meyer, III, S. Dai, M. P. Paranthaman and A. K. Naskar, *Langmuir*, 2014, **30**, 900-910.
- J. W. Jeon, L. Zhang, J. L. Lutkenhaus, D. D. Laskar, J. P. Lemmon, D. Choi, M. I. Nandasiri, A. Hashmi, J. Xu, R. K. Motkuri, C. A. Fernandez, J. Liu, M. P. Tucker, P. B. McGrail, B. Yang and S. K. Nune, *ChemSusChem*, 2015, 8, 428-432.
- C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X. F. Wu, Z. Zhu and H. Fong, J. Power Sources, 2014, 247, 134-141.
- 10. W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu and M. Zhao, ChemSusChem, 2015, 8, 2114-2122.
- W. Zhang, M. Zhao, R. Liu, X. Wang and H. Lin, *Colloids Surf. A Physicochem. Eng. Asp.*, 2015, 484, 518-527.
- 12. S. Hu, S. Zhang, N. Pan and Y.-L. Hsieh, J. Power Sources, 2014, 270, 106-112.
- 13. K. Wang, Y. Cao, Z. Gu, P. Ahrenkiel, J. Lee and Q. H. Fan, RSC Adv., 2016, 6, 26738-26744.
- 14. K. Wang, Y. Cao, X. Wang, M. A. Castro, B. Luo, Z. Gu, J. Liu, J. D. Hoefelmeyer and Q. Fan, *J. Power Sources*, 2016, **307**, 462-467.
- 15. K. Wang, M. Xu, Y. Gu, Z. Gu and Q. H. Fan, J. Power Sources, 2016, 332, 180-186.
- 16. L. Zhang, T. You, T. Zhou, X. Zhou and F. Xu, ACS Appl. Mater. Inter., 2016, 8, 13918-13925.
- 17. X. Y. Chen and Q. Q. Zhou, *Electrochim. Acta*, 2012, 71, 92-99.
- Z. Zhao, S. Hao, P. Hao, Y. Sang, A. Manivannan, N. Wu and H. Liu, J. Mater. Chem. A, 2015, 3, 15049-15056.
- 19. C. Huang, A. M. Puziy, T. Sun, O. I. Poddubnaya, F. Suarez-Garcia, J. M. D. Tascon and D. Hulicova-Jurcakova, *Electrochim. Acta*, 2014, **137**, 219-227.
- 20. Y. Huang, L. Peng, Y. Liu, G. Zhao, J. Y. Chen and G. Yu, ACS Appl. Mater. Inter., 2016, 8, 15205-15215.
- 21. G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li and X. Zhang, Green Chem., 2015, 17, 1668-1674.
- 22. L. Zhou, H. Cao, S. Zhu, L. Hou and C. Yuan, Green Chem., 2015, 17, 2373-2382.
- 23. J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang and Y. Wang, Green Chem., 2015, 17, 4053-4060.
- 24. N. He, S. Yoo, J. Meng, O. Yildiz, P. D. Bradford, S. Park and W. Gao, Carbon, 2017, 120, 304-312.
- 25. Y. Boyjoo, Y. Cheng, H. Zhong, H. Tian, J. Pan, V. K. Pareek, S. P. Jiang, J.-F. Lamonier, M. Jaroniec and J. Liu, *Carbon*, 2017, **116**, 490-499.
- 26. L. Zhu, F. Shen, R. L. Smith, Jr., L. Yan, L. Li and X. Qi, Chem. Eng. J., 2017, 316, 770-777.
- 27. M. Yu, Y. Han, J. Li and L. Wang, Chem. Eng. J., 2017, 317, 493-502.