Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Tandem deprotection/coupling for peptide synthesis in water at room temperature

Margery Cortes-Clerget, Jean-Yves. Berthon, Isabelle Krolikiewicz-Renimel, L. Chaisemartin, Bruce H. Lipshutz

Department of Chemistry & Biochemistry University of California,

Santa Barbara, California 93106

lipshutz@chem.ucsb.edu

1.	General Information	2
2.	Scope of the reaction	3
3. P	General procedure for dipeptide formation Preparation of Dipeptides	4 4
4.	General procedure for Cbz-deprotection/coupling in 1-pot	
P	Preparation of Tripeptides	
P	Preparation of Tetrapeptides	
P	Preparation of Pentapeptides	
P	Preparation of Hexapeptides	19
P	Prepapration of Octapeptides	20
P	Preparation of the Decapeptide	21
5.	Racemization studies	23
а	n. Racemate	23
а	. Coupling step	24
b	D. Tandem deprotection/coupling step	25
6.	E Factors	26
7.	¹ H and ¹³ C NMR spectral analyses	

1. General Information

A solution of 2 wt % TPGS-750-M/H₂0 was prepared by dissolving TPGS-750-M in degassed HPLC grade water and was stored under argon. TPGS-750-M was made as previously described¹ and is available from Sigma-Aldrich (catalog #733857). All commercially available reagents were used without further purification. Thin layer chromatography (TLC) was done using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography was done in glass columns using Silica Gel 60 (EMD, 40-63 μ m). ¹H and ¹³C NMR were recorded at 25 °C either on a Varian Unity Inova 400 MHz, a Varian Unity Inova 500 MHz or on a Varian Unity Inova 600 MHz spectrometers in CDCl₃ or MeOD with residual CHCl₃ (¹H = 7.27 ppm, ¹³C = 77.16 ppm) or MeOH (¹H = 4.78 ppm, ¹³C = 49.0 ppm) as internal standards. Chemical shifts are reported in parts per million (ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, bd = broad doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), coupling constant (if applicable) and integration.

Chiral HPLC data were collected using a Shimadzu LC-20AT Prominence liquid chromatograph coupled with Shimadzu SPD-M20A Prominence diode array detector. HPLC method ran using HPLC grade isopropanol and hexanes through a Lux 5u Cellulose-2 (250 x 4.6 mm) column.

HRMS data were recorded on a Waters Micromass LCT TOF ES+ Premier mass spectrometer using ESI ionization.

¹ B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, J. Org. Chem. 2011, 76, 4379.

2. Scope of the reaction

3. General procedure for dipeptide formation

To a microwave vial were added *N*-terminal-protected amino acid (1.0 equiv) and amino ester (1.0 equiv) in a 2 wt % solution of TPGS-750-M/H₂0 [0.5 M], followed by 2,6-lutidine (3.05 equiv). If noted in the text, 10 wt % THF was also added. After 5 min, COMU (1.05 equiv) was added. The reaction was then stirred vigorously at rt (20-25 °C) until completion. The product was extracted with methyl *t*-butyl ether (MTBE; 10 mL) or a 1:1 mixture of hexanes/EtOAc. The organic layer was washed with a solution of HCl 1 M (2 x 5 mL), with a saturated solution of sodium carbonate (2 x 5 mL) and finally brine (1 x 5 mL). The solution was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to yield the desired peptide. These peptides can be used without further purification but yields were determined after flash chromatography on silica with a gradient of hexanes:EtOAc: 100:0 / 90:10 / 75:25 / 50:50 (100 mL each).

Preparation of Dipeptides

Synthesis of Cbz-L-Phe-L-Leu-OEt (2a):

Scale: 0.2 mmol

Yield: 99% (0.087 g)

Aspect: white powder - mp: 106-107 °C

 $\underline{\mathbf{R}}_{\mathbf{f}} = 0.85$ (1:1 hexanes/EtOAc) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.40 – 7.28 (m, 6H), 7.26 – 7.16 (m, 4H), 6.11 (bd, J = 8.2 Hz, 1H), 5.28 (bd, J = 6.1 Hz, 1H), 5.10 (d, J = 2.7 Hz, 2H), 4.54 (td, J = 8.5, 5.3 Hz, 1H), 4.44 (bd, J = 8.2 Hz, 1H), 4.16 (qd, J = 7.1, 3.5 Hz, 2H), 3.14 (dd, J = 13.9, 6.4 Hz, 1H), 3.06 (dd, J = 13.9, 6.9 Hz, 1H), 1.54 – 1.41 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 0.90 (dd, J = 8.5, 6.3 Hz, 6H).

 $\underline{^{13}C}$ NMR (126 MHz, CDCl₃) δ 172.3, 170.5, 155.9, 136.3, 136.1, 129.4, 128.6, 128.5, 128.2, 128.0, 127.0, 67.0, 61.3, 56.0, 50.9, 41.5, 38.4, 24.7, 22.7, 22.0, 14.1.

Cbz-L-Val-Gly-OEt (**2b**) emical Formula: C₁₇H₂₄N Molecular Weight: 336,3

Synthesis of Cbz-L-Val-Gly-OEt (2b):

Scale: 0.64 mmol

<u>Yield</u>: 95% (0.20 g in presence of 10% THF) – 26% (0.06 g without THF)

<u>Aspect</u>: white powder – <u>mp:</u> 150-151 °C

 $\underline{\mathbf{R}}_{\mathbf{f}} = 0.43$ (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 6.81 (s, 1H), 5.60 (d, *J* = 8.9 Hz, 1H), 5.09 (q, *J* = 12.2 Hz, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 4.11 (dq, *J* = 9.6, 3.6, 3.1 Hz, 1H), 4.00 (ddd, *J* = 62.0, 18.1, 5.3 Hz, 2H), 2.15 (dt, *J* = 13.4, 6.1 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.96 (dd, *J* = 21.9, 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 171.8, 169.8, 156.6, 136.3, 128.6, 128.2, 128.1, 67.1, 61.6, 60.3, 41.3, 31.2, 19.3, 17.9, 14.2.

Synthesis of Z-L-Orn(Boc)-L-Leu-OMe (**2c**): <u>Scale</u>: 0.32 mmol <u>Yield</u>: 91% (0.143 g) <u>Aspect</u>: white powder – <u>mp:</u> 75 °C <u>R_f</u> = 0.66 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.90 (s, 1H), 5.62 (d, *J* = 8.4 Hz, 1H), 5.09 (s, 2H), 4.82 (s, 1H), 4.55 (ddd, *J* = 9.4, 8.0, 4.8 Hz, 1H), 4.41 (s, 1H), 3.70 (s, 3H), 3.33 (s, 3H), 3.11 – 3.00 (m, 1H), 2.15 – 1.82 (m, 2H), 1.60 (dddd, *J* = 45.1, 18.0, 13.3, 8.1 Hz, 6H), 1.43 (s, 9H), 0.92 (dd, *J* = 9.6, 6.2 Hz, 6H). ¹³<u>C NMR</u> (126 MHz, CDCl₃) δ 173.3, 172.0, 156.8, 156.4, 136.4, 128.6, 128.2, 128.1, 79.4, 67.0, 53.4, 52.3, 51.0, 40.9, 30.4, 28.5, 26.3, 24.9, 23.0, 21.7. <u>MS (ESI)</u> 516.2 [M+Na]⁺ HRMS (ESI): *m/z* calc. for [C₂₅H₃₉N₃O₇Na]: 516.2686, found 516.2667.

Synthesis of Cbz-L-Pro-Gly-OEt (**2d**): Scale: 1.8 mmol <u>Yield</u>: 85% (0.50 g in presence of 10% THF) – 42% (0.25 g without THF) <u>Aspect</u>: colorless oil

 $\underline{\mathbf{R}}_{\mathbf{f}} = 0.14$ (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 7.15 (bs, 0.5H), 6.51 (bs, 0.5H), 5.18 (d, J = 12.4 Hz, 1H, rotamer 1), 5.15 – 5.05 (m, 1H, rotamer 2), 4.37 (d, J = 24.9 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 4.00 (d, J = 16.4 Hz, 2H), 3.49 (d, J = 52.0 Hz, 2H), 2.23 (d, J = 78.9 Hz, 1H), 2.09 – 1.83 (m, 3H), 1.26 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.6, 172.0, 169.8, 169.6, 156.1, 155.0, 136.4, 128.5, 128.1, 127.9, 67.4, 61.4, 60.8, 60.5, 47.5, 47.1, 41.4, 41.1, 31.1, 28.7, 24.5, 23.6, 14.2.

Synthesis of Cbz-L-Val-L-Ala-OEt (2e):

Scale: 1.2 mmol

Yield: 72% (0.30 g without THF) – 49% (0.21 g in presence of 10% THF)

Aspect: white powder – mp: 140-141 °C

<u>R</u>_f = 0.47 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

<u>**1H NMR**</u> (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.64 (d, *J* = 7.4 Hz, 1H), 5.54 (d, *J* = 8.9 Hz, 1H), 5.17 – 5.04 (m, 2H), 4.56 (p, *J* = 7.2 Hz, 1H), 4.20 (tt, *J* = 7.2, 3.4 Hz, 2H), 4.07 (dd, *J* = 9.0, 6.3 Hz, 1H), 2.11 (dp, *J* = 13.4, 6.5, 5.7 Hz, 1H), 1.39 (d, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.96 (dd, *J* = 21.6, 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 171.1, 156.6, 136.3, 128.6, 128.3, 128.1, 67.2, 67.1, 63.3, 61.7, 60.3, 48.2, 31.5, 19.2, 18.3, 18.0, 14.2.

MS (ESI) 373.1 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₁₈H₂₆N₂O₅Na]: 373.1740, found 373.1733.

Synthesis of Boc-Pro-Leu-OEt (**2f**) <u>Scale</u>: 0.64 mmol <u>Yield</u>: 84% (0.191 g) <u>Aspect</u>: white powder – <u>mp:</u> 84-85 °C <u>**R**</u>_f =0.43 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (600 MHz, CDCl₃) δ 7.33 (s, 1H), 6.42 (s, 1H), 4.71 – 4.45 (m, 1H), 4.45 – 4.22 (m, 1H), 4.18 (qd, J = 7.2, 6.7, 2.5 Hz, 2H), 3.65 – 3.29 (m, 2H), 2.36 (s, 1H), 2.15 (s, 1H), 1.88 (p, J = 6.3, 5.8 Hz, 2H), 1.79 – 1.53 (m, 4H), 1.47 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H), 0.93 (d, J = 6.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 172.8, 172.7, 171.9, 171.8, 155.9, 154.7, 80.9, 80.4, 61.2, 59.7, 51.0, 50.7, 47.1, 42.0, 41.4, 31.0, 29.8, 28.4, 27.8, 24.9, 23.8, 23.0, 22.0, 14.3.

Synthesis of Cbz-Gly-Gly-OEt (**2g**) <u>Scale</u>: 0.2 mmol <u>Yield</u>: 63% (0.0559 g in presence of 10% THF) – 30% (0.0162 g without THF) <u>Aspect</u>: pale yellow crystal – <u>mp:</u> 80-81 °C <u>R_f</u> = 0.62 (AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 6.90 (bs, 1H), 5.82 (bs, 1H), 5.11 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.99 (d, J = 5.4 Hz, 2H), 3.91 (d, J = 5.8 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.9, 169.7, 156.9, 136.3, 128.6, 128.3, 128.2, 67.3, 61.7, 44.5, 41.3, 14.2.

MS (ESI) 317.1 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₁₄H₁₈N₂O₅Na]: 317.1113, found 317.1110.

Synthesis of Cbz-L-Ile-L-Val-OMe (**2h**) <u>Scale</u>: 1.7 mmol <u>Yield</u>: 70% (0.47 g) <u>Aspect</u>: white powder – <u>mp:</u> 130-131 °C <u> \mathbf{R}_{f} </u> = 0.71 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (600 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 6.38 (d, *J* = 8.7 Hz, 1H), 5.40 (d, *J* = 8.9 Hz, 1H), 5.12 (s, 2H), 4.54 (dd, *J* = 8.7, 4.9 Hz, 1H), 4.12 – 4.05 (m, 1H), 3.74 (s, 3H), 2.17 (h, *J* = 6.7 Hz, 1H), 1.93 – 1.83 (m, 1H), 1.53 (ddp, *J* = 15.3, 7.7, 3.7 Hz, 1H), 1.16 (ddt, *J* = 14.4, 9.4, 7.2 Hz, 1H), 0.92 (td, *J* = 14.3, 13.5, 6.7 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 172.2, 171.3, 156.4, 136.4, 128.6, 128.3, 128.1, 67.2, 59.8,

57.2, 52.3, 37.5, 31.3, 24.9, 19.0, 17.9, 15.5, 11.5.

MS (ESI) 401.2 [M+Na]⁺

HRMS (ESI): *m*/*z* calc. for [C₂₀H₃₀N₂O₅Na]: 401.2052, found 401.2036.

Synthesis of Cbz-L-Pro-L-Val-OMe (2i)

Scale: 0.3 mmol
Yield: 83% (0.09 g)
Aspect: yellow oil
<u>Rf</u> = 0.39 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain
<u>1H NMR</u> (600 MHz, CDCl₃) δ 7.50 – 7.26 (m, 4H), 7.26 – 7.18 (m, 1H), 6.40 (s, 1H), 5.26 – 5.05 (m, 2H), 4.56 – 4.30 (m, 2H), 3.84 – 3.39 (m, 5H), 2.49 – 1.82 (m, 6H), 0.87 (dd, J = 13.9, 6.8 Hz, 6H).
¹³C NMR (126 MHz, CDCl₃) δ 171.9, 171.4, 155.7, 154.7, 136.3, 67.0, 60.4, 60.0, 57.1,

56.7, 51.7, 47.2, 46.7, 30.8, 27.9, 24.4, 23.4, 18.7, 17.4.

Synthesis of Cbz-L-Ala-L-Phe-OMe (**2j**) <u>Scale</u>: 0.86 mmol **Yield**: 82% (0.22 g)

Aspect: white powder – mp: 89-90 °C

Rf = 0.45 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (600 MHz, CDCl₃) δ 7.45 – 7.27 (m, 5H), 7.27 – 7.05 (m, 5H), 6.38 (bs, 1H), 5.19 (bs, 1H), 5.11 (q, J = 12.2 Hz, 2H), 4.86 (dt, J = 7.8, 5.9 Hz, 1H), 4.22 (t, J = 7.0 Hz, 1H), 3.74 (s, 3H), 3.16 (dd, J = 13.9, 5.8 Hz, 1H), 3.09 (dd, J = 13.9, 6.0 Hz, 1H), 1.35 (d, J = 7.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 171.9, 171.8, 156.0, 136.3, 135.8, 129.4, 128.7, 128.7, 128.3, 128.2, 127.3, 67.2, 53.3, 52.5, 50.5, 38.0, 18.5, 6.2.

Synthesis of Cbz-L-Pro-L-Leu-OEt (**2**k) <u>Scale</u>: 1.1 mmol <u>Yield</u>: 94% (0.40 g) <u>Aspect</u>: white powder – <u>mp</u>: 63-64 °C <u>**R**</u>_f = 0.50 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.33 (m, 5H), 7.11 – 7.02 (bs, 1H), 6.34 (bs, 1H), 5.16 (q, J = 15.5, 14.0 Hz, 2H), 4.52 (s, 1H), 4.36 (t, J = 12.2 Hz, 2H), 4.24 – 4.06 (m, 2H), 3.78 – 3.36 (m, 3H), 2.33 (s, 1H), 2.15 (s, 1H), 2.02 – 1.74 (m, 4H), 1.70 – 1.37 (m, 3H), 1.33 – 1.18 (m, 3H), 0.89 (dd, J = 6.3, 2.9 Hz, 6H).

<u>¹³C NMR</u> (101 MHz, CDCl₃) δ 172.7 (major rotamer), 172.6 (minor rotamer), 172.0 (minor rotamer), 171.4 (major rotamer), 156.1 (major rotamer), 155.0 (minor rotamer),

136.5, 136.3, 128.5, 128.0, 127.8, 67.3, 61.2, 60.7 (minor rotamer), 60.3 (major rotamer), 51.1 (major rotamer), 50.6 (minor rotamer), 47.5 (minor rotamer), 47.0 (major rotamer), 41.3, 31.0, 28.2, 24.9, 24.6, 23.6, 22.8, 22.0, 14.2.

MS (ESI) 413.2 [M+Na]+

HRMS (ESI): *m*/*z* calc. for [C₂₁H₃₀N₂O₅Na]: 413.2052, found 413.2065.

Synthesis of Cbz-D-Phe-L-Pro-OMe (21)

Scale: 3.9 mmol

<u>Yield</u>: 83% (1.3 g)

Aspect: white powder

<u>Rf</u> = 0.40 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (600 MHz, CDCl₃) δ 7.40 – 7.10 (m, 10H), 5.76 – 5.67 (m, 1H), 5.17 – 5.06 (m, 2H), 4.71 (td, J = 8.9, 5.5 Hz, 1H), 4.30 (dd, J = 8.4, 3.8 Hz, 1H), 3.70 (d, J = 2.2 Hz, 3H), 3.65 – 3.49 (m, 2H), 3.08 (dd, J = 13.1, 5.4 Hz, 1H), 2.96 (dd, J = 12.9, 9.3 Hz, 1H), 2.66 (dt, J = 9.4, 6.9 Hz, 1H), 2.30 – 1.94 (m, 1H), 1.98 – 1.80 (m, 3H), 1.52 (qd, J = 6.9, 4.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 172.3, 170.0, 155.6, 136.5, 136.3, 129.6, 129.3, 128.5, 128.5, 128.1, 128.1, 128.0, 127.1, 66.9, 58.8, 54. 1, 52.3, 46.9, 40.3, 29.0, 24.5.
 MS (ESI) 433.1 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₂₃H₂₆N₂O₅Na]: 433.1740, found 433.1754.

Synthesis of Cbz-L-Asp(tBu)-L-Ala-OMe (**2m**) <u>Scale</u>: 1.2 mmol <u>Yield</u>: 83% (0.40 g in presence of 10% THF) – 74% (0.35 g without THF) <u>Aspect</u>: white powder – <u>mp:</u> 79-80 °C <u>Rf</u> = 0.39 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain <u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.37 – 7.24 (m, 4H), 7.12 (d, J = 7.4 Hz, 1H), 6.06 (d, J = 8.5 Hz, 1H), 5.09 (s, 2H), 4.51 (dq, J = 21.7, 7.1 Hz, 2H), 3.68 (s, 3H), 2.84 (dd, J = 17.0, 4.9 Hz, 1H), 2.62 (dd, J = 17.1, 6.6 Hz, 1H), 1.40 (s, 9H), 1.34 (d, J = 7.2 Hz, 3H). <u>¹³C NMR</u> (126 MHz, CDCl₃) δ 172.8, 170.8, 170.2, 155.9, 136.1, 128.4, 128.1, 128.0, 81.6, 70.4, 67.0, 52.2, 51.0, 48.2, 37.6, 27.9, 17.8. <u>MS (ESI)</u> 431.1 [M+Na]⁺

<u>HRMS (ESI)</u>: m/z calc. for [C₂₀H₂₈N₂O₇Na]: 431.1794, found 431.1774.

Synthesis of Cbz-L-Tyr-L-Tyr-OMe (**2n**) <u>Scale</u>: 0.15 mmol <u>Yield</u>: 84% (0.064 g) <u>Aspect</u>: white powder-<u>mp:</u> 67-68 °C <u>*Rf*</u> = 0.10 (1:1 hexanes/AcOEt) - Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.46 - 7.29 (m, 5H), 7.15 (bd, *J* = 8.0 Hz, 0.7H), 7.08 - 7.04 (bd, *J* = 8.5 Hz, 0.5H), 6.99 (bd, *J* = 7.7 Hz, 1H), 6.81 (m, 2H), 6.66 (dd, *J* = 8.5, 6.9 Hz, 3H), 6.19 (d, *J* = 7.9 Hz, 1H), 5.67 (s, 1H), 5.38 (d, *J* = 8.1 Hz, 1H), 5.10 (s, 2H), 4.79 - 4.68 (m, 1H), 4.36 (bs, 1H), 3.70 (d, *J* = 4.1 Hz, 3H), 3.05 - 2.85 (m, 4H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 171.8, 171.1, 156.3, 155.3, 136.0, 130.6, 130.4, 128.7, 128.4, 128.3, 128.2, 127.0, 115.8, 67.5, 56.4, 53.6, 52.6, 37.8, 37.0, 29.8.

MS (ESI) 515.1 [M+Na]+

HRMS (ESI): *m*/z calc. for [C₂₇H₂₈N₂O₇Na]: 515.1794, found 515.1799.

Synthesis of Cbz-L-Ser-L-Ile-OMe (20)

Scale: 1.2 mmol

Yield: 82% (0.36 g in presence of 10% THF) – 44% (0.19 g without THF)

Aspect: pale yellow oil

<u>Rf</u> = 0.15 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain

<u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.22 (bd, J = 8.5 Hz, 1H), 6.05 (d, J = 7.6 Hz, 1H), 5.17 – 5.05 (m, 2H), 4.53 (dd, J = 8.5, 5.0 Hz, 1H), 4.34 (dt, J = 10.9, 4.7 Hz, 1H), 3.98 (dd, J = 11.3, 4.1 Hz, 1H), 3.77 – 3.64 (m, 4H), 1.95 – 1.85 (m, 1H), 1.39 (dqd, J = 14.6, 7.3, 4.3 Hz, 1H), 1.21 – 1.10 (m, 1H), 0.93 – 0.85 (m, 6H).

<u>13C NMR</u> (126 MHz, CDCl₃) δ 172.5, 171.1, 156.7, 136.1, 128.6, 128.3, 128.1, 67.3, 62.9, 57.0, 55.5, 52.3, 37.4, 25.1, 15.6, 11.6.

MS (ESI) 389.1 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₁₈H₂₆N₂O₆Na]: 389.1689, found 389.1686.

Synthesis of Cbz-L-Phe-L-ALa-OMe (**2p**) <u>Scale</u>: 3.9 mmol <u>Yield</u>: 85% (1.32 g) <u>Aspect</u>: white powder – <u>mp</u>: 210-212 °C <u>Rf</u> = 0.61 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.40 – 7.12 (m, 11H), 6.77 (d, *J* = 7.2 Hz, 1H), 5.65 (d, *J* = 8.3 Hz, 1H), 5.06 (q, *J* = 12.3 Hz, 2H), 4.50 (dq, *J* = 14.3, 7.4 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.15 – 3.00 (m, 2H), 1.32 (d, *J* = 7.1 Hz, 4H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³<u>C NMR</u> (101 MHz, CDCl₃) δ 172.2, 170.4, 155.7, 136.1, 135.9, 129.0, 128.2, 128.2, 127.8, 127.6, 126.6, 66.6, 61.2, 55.7, 47.9, 38.3, 17.9, 13.8. <u>MS (ESI)</u> 421.2 [M+Na]⁺ <u>HRMS (ESI)</u>: *m/z* calc. for [C₂₂H₂₆N₂O₅Na]: 421.1740, found 421.1742.

Synthesis of Cbz-L-Pro-L-Ala-OMe (**2q**) Scale: 0.8 mmol Yield: 65% (0.18 g) Aspect: pale yellow oil Rf = 0.29 (1:1 hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.27 (m, 5H), 7.19 – 7.01 (bs, 1H), 6.47 (bs, 1H), 5.16 (s, 2H), 4.57 – 4.41 (m, 1H), 4.41 – 4.25 (m, 1H), 4.25 – 4.08 (m, 2H), 3.68 – 3.35 (m, 2H), 2.22 (m, 2H), 2.06 – 1.82 (m, 3H), 1.46 – 1.17 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 171.4, 156.1, 155.0, 136.5, 128.6, 128.1, 128.0, 61.5, 60.8, 60.5, 48.3, 48.1, 47.6, 47.1, 31.1, 29.8, 28.6, 24.6, 23.7, 18.3, 14.2. MS (ESI) 371.1 [M+Na]⁺ HRMS (ESI): m/z calc. for [C₁₈H₂₄N₂O₅Na]: 371.1583, found 371.1592.

Synthesis of Cbz-L-Pro-L-Tyr-OMe (**2r**) <u>Scale</u>: 6.6.10⁻⁴ mol <u>Yield</u>: 71% (0.20 g)

Aspect: yellow oil

<u>**R**</u>_f = 0.61 (1:1 hexanes/AcOEt) − Cerium Ammonium Molybdate stain <u>**1**H NMR</u> (400 MHz, CDCl₃) δ 7.44 − 7.28 (m, 4H), 7.14 (d, J = 8.0 Hz, 1H), 6.91 (t, J = 9.1 Hz, 2H), 6.80 − 6.63 (m, 2H), 6.46 − 6.36 (m, 1H), 5.27 − 5.01 (m, 2H), 4.82 (q, J = 6.8 Hz, 1H), 4.32 (t, J = 14.4 Hz, 1H), 3.69 (d, J = 22.2 Hz, 3H), 3.44 (ddd, J = 26.8, 15.4, 6.6 Hz, 2H), 3.09 (d, J = 13.1 Hz, 1H), 3.00 − 2.78 (m, 1H), 2.30 − 1.56 (m, 4H). <u>**13**C NMR</u> (101 MHz, CDCl₃) δ 172.1, 171.7, 155.5, 136.4, 130.4, 128.6, 128.3, 128.1, 127.2, 115.5, 67.6, 60.8, 60.4, 53.6, 52.5, 47.5, 47.0, 37.3, 28.5, 24.5.

MS (ESI) 449.1 [M+Na]+

HRMS (ESI): *m*/z calc. for [C₂₃H₂₆N₂O₆Na]: 449.1689, found 449.1702.

Synthesis of Cbz-L-Arg(Pbf)-L-Ala-OEt (2s)

As the counterion of Cbz-Arg(Pbf)-OH is a cyclohexylammonium, 2.0 equiv of this amino acid, as well as 2.0 equiv of COMU were used.

<u>Scale</u>: 1.0.10⁻⁴ mol

<u>Yield</u>: 75% (0.024 g in presence of 10% THF) – 41% (0.013 g without THF)

Aspect: yellow oil

R_f = 0.58 (AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H</u> NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 3.6 Hz, 5H), 6.79 (s, 1H), 6.23 (s, 2H), 6.00 (s, 1H), 5.89 (d, *J* = 8.1 Hz, 0H), 5.06 (t, *J* = 3.0 Hz, 2H), 4.53 – 4.33 (m, 1H), 4.28 – 4.11 (m, 1H), 3.67 (t, *J* = 10.3 Hz, 1H), 3.24 (s, 2H), 2.94 (s, 2H), 2.58 (d, *J* = 2.9 Hz, 3H), 2.50 (s, 3H), 2.09 (s, 3H), 1.80 (d, *J* = 15.0 Hz, 3H), 1.72 – 1.52 (m, 6H), 1.46 (s, 6H), 1.40 (d, *J* = 7.3 Hz, 1H), 1.27 (td, *J* = 11.8, 11.3, 5.4 Hz, 4H), 1.10 (q, *J* = 12.3, 11.5 Hz, 1H).

 $^{13} \underline{C}$ NMR (151 MHz, CDCl₃) δ 171.1, 170.8, 158.9, 156.5, 138.5, 136.4, 132.8, 132.4, 128.6, 128.3, 128.0, 128.0, 124.8, 117.7, 86.6, 67.1, 61.7, 56.1, 48.8, 32.8, 32.7, 29.8, 28.7, 25.5, 25.1, 19.4, 18.1, 14.2, 12.6.

MS (ESI) 682.3 [M+Na]+

HRMS (ESI): *m*/*z* calc. for [C₃₂H₄₅N₂O₈SNa]: 682.2886, found 682.2896.

4. General procedure for Cbz-deprotection/coupling in 1-pot

Figure 2 : General Scheme for the One-Pot Deprotection/Coupling Step - Access to Longer Peptides

To a microwave vial was added the Cbz-protected dipeptide 2x (1.1 equiv, [0.5 M]) followed by a solution of HCl (12 M; 1.0 equiv) in a 2 wt % solution of TPGS-750-M/H₂O. After dissolution, $Pd/C_{10\%}$ (10 wt %) was added. The vial was purged twice with hydrogen gas (balloon) and kept under H₂ atmosphere for 2 h at rt (20-25 °C). The reaction was followed by TLC (1:1 mixture of hexanes/EtOAc – UV and ninhydrin). After completion, the vial was purged with argon for 0.5 h. If noted in the text, 10% THF was then added. The next N-protected-amino acid or peptide (hydrolyzed according to the literature)² (1.0 equiv) and COMU (3.05 equiv) were added. After 5 min, 2.6-lutidine (3.05 equiv) was added and the reaction was stirred for 2 h at rt (20-25 °C). The product was filtered through a pad of Celite® and extracted with MTBE or a 1:1 mixture of hexanes/EtOAc (10 mL). The organic layer was washed with a solution of HCl (1 M; 2 x 5 mL), with a saturated solution of sodium carbonate $(2 \times 5 \text{ mL})$ and brine $(1 \times 5 \text{ mL})$. The solution was dried over anhydrous MgSO₄, filtered and concentrated in vacuo to yield the desired peptide, which can be used without further purification. Yields were determined after flash chromatography with a gradient of hexanes: EtOAc: 100 / 90:10 / 75:25 / 50:50 / 25:75 / 0:100 (100 mL each)

Preparation of Tripeptides

Synthesis of Cbz-L-Ala-L-Phe-L-Leu-OEt (**3a**) [from Cbz-L-Ala-OH + **2a**] <u>Scale</u>: 0.6 mmol <u>Yield</u>: 92% (0.285 g) <u>Aspect</u>: white powder – <u>mp:</u> 129-130 °C **R**_f = 0.39 (1:1 Hexanes/AcOEt) – Cerium Ammonium Molybdate stain

² G. S. Hamilton; Y-Q. Wu; D. C. Limburg; D. E. Wilkinson; M. J. Vaal; J-H. Li; C. Thomas; W. Huang; H. Sauer; D. T. Ross; R. Soni; Y. Chen; H. Guo; P. Howorth; H. Valentine; S. Liang; D. Spicer; M. Fuller; J. P. Steiner. *J. Med. Chem.* **2002**, *45*, 3549-3557.

¹<u>H NMR</u> (600 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 7.27 – 7.15 (m, 5H), 6.81 (bd, *J* = 7.7 Hz, 1H), 6.56 (bd, *J* = 7.7 Hz, 1H), 5.41 (d, *J* = 7.2 Hz, 1H), 5.16 – 4.99 (dd, *J* = 50.0, 12.2 Hz, 2H), 4.73 (q, *J* = 7.2 Hz, 1H), 4.52 (td, *J* = 8.5, 5.3 Hz, 1H), 4.24 (d, *J* = 7.1 Hz, 1H), 4.15 (qd, *J* = 7.1, 1.6 Hz, 2H), 3.08 (d, *J* = 6.7 Hz, 2H), 1.54 (dddd, *J* = 42.2, 21.4, 9.9, 6.5 Hz, 3H), 1.31 (d, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.88 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 172.4, 172.4, 170.5, 156.0, 136.4, 136.3, 129.4, 128.6, 128.5, 128.3, 128.1, 127.0, 67.1, 61.3, 54.2, 51.0, 50.7, 41.4, 38.2, 24.8, 22.8, 22.1, 18.7, 14.2.

MS (ESI) 534.2 [M+Na]+

HRMS (ESI): *m*/z calc. for [C₂₈H₃₇N₃O₆Na]: 534.2580, found 534.2560.

Synthesis of Cbz-Gly-L-Phe-L-Leu-OEt (**3b**) [from Cbz-Gly-OH + **2a**] Scale: 0.3 mmol

<u>Scale</u>: 0.3 million Yield: 82% (0.125 g)

Aspect: yellow syrup

 $\underline{\mathbf{R}}_{\mathbf{f}} = 0.30 (1:1 \text{ Hexanes/AcOEt}) - Cerium Ammonium Molybdate stain$

¹<u>H</u> NMR (500 MHz, CDCl₃) δ 7.40 – 7.10 (m, 10H), 6.86 (bd, *J* = 8.1 Hz, 1H), 5.83 (bt, *J* = 5.6 Hz, 1H), 5.09 (s, 2H), 4.80 (q, *J* = 7.2 Hz, 1H), 4.51 (td, *J* = 8.3, 5.2 Hz, 1H), 4.13 (qd, *J* = 7.1, 1.2 Hz, 2H), 3.84 (t, *J* = 5.5 Hz, 2H), 3.04 (t, *J* = 7.8 Hz, 2H), 1.62 – 1.42 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.90 – 0.83 (d, *J* = 4.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 172.5, 170.7, 169.2, 156.7, 136.4, 129.5, 128.6, 128.2, 128.1, 127.0, 67.2, 61.4, 54.4, 51.1, 44.5, 41.4, 38.5, 31.7, 24.8, 22.7, 22.1, 14.2. **MS (ESI)** 520.2 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₂₇H₃₅N₃O₆Na]: 520.2424, found 520.2433.

Synthesis of Cbz-L-Lys(Cbz)-L-Pro-L-Val-OMe (**3c**) [from Cbz-L-Lys(Cbz)-OH + **2i**] <u>Scale</u>: 0.27 mmol <u>Yield</u>: 65% (0.17 g in presence of 10% THF) – 51% (0.09 g without THF) <u>Aspect</u>: pale yellow syrup <u>R_f</u> = 0.36 (1:1 Hexanes/AcOEt) – Cerium Ammonium Molybdate stain <u>**1H NMR**</u> (500 MHz, CDCl₃) δ 7.43 – 7.27 (m, 10H), 6.95 (d, *J* = 8.7 Hz, 1H), 5.64 (d, *J* = 8.6 Hz, 1H), 5.27 (t, *J* = 6.2 Hz, 1H), 5.09 (d, *J* = 6.3 Hz, 4H), 4.61 – 4.45 (m, 2H), 3.71 (s, 3H), 3.77 – 3.53 (m, 1H), 3.27 – 3.11 (m, 2H), 2.28 (dt, *J* = 11.5, 3.8 Hz, 1H), 2.21 – 2.08 (m, 2H), 1.98 (ddd, *J* = 15.8, 11.3, 6.9 Hz, 2H), 1.81 – 1.20 (m, 9H), 0.88 (dd, *J* = 9.7, 6.8 Hz, 6H).

 $\frac{1^{3}$ C NMR} (126 MHz, CDCl₃) δ 172.4, 172.0, 171.1, 156.7, 156.2, 136.9, 136.4, 128.6, 128.6, 128.3, 128.2, 128.1, 67.1, 66.7, 60.2, 57.4, 52.3, 52.2, 47.6, 40.6, 32.6, 31.3, 29.8, 29.4, 27.8, 25.3, 22.0, 19.1, 17.7.

MS (ESI) 647.3 [M+Na]⁺

HRMS (ESI): m/z calc. for [C₃₃H₄₄N₄O₈Na]: 647.3057, found 647.3056.

Synthesis of Cbz-L-Val-L-Orn(Boc)-L-Leu-OMe (**3d**) [from Cbz-L-Val-OH + **2c**] Scale: 0.1 mmol (0.027 g)

<u>Yield</u>: 79% (0.05 g in presence of 10% THF) – 51% (0.03 g without THF)

<u>Aspect</u>: white powder – <u>mp:</u> 153-155 °C

 $\mathbf{R}_{f} = 0.21 (1:1 \text{ Hexanes/AcOEt}) - Cerium Ammonium Molybdate stain$

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 7.05 (d, J = 22.6 Hz, 2H), 5.74 – 5.48 (m, 1H), 5.18 – 5.03 (m, 2H), 4.87 (s, 1H), 4.69 – 4.63 (m, 1H), 4.53 (dddd, J = 9.5, 7.3, 5.0, 2.1 Hz, 1H), 4.16 – 4.05 (m, 1H), 3.70 (s, 3H), 3.31 (d, J = 12.5 Hz, 1H), 3.06 (d, J = 14.2 Hz, 1H), 2.17 – 1.78 (m, 3H), 1.74 – 1.49 (m, 6H), 1.43 (s, 9H), 0.99 – 0.82 (m, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 173.2, 171.8, 171.7, 156.9, 156.6, 136.5, 128.6, 128.2, 128.1, 79.4, 67.1, 60.4, 52.3, 52.0, 51.0, 40.8, 39.3, 31.5, 29.7, 28.6, 26.6, 24.9, 23.0, 21.7, 19.3, 18.0.

MS (ESI) 615.3 [M+Na]+

HRMS (ESI): m/z calc. for $[C_{30}H_{48}N_4O_8N_a]$: 615.3370, found 615.3395.

Synthesis of Cbz-D-Phe-L-Pro-L-Val-OMe (**3e**) [from Cbz-D-Phe-OH + **2i**] <u>Scale</u>: 0.6 mmol <u>Yield</u>: 66% (0.219 g) <u>Aspect</u>: yellow syrup <u>R_f</u> = 0.36 (1:1 Hexanes/AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 1H), 7.40 – 7.16 (m, 10H), 5.65 (d, *J* = 8.2 Hz, 1H), 5.16 – 4.96 (m, 2H), 4.66 (q, *J* = 8.0 Hz, 1H), 4.53 – 4.37 (m, 2H), 3.68 (s, 3H), 3.56 (td, *J* = 9.1, 2.6 Hz, 1H), 3.01 (d, *J* = 7.8 Hz, 2H), 2.56 (td, *J* = 9.7, 7.1 Hz, 1H), 2.24 (ddt, *J* = 12.0, 6.7, 2.1 Hz, 1H), 2.13 (tdd, *J* = 13.8, 6.3, 4.1 Hz, 1H), 1.90 – 1.76 (m, 1H), 1.59 – 1.39 (m, 2H), 0.84 (dd, *J* = 6.9, 3.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 172.1, 171.7, 170.6, 155.8, 136.3, 135.9, 129.4, 128.6, 128.5, 128.2, 128.0, 127.3, 67.0, 60.0, 57.4, 54.3, 52.0, 47.0, 39.3, 30.9, 27.1, 24.3, 19.1, 17.7.

<u>MS (ESI)</u> 532.2 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₂₈H₃₅N₃O₆Na]: 532.2424, found 532.2440.

Preparation of Tetrapeptides

Synthesis of Cbz-L-Phe-L-Leu-L-Ile-L-Val-OMe (4a) [from 2a + 2h]

<u>Scale</u>: 6.9.10⁻⁵ mol

<u>Yield</u>: 70% (0.031 g)

<u>Aspect</u>: white powder – <u>mp:</u> 194-195 °C

 $\underline{\mathbf{R}}_{\mathbf{f}}$ = 0.7 (100% AcOEt) – Cerium Ammonium Molybdate stain

<u>¹H NMR</u> (600 MHz, CDCl₃) δ 7.81 (bs, 1H), 7.69 (bs, 1H), 7.41 (bs, 1H), 7.34 – 7.05 (m, 10H), 6.13 – 5.97 (m, 1H), 5.02 (dd, J = 93.8, 12.5 Hz, 2H), 4.85 (q, J = 7.3 Hz, 1H), 4.76 (q, J = 8.0 Hz, 1H), 4.71 – 4.57 (m, 3H), 3.73 (s, 3H), 3.01 (td, J = 12.7, 11.4, 6.4 Hz, 2H), 2.14 (dq, J = 13.3, 6.7 Hz, 1H), 1.83 (d, J = 14.0 Hz, 3H), 1.53 (dddd, J = 50.4, 27.4, 12.2, 5.2 Hz, 4H), 1.37 – 1.18 (m, 3H), 1.10 (ddd, J = 13.4, 9.4, 6.9, 1H), 0.99 – 0.78 (m, 24H).

 ^{13}C NMR (151 MHz, CDCl₃) δ 185.4, 172.7, 172.3, 171.7, 171.1, 136.6, 129.5, 128.5, 128.4, 128.0, 128.0, 126.8, 66.8, 58.0, 57.1, 52.3, 51.6, 42.4, 39.2, 37.3, 31.3, 29.8, 25.3, 24.9, 22.8, 22.6, 19.1, 18.0, 15.4, 11.6.

MS (ESI) 661.3 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₃₅H₅₀N₄O₇Na]: 661.3577, found 661.3566.

Synthesis of Cbz-L-Pro-L-Leu-L-Phe-L-Leu-OEt (4b) [from 2k + 2a]

<u>Scale</u>: 9.25.10⁻⁵ mol

<u>Yield</u>: 89% (0.0535 g)

Aspect: white powder – mp: 148-150 °C

 $\underline{\mathbf{R}}_{f} = 0.21 (1:1 \text{ Hexanes/AcOEt}) - Cerium Ammonium Molybdate stain$

<u>¹H NMR</u> (600 MHz, CDCl₃) δ 7.41 – 7.15 (m, 5H), 6.89 (bd, J = 8.4 Hz, 1H), 6.82 (bd, J = 6.5 Hz, 1H), 6.67 (bd, J = 8.3 Hz, 1H), 5.16 (d, J = 4.1 Hz, 2H), 4.74 (q, J = 7.6 Hz, 1H), 4.55 – 4.50 (m, 1H), 4.28 – 4.11 (m, 2H), 3.51 (dq, J = 15.5, 8.5, 7.4 Hz, 2H), 3.28 (dd, J = 14.6, 5.6 Hz, 1H), 3.10 – 3.00 (m, 1H), 2.21 – 1.79 (m, 4H), 1.68 – 1.44 (m, 2H), 1.35 (ddd, J = 14.5, 9.6, 5.7 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.00 – 0.72 (m, 6H).

¹³C NM_R (151 MHz, CDCl₃) δ 172.4, 172.3, 171.6, 170.8, 156.5, 137.2, 136.1, 129.2, 128.7, 128.6, 128.5, 128.4, 127.9, 126.8, 67.7, 61.2, 60.9, 53.8, 52.8, 51.1, 47.2, 41.1, 40.0, 37.3, 29.8, 28.6, 25.0, 24.8, 23.0, 21.9, 21.7, 14.2.

MS (ESI) 673.3 [M+Na]⁺

HRMS (ESI): *m*/*z* calc. for [C₃₆H₅₀N₄O₇Na]: 673.3577, found 673.3583.

Synthesis of Cbz-L-Val-L-Gly-L-Val-L-Ala-OEt (4c) [from 2b + 2e]

<u>Scale</u>: 0.11 mmol

Yield: 60% (0.33 g)

Aspect: White powder – mp: 170-171 °C

R_f = 0.44 (100% AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.41 (bs, 1H), 7.33 (m, 5H), 7.15 (bd, J = 7.6 Hz, 1H), 7.06 (bd, J = 8.9 Hz, 1H), 5.80 (bd, J = 8.7 Hz, 1H), 5.17 – 5.01 (m, 2H), 4.56 (p, J = 7.3 Hz, 1H), 4.47 (t, J = 8.0 Hz, 1H), 4.28 – 4.11 (m, 3H), 3.97 (dd, J = 16.5, 4.7 Hz, 1H), 2.10 (dq, J = 13.5, 6.7 Hz, 2H), 1.36 (d, J = 7.2 Hz, 3H), 1.31 – 1.21 (m, 3H), 0.95 (ddd, J = 13.7, 6.8, 3.8 Hz, 12H).

¹³C NMR (101 MHz, MeOD) δ 175.0, 174.0, 173.2, 171.3, 158.8, 138.2, 129.5, 129.0, 128.8, 67.7, 62.6, 62.3, 59.9, 43.5, 32.0, 31.5, 19.7, 19.6, 18.7, 17.3, 14.5.

<u>MS (ESI)</u> 529.3 [M+Na]⁺

HRMS (ESI): *m*/z calc. for [C₂₅H₃₈N₄O₇Na]: 529.2638, found 529.2654.

Synthesis of Cbz-L-Pro-L-Val-L-Pro-L-Tyr-OMe (4d) [from 2i + 2r] <u>Scale</u>: 0.35 mmol **Yield**: 86% (0.13 g) in presence of 10% THF

Aspect: Yellow oil

R_f = 0.17 (100% AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.19 (bd, *J* = 8.4 Hz, 1H), 7.07 (bd, *J* = 8.1 Hz, 0.2H), 6.97 (m, 2H), 6.86 – 6.66 (m, 2H), 5.26 – 5.00 (m, 2H), 4.67 (q, *J* = 6.4 Hz, 1H), 4.53 (m, 2H), 4.37 (m, 1H), 4.16 – 4.06 (m, 0.4H), 3.72 (d, *J* = 9.3 Hz, 3H), 3.68 – 3.34 (m, 4H), 3.27 – 3.22 (m, 0.5H), 3.12 – 2.91 (m, 2H), 2.85 (s, 1H), 2.28 – 1.69 (m, 10H), 0.89 (t, *J* = 4.7 Hz, 3H), 0.76 (dd, *J* = 13.1, 6.6 Hz, 3H).

<u>13C NMR</u> (126 MHz, CDCl₃) δ 172.5, 172.0, 171.7, 171.1, 155.9, 155.7, 136.5, 136.5, 130.5, 130.4, 130.2, 128.6, 128.6, 128.3, 128.2, 128.0, 127.6, 115.7, 67.5, 66.8, 61.1, 60.6, 60.1, 56.0, 55.4, 54.0, 53.8, 52.4, 47.7, 47.4, 47.1, 38.5, 31.3, 29.8, 28.8, 27.9, 25.1, 24.7, 24.2, 23.8, 19.6, 17.7.

MS (ESI) 645.3 [M+Na]⁺

HRMS (ESI): m/z calc. for $[C_{33}H_{42}N_4O_8Na]$: 645.2900, found 645.2910.

Preparation of Pentapeptides

Synthesis of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (**5a**) [from **3e** + **2c**] <u>Scale</u>: 0.10 mmol <u>Yield</u>: 88% (0.081 g) <u>Aspect</u>: white crystalline powder – <u>mp</u>: 66-68 °C <u>Rf</u> = 0.64 (100% AcOEt) – Cerium Ammonium Molybdate stain ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 8.19 (bs, 0.5H), 7.41 – 7.16 (m, 10H), 6.96 (d, J = 18.8 Hz, 2H), 6.72 (d, J = 53.6 Hz, 1H), 5.61 – 5.45 (m, 0.5H), 5.19 – 4.93 (m, 2H), 4.89 (d, J = 12.4 Hz, 1H), 4.56 (s, 1H), 4.49 – 4.26 (m, 2H), 4.27 – 4.11 (m, 2H), 3.79 (td, J = 9.1, 7.8, 4.0 Hz, 1H), 3.72 (s, 3H), 3.40 (d, J = 43.8 Hz, 1H), 3.16 – 2.92 (m, 3H), 2.77 (s, 1H), 2.60 (s, 1H), 2.39 (s, 1H), 2.06 – 1.49 (m, 10H), 1.49 – 1.29 (m, 9H), 1.13 – 0.72 (m, 12H). <u>1³C NMR</u> (101 MHz, CDCl₃) δ 174.1, 173.2, 172.8, 172.2, 171.6, 157.1, 156.7, 135.8, 129.4, 128.7, 128.6, 128.3, 127.5, 79.6, 67.2, 61.6, 59.9, 55.3, 54.1, 52.4, 50.9, 40.5, 37.6, 29.4, 28.8, 28.5, 28.5, 27.3, 24.9, 24.6, 23.2, 21.7, 19.8, 18.7.

MS (ESI) 859.4 [M+Na]+

HRMS (ESI): *m*/*z* calc. for [C₄₄H₆₄N₆O₁₀Na]: 859.4582, found 859.4563.

Synthesis of Cbz-L-Ala-L-Phe-L-Leu-L-Asp(OtBu)-L-Ala-OMe (5b) [from 3a + 2m] Scale: 0.16 mmol Yield: 89% (0.106 g) Aspect: white powder – mp: 201-202 °C R_f = 0.54 (100% AcOEt) – Cerium Ammonium Molybdate stain ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 2H), 7.30 (ddd, J = 8.0, 6.3, 2.1 Hz, 4H), 7.20 - 7.12 (m, 3H), 6.87 (m, 1H), 6.79 - 6.67 (m, 1H), 5.29 (dd, J = 15.9, 6.9 Hz, 1H), 5.18 (d, J = 3.7 Hz, 1H), 5.01 (d, J = 12.1 Hz, 1H), 4.92 – 4.82 (m, 1H), 4.78 (d, J = 12.1 Hz, 1H), 4.59 - 4.46 (m, 2H), 4.42 - 4.31 (m, 1H), 4.07 (m, 1H), 3.73 (s, 3H), 3.22 (dd, J = 14.5, 5.8 Hz, 1H), 3.08 (dd, J = 14.2, 5.8 Hz, 1H), 2.90 (dd, J = 16.3, 5.5 Hz, 1H), 2.73 (dd, J = 16.2, 8.1 Hz, 1H), 1.82 – 1.62 (m, 3H), 1.55 (ddd, J = 14.1, 10.9, 4.4 Hz, 1H), 1.48 – 1.42 (d, J = 7.2 Hz, 3H), 1.41 (d, J = 1.2 Hz, 9H), 1.36 (d, J = 7.2 Hz, 3H), 0.90 (dd, J = 12.9, 6.5, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 173.1, 172.1, 171.6, 170.6, 170.3, 156.8, 135.8, 135.5, 129.3, 129.1, 128.8, 128.8, 128.7, 128.1, 128.1, 127.5, 81.3, 67.6, 54.9, 53.0, 52.5, 52.2, 49.9, 48.5, 40.0, 37.4, 36.5, 28.1, 24.7, 23.4, 21.2, 17.9, 17.6. MS (ESI) 762.3 [M+Na]+

HRMS (ESI): *m*/z calc. for [C₃₈H₅₃N₅O₁₀Na]: 762.3690, found 762.3707.

Preparation of Hexapeptides

Synthesis of Cbz-L-Pro-L-Leu-L-Phe-L-Leu-L-Phe-L-Ala-OEt (**6a**) [from **4b** + **2p**] <u>Scale</u>: 4.6.10⁻⁵ mol <u>Yield</u>: 89% (0.081 g) <u>Aspect</u>: white powder – <u>mp:</u> 210 °C (degradation) <u>R_f</u> = 0.66 (100% AcOEt) – Cerium Ammonium Molybdate stain <u>1H NMR</u> (500 MHz, CDCl₃) δ 7.43 – 7.05 (m, 15H), 7.00 (bd, *J* = 6.7 Hz, 1H), 6.84 (bd, *J* = 5.9 Hz, 1H), 5.15 (s, 2H), 4.71 (ddd, *J* = 10.7, 8.7, 4.2 Hz, 1H), 4.50 (dq, *J* = 29.0, 7.0, 6.4 Hz, 2H), 4.25 (t, *J* = 7.5 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.11 (dd, *J* = 7.2, 4.4 Hz, 1H), 3.98 (dt, J = 8.9, 4.4 Hz, 1H), 3.58 - 3.44 (m, 3H), 3.21 (tt, J = 15.1, 8.6 Hz, 1H), 2.93 (dd, J = 14.2, 10.8 Hz, 1H), 2.03 - 1.83 (m, 4H), 1.68 (s, 6H), 1.58 (t, J = 6.6 Hz, 2H), 1.46 (d, J = 7.3 Hz, 3H), 1.40 (d, J = 5.3 Hz, 3H), 1.32 - 1.22 (m, 3H), 0.98 - 0.76 (m, 12H). $\frac{1^{3}C \text{ NMR}}{136.4, 135.9, 129.5, 129.1, 128.9, 128.9, 128.7, 128.2, 128.0, 127.3, 126.3, 68.1, 61.3, 60.7, 55.1, 54.7, 54.4, 53.5, 48.6, 47.4, 40.0, 39.2, 37.0, 36.1, 28.1, 25.0, 24.9, 24.7, 23.3, 22.9, 21.7, 20.9, 17.8, 14.3.$

<u>MS (ESI)</u> 891.4 [M+Na]⁺

HRMS (ESI): m/z calc. for [C₄₈H₆₄N₆O₉Na]: 891.4633, found 891.4626.

Synthesis of Cbz-D-Phe-L-Pro-L-L-Orn(Boc)-L-Leu-D-Phe-OMe (6b)

This hexapeptide was obtained with a [5a +H-D-Phe-OMe] coupling step procedure.

<u>Scale</u>: 7.8.10⁻⁵ mol

Yield: 75% (0.057 g)

Aspect: white powder – mp: 82-84 °C

<u>Rf</u> = 0.64 (100% AcOEt) – Cerium Ammonium Molybdate stain

<u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.61 (bd, J = 5.9 Hz, 1H), 7.41 – 7.15 (m, 15H), 7.09 (bd, J = 8.4 Hz, 1H), 6.83 (bd, J = 7.1 Hz, 1H), 5.73 – 5.64 (m, 1H), 5.05 (d, J = 12.1 Hz, 1H), 4.95 – 4.82 (m, 1H), 4.66 (q, J = 7.5 Hz, 1H), 4.50 – 4.35 (m, 3H), 4.11 (dddt, J = 26.1, 20.7, 13.9, 7.0 Hz, 4H), 3.89 – 3.74 (m, 1H), 3.62 (s, 3H), 3.48 (d, J = 15.6 Hz, 1H), 3.14 (ddd, J = 26.3, 14.3, 7.8 Hz, 4H), 2.90 (td, J = 10.7, 8.3, 4.5 Hz, 1H), 2.68 (dd, J = 20.8, 12.2 Hz, 1H), 2.24 (ddd, J = 27.9, 14.8, 6.7 Hz, 1H), 2.11 – 1.54 (m, 15H), 1.51 – 1.25 (m, 9H), 1.02 (t, J = 6.5 Hz, 6H), 0.90 (d, J = 6.6 Hz, 6H).

<u>13C NMR</u> (101 MHz, CDCl₃) δ 173.2, 173.2, 173.2, 172.1, 157.3, 136.9, 135.8, 135.7, 135.5, 129.4, 129.2, 128.6, 128.6, 128.6, 128.4, 128.3, 128.1, 127.9, 127.4, 126.6, 67.1, 66.9, 61.8, 61.5, 60.9, 54.4, 52.3, 52.0, 50.9, 47.4, 40.6, 40.4, 39.4, 37.7, 37.3, 37.1, 29.7, 29.3, 28.8, 28.3, 25.1, 24.8, 24.6, 23.3, 23.1, 21.5, 21.1, 19.6.

MS (ESI) 1006.5 [M+Na]+

HRMS (ESI): m/z calc. for [C₅₃H₇₃N₇O₁₁Na]: 1006.5266, found 1006.5281.

Prepapration of Octapeptides

Synthesis of Cbz-D-Phe-L-Pro-L-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-OMe (8a) [from 6a + 2i]

Scale: 4.1.10⁻⁵ mol

Yield: 86% (0.049 g)

Aspect: white powder – mp: 75-76 °C

Rf = 0.44 (100% AcOEt) – Cerium Ammonium Molybdate stain

<u>¹H NMR</u> (500 MHz, CDCl₃) δ 7.58 (bs, 1H), 7.49 (bs, 1H), 7.42 (bs, 1H), 7.35 – 7.11 (m, 15H), 6.93 – 6.74 (bd, 2H), 4.97 (d, J = 12.2 Hz, 2H), 4.91 – 4.70 (m, 2H), 4.44 – 4.25 (m, 3H), 4.19 (dd, J = 8.5, 6.7 Hz, 1H), 4.04 (ddd, J = 15.7, 12.1, 7.7 Hz, 2H), 3.74 (s, 1H), 3.67 – 3.53 (m, 3H), 3.46 (d, J = 8.7 Hz, 1H), 3.17 – 2.95 (m, 4H), 2.86 (d, J = 11.9 Hz, 1H), 2.68 – 2.51 (m, 1H), 2.30 (td, J = 9.8, 7.0 Hz, 1H), 2.19 – 2.04 (m, 3H), 2.00 – 1.45 (m, 14H), 1.26 (d, J = 7.2 Hz, 12H), 1.02 – 0.74 (m, 15H).

¹³C NMR (126 MHz, CDCl₃) δ 173.8, 173.3, 173.1, 172.4, 172.3, 171.8, 171.7, 171.5, 157.4, 156.6, 135.9, 135.7, 129.7, 129.7, 129.4, 128.8, 128.7, 128.5, 128.5, 128.4, 128.2, 127.6, 127.1, 79.8, 67.1, 61.9, 60.4, 58.4, 57.9, 56.2, 55.6, 54.2, 52.1, 52.0, 47.6, 46.8, 40.7, 39.7, 37.6, 31.0, 30.2, 29.8, 28.5, 25.3, 24.8, 24.1, 23.6, 21.3, 19.8, 19.5, 18.9.
 MS (ESI) 1202.7 [M+Na]⁺

HRMS (ESI): m/z calc. for [C₆₃H₈₉N₉O₁₃Na]: 1202.6477, found 1202.6478.

Preparation of the Decapeptide

Synthesis of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (**10a**) [from **8a** + **2c**]

<u>Scale</u>: 2.3.10⁻⁵ mol

Yield: 82% (0.028 g)

Aspect: white powder – mp: 170-172 °C

Rf = 0.74 (100% AcOEt) – Cerium Ammonium Molybdate stain

¹<u>H NMR</u> (400 MHz, MeOD) δ 7.54 (m, 0.5H), 7.31 – 7.05 (m, 15H), 6.63 – 6.43 (m, 1H), 5.08 – 4.91 (m, 2H), 4.60 (dd, J = 9.2, 6.6 Hz, 1H), 4.56 – 4.40 (m, 1H), 4.36 (dd, J = 10.0, 5.0 Hz, 2H), 4.22 (ddd, J = 24.2, 8.6, 4.6 Hz, 4H), 4.14 – 3.94 (m, 3H), 3.61 (s, 5H), 3.55 – 3.38 (m, 2H), 3.12 – 2.81 (m, 8H), 2.81 – 2.58 (m, 2H), 2.19 – 2.00 (m, 2H), 1.85 – 1.40 (m, 22H), 1.34 (s, 15H), 1.28 – 1.09 (m, 5H), 0.95 – 0.74 (m, 24H).

 $\frac{{}^{13}\textbf{C}~\textbf{NMR}}{173.1,~159.6,~158.6,~137.7,~130.6,~130.5,~130.2,~129.6,~129.5,~129.5,~129.4,~129.1,~128.9,~128.6,~128.2,~80.0,~61.9,~60.8,~55.0,~54.2,~52.7,~52.1,~41.3,~41.0,~38.6,~31.0,~30.3,~30.1,~28.8,~27.4,~25.8,~25.4,~23.5,~22.3,~21.8,~21.7,~19.8,~19.0,~14.5.}$

MS (ESI) 1529.9 [M+Na]+

HRMS (ESI): m/z calc. for [C₇₉H₁₁₈N₁₂O₁₇Na]: 1529.8635, found 1529.8611.

a. Racemate

Synthesis of Z-DL-Phe-DL-Leu-OEt (2a_{racemate})

To a microwave vial were added Cbz-DL-Phe-OH (1.0 equiv) and HCl•DL-Leu-OEt (1.0 equiv) in a 2 wt % solution of TPGS-750-M/H₂O [0.5 M], followed by 2.6-lutidine (3.05 equiv). After 5 min, COMU (1.05 equiv) was added. The reaction was stirred at rt until completion. The product was extracted with EtOAc (10 mL). The organic layer was washed with a solution of HCl 1 M (2 x 5 mL), with a saturated solution of sodium carbonate (2 x 5 mL) and brine (1 x 5 mL). The solution was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to yield the desired peptide. The product **2a**_{racemate} was purified by flash chromatography on silica with a gradient starting from 100% hexanes to a 1:1 ratio of hexanes/EtOAc. The product (0.75 mg/mL) was then analyzed by chiral HPLC at an absorbance of 210 nm. The method ran at 1.25 mL/min using 5% v/v isopropanol/hexanes through a Lux 5u Cellulose-2 (250 x 4.6 mm) column. The ratio between the two couples of enantiomers is 60:40 (determined by ¹H NMR).

Figure 3 : Chiral HPLC spectra of Cbz-DL-Phe-DL-Le-OEt (2a_{racemate})

	Peak 1	Peak 2	Peak 3	Peak 4
Time (min)	16.724	18.864	33.772	43.196
Area (%)	19.515	32.470	15.019	32.995

a. Coupling step

Compound **2a** obtained by the coupling between Cbz-L-Phe-OH and HCl-L-Leu-OEt was analyzed with the same method at a concentration of 0.75 mg/mL. One peak was identified at 16.692 min. The enantiomeric excess is > 99%.

Figure 4 : Chiral HPLC spectra of Cbz-L-Phe-L-Leu-OEt (2a)- coupling step

	Peak 1
Time (min)	16.692
Area (%)	100

b. Tandem deprotection/coupling step

Compound **2a** obtained by the deprotection of Cbz-L-Leu-OEt followed by, in a 1-pot fashion, coupling with Cbz-L-Phe-OH which was analyzed with the same method at a concentration of 0.75 mg/mL. One peak was identified at 16.800 min. The enantiomeric excess is > 99%.

Figure 5 : Chiral HPLC spectra of Cbz-L-Phe-L-Leu-OEt (**2a**) obtained by tandem deprotection/coupling step

	Peak 1
Time (min)	16.800
Area (%)	100

To a microwave vial was added Cbz-L-Phe-L-Leu-OEt **2a** (1.86 g, 4.06 mmol, 1.1 equiv) followed by $Pd/C_{10\%}$ (0.186 g, 10 wt %) in a 2 wt % solution of TPGS-750-M/H₂O [8.1 mL, 0.5 M]. The vial was purged twice with hydrogen gas (balloon) and kept under H₂ atmosphere for 2 h at rt. The vial was purged with argon for 0.5 h. Cbz-L-Ala-OH (0.78 g, 3.5 mmol, 1.0 equiv) and COMU (1.57 g, 3.7 mmol, 3.05 equiv) were added. After 5 min, 2.6-lutidine (1.2 mL, 10.7 mmol, 3.05 equiv) was added and the reaction was stirred overnight at rt. The product was then filtered through a pad of Celite[®] and extracted with MTBE (20 mL). The organic layer was washed with a solution of HCl (1 M) and then with a saturated solution of sodium carbonate. The solution was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to yield the desired peptide **3a** as a white powder with a global yield of 86 % (1.53 g).

$$E_{factor}$$
 calculation (organic solvent): E_{factor} calculation (organic solvent + water): $E_{factor} = \frac{m_{solvent}}{m_{product}} = \frac{20 \times 0.74}{1.534} = 9.6$ $E_{factor} = \frac{m_{solvent}}{m_{product}} = \frac{20 \times 0.74 + 8.1}{1.534} = 14.9$

7. ¹H and ¹³C NMR spectral analyses

Figure 6 : NMR ¹H of Cbz-L-Phe-L-Leu-OEt (2a)

Figure 7 : NMR ¹³C of Cbz-L-Phe-L-Leu-OEt (2a)

Figure 8 : NMR ¹H of Cbz-L-Val-Gly-OEt (**2b**)

Figure 10 : NMR ¹H of Cbz-L-Orn(Boc)-L-Leu-OMe (**2c**)

Figure 12 : NMR ¹H of Cbz-Pro-Gly-OEt (2d)

Figure 14 : NMR ¹H of Cbz-L-Val-L-Ala-OEt (2e)

Figure 16 : NMR ¹H of Boc-L-Pro-L-Leu-OEt (**2f**)

Figure 17 : NMR ¹³C of Boc-L-Pro-L-Leu-OEt (**2f**)

Figure 18 : NMR ¹H of Cbz-Gly-Gly-OEt (**2g**)

Figure 20 : NMR ¹H of Cbz-L-IIe-L-Val-OMe (2h)

Figure 22 : NMR ¹H of Cbz-L-Pro-L-Val-OMe (2i)

Figure 24 : NMR ¹H of Cbz-L-Ala-L-Phe-OMe (2j)

Figure 25 : NMR ¹³C of Cbz-L-Ala-L-Phe-OMe (**2j**)

Figure 26 : NMR ¹H of Cbz-L-Pro-L-Leu-OEt (2k)

Figure 27 : NMR ¹³C of Cbz-L-Pro-L-Leu-OEt (**2k**)

Figure 28: NMR ¹H of Cbz-D-Phe-L-Pro-OMe (21)

Figure 29 : NMR ¹³C of Cbz-D-Phe-L-Pro-OMe (21)

Figure 30 : NMR ¹H of Cbz-L-Asp(tBu)-L-Ala-OMe (2m)

Figure 32 : NMR ¹H of Cbz-L-Tyr-L-Tyr-OMe (2n)

Figure 34 : NMR ¹H of Cbz-L-Ser-L-Ile-OMe (**20**)

Figure 35 : NMR ¹³C of Cbz-L-Ser-L-Ile-OMe (20)

Figure 36 : NMR ¹H of Cbz-L-Phe-L-ALa-OMe (2p)

Figure 38 : NMR ¹H of Cbz-L-Pro-L-ALa-OMe (2q)

Figure 39 : NMR ¹³C of Cbz-L-Pro-L-ALa-OMe (**2q**)

Figure 40 : NMR ¹H of Cbz-L-Pro-L-Tyr-OMe (2r)

Figure 41 : NMR ¹³C of Cbz-L-Pro-L-Tyr-OMe (2r)

Figure 42 : NMR ¹H of Cbz-L-Arg(Pbf)-L-Ala-OEt (2s)

Figure 44 : NMR ¹H of Cbz-L-Ala-L-Phe-L-Leu-OEt (**3a**)

Figure 46 : NMR ¹H of Cbz-Gly-L-Phe-L-Leu-OEt (**3b**)

Figure 48 : NMR ¹H of Cbz-L-Lys(Cbz)-L-Pro-L-Val-OMe (3c)

Figure 50 : NMR ¹H of Cbz-L-Val-L-Leu-OMe (3d)

Figure 51 : NMR ¹³C of Cbz-L-Val-L-Orn(Boc)-L-Leu-OMe (3d)

Figure 52 : NMR ¹H of Cbz-D-Phe-L-Pro-L-Val-OMe (**3e**)

Figure 53 : NMR ¹³C of Cbz-D-Phe-L-Pro-L-Val-OMe (3e)

Figure 54: NMR ¹H of Cbz-L-Phe-L-Leu-L-IIe-L-Val-OMe (4a)

Figure 55 : ¹³C of Cbz-L-Phe-L-Leu-L-IIe-L-Val-OMe (**4a**)

Figure 56 : ¹H Z-Pro-Leu-Phe-Leu-OEt (**4b**)

Figure 57 :¹³C Z-Pro-Leu-Phe-Leu-OEt (4b)

Figure 58 : NMR ¹H of Cbz-L-Val-Gly-L-Val-L-Ala-OEt (4c)

Figure 59 : NMR ¹³C of Cbz-L-Val-Gly-L-Val-L-Ala-OEt (4c)

Figure 60 : NMR ¹H of Cbz-L-Pro-L-Val-L-Pro-L-Tyr-OMe (4d)

Figure 61 : NMR ¹³C of Cbz-L-Pro-L-Val-L-Pro-L-Tyr-OMe (**4d**)

Figure 62 : NMR ¹H of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (5a)

Figure 63 : NMR ¹³C of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (5a)

Figure 64 : NMR ¹H of Cbz-L-Ala-L-Phe-L-Leu-Asp(OtBu)-Ala-OMe (**5b**)

Figure 65 : NMR ¹³C of Cbz-L-Ala-L-Phe-L-Leu-Asp(OtBu)-Ala-OMe (5b)

Figure 66 : NMR ¹H of Cbz-L-Pro-L-Leu-L-Phe-L-Leu-L- Phe-L-Ala-OEt (6a)

Figure 68 : NMR ¹H of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-OMe (6b)

Figure 69: NMR ¹³C of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-OMe (6b)

Figure 70 : NMR ¹H of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-OMe (8a)

Figure 71 : NMR ¹³C of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-OMe (8a)

Figure 72 : NMR ¹H of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (10a)

Figure 73 : NMR ¹³C of Cbz-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-D-Phe-L-Pro-L-Val-L-Orn(Boc)-L-Leu-OMe (10a)

Figure 74 : NMR ¹H of Cbz-DL-Phe-DL-Leu-OEt (**2a**_{racemate})