Electronic Supplementary Information

Catalytic hydroboration of aldehydes, ketones, alkynes and alkenes initiated by NaOH

Yile Wu,^{*,†} Changkai Shan,[†] Jianxi Ying,[†] Jue Su,[†] Jun Zhu,[‡] Liu Leo Liu,^{*,†} and Yufen Zhao^{*,†§}

[†]Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.

[‡]State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.

[§]Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

E-mail: yfzhao@xmu.edu.cn; liuleo.liu@utoronto.ca; yilewu@cuhk.edu.hk

Index

1.	Table S1. Crystal data and structure refinement details for compounds 7a
2.	General information 3
3.	Table S2. Detailed optimization of the reaction conditions for aldehyde 4-5
4.	Experimental section 6-8
5.	Spectral data 9-27
6.	NMR spectra 28-128
7.	Computational details129
8.	References130
9.	Energies of intermediates and transition states131
10.	The Cartesian coordinates for the optimized structures132-138

	7a
CCDC	1503838
empirical formula	$C_{18}H_{36}BNaO_5$
formula weight	366.27
temp, K	100.01(10)
cryst syst	Triclinic
space group	<i>P</i> -1
<i>a</i> , Å	7.5751(5)
b, Å	10.0045(7)
<i>c</i> , Å	13.9038(9)
α , deg	93.500(6)
β , deg	90.410(5)
γ, deg	104.176(6)
<i>V</i> , Å ³	1019.45(12)
Ζ	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.193
μ,mm^{-1}	0.852
F(000)	400.0
2Θ range, deg	9.136-131.946
index range	$-8 \le h \le 8$
	$-11 \le k \le 11$
	$-16 \le 1 \le 14$
reflns collected/unique	5838 / 3440 [R(int) = 0.0776]
data/restraints/param	3440/0/250
GOF on F ²	1.025
final R indices	R1 = 0.0394,
[I >2σ(I)]	wR2 = 0.1062
R indices (all data)	R1 = 0.0420,
	wR2 = 0.1096
largest diff	0.24/-0.23
peak/hole,e/Å ³	

Table S1. Crystal data and structure refinement details for compound 7a

General information

All manipulations were carried out on a Schlenk line or in an argon atmosphere glovebox. THF and *n* hexane were dried by refluxing with sodium benzophenone under N₂, distilled, and stored over 3 Å sieves. Unless otherwise stated, commercial reagents were used without further purification. IR spectra were recorded on a Nicolet 330 spectrometer. ¹H, ¹¹B and ¹³C NMR spectra were recorded on a Bruker AV-500M or a Bruker AV-400M spectrometer. ¹H and ¹³C NMR spectroscopic chemical shifts were given relative to residual solvent peaks. HRMS were recorded on a Q-TOF mass spectrometer (Bruker micro TOF-QII, U.S.A). The single crystal diffraction data were collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 100.01(10) K during data collection. The structure was solved with Olex2^{S1} and the ShelXXS^{S2} structure solution program using Direct Methods and refined with the ShelXL^{S3} refinement package using Least Squares minimization.

	O H +	H-Bpin -	cat. solvent, 15 min room temperature		Ph ^O Bpin 3a		
	1a	2a					
entry	catalyst	loading (mol%)	solvent	TON	TOF (h ⁻¹)	yield $(\%)^b$	
1	-	-	C ₆ D ₆	-	-	<5	
2	Et ₃ N	5	C_6D_6	7	28	35	
3	^{<i>i</i>} Pr ₂ NEt	5	C_6D_6	-	-	<5	
4	^t BuOK	5	C_6D_6	16	66	82	
5	^t BuONa	5	C_6D_6	20	79	99	
6	PMe ₃	5	C_6D_6	20	79	99	
7	PPh ₃	5	C_6D_6	18	71	89	
8	ру	5	C_6D_6	2	6	8	
9	DMAP	5	C_6D_6	3	11	14	
10	2,6-Lutidine	5	C_6D_6	-	-	<5	
11	KOH ^c	5	C_6D_6	16	62	78	
12	NaOH ^c	5	C_6D_6	18	74	92	
13	NaH	5	C_6D_6	20	79	99	
14	LiHDMS	5	C_6D_6	20	79	99	
15	LiNEt ₂	5	C_6D_6	20	78	98	
16	ⁿ BuLi	5	C_6D_6	20	79	99	
17	PhLi	5	C_6D_6	20	79	99	
18	IMes	5	C_6D_6	20	79	99	
19	IPr	5	C_6D_6	20	79	99	
20	$NaOH^d$	5	C_6D_6	20	79	99	
21	NaOH ^e	5	C_6D_6	20	78	98	
22	NaOHf	5	C_6D_6	17	70	87	
23	NaOH ^g	5	C_6D_6	18	72	90	
24	$NaOH^d$	1	C_6D_6	99	396	99	

Table S2. Detailed optimization of the reaction conditions for aldehyde

25	$NaOH^d$	1	CDCl ₃	99	396	99
26	$NaOH^d$	1	acetone-d ₆	72	288	72
27	$NaOH^d$	1	THF-d ₈	99	396	99
28	$NaOH^d$	1	CD ₃ CN	18	72	18

^{*a*} Reaction conditions: benzaldehyde (1.00 mmol), HBpin (1.02 mmol), solvent (0.4 mL), room temperature. Catalyst loading relative to benzaldehyde. ^{*b*} Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*} Alfa Aesar, beads/pellet, 99.99% (metal basis). ^{*d*} Sigma-Aldrich, powders, ACS reagent grade, 97%, ^{*e*} Adamas-beta, pellet, 99%+. ^{*f*} Acros, micropearls, for analysis. ^{*g*} Sigma-Aldrich, pellet, semiconductor grade, 99.99% trace metals basis.

DMAP

2,6-Lutidine LiHDMS

IMes

lPr

Experimental section

Synthesis of 7a:

In an argon atmosphere glovebox, a solution of 9-BBN (0.5 M, 8 mL, 4 mmol) in THF was added slowly to a suspension of powdered NaOH (0.080 g, 2 mmol) in THF (10 mL). The mixture was stirred at room temperature for 10 minutes and a solution of 15-Crown-5 (0.440 g, 2 mmol) in THF was added in. After stirring for additional 12 h, the solvent was removed and the residues were washed with "hexane (2 × 20 mL) to afford **7a** (0.615 g, 84%). The THF solution of **7a** was stored at -20 °C for additional 2 h, and colorless needle crystals suitable for XRD test were obtained. ¹H NMR (500 MHz, THF-ds, ppm): δ 3.58 (s, 20H), 1.80-1.65 (m, 6H), 1.53 (br, 4H,), 1.41-1.34 (m, 2H), 0.63 (q, *J* = 74.1 Hz, 2H, overlapped), 0.63 (br, 2H). ¹³C NMR (125 MHz, THF-ds, ppm): δ 69.7, 36.9, 27.8 (d, *J* = 3.5 Hz), 24.1 (q, *J* = 40.6 Hz). ¹¹B NMR (160 MHz, THF-ds, ppm): δ 17.88 (t, *J* = 74.1 Hz). IR (Nujol mull, cm⁻¹): \tilde{v} 2833.1, 2105.8, 1463.6, 1374.5, 1354.2, 1295.4, 1250.9, 1198.2, 1117.2, 1094.9, 1044.2, 949.0, 898.4, 861.9, 722.1, 523.6. Elem. Anal. Calcd for C₁₈H₃₆BNaO₅: C, 59.03; H, 9.91; Found: C, 59.19; H, 9.98.

General Catalytic Procedures for the Hydroboration of Aldehydes with HBpin/HBcat:

In an argon atmosphere glovebox, aldehyde (1 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.01 mmol) and C₆D₆ (0.4 mL) were loaded in a dried NMR tube, then BH compound (1.05 mmol) was added in slowly. The tube was sealed securely before being brought outside of the glovebox, continually shaken and monitored by NMR spectroscopy. NMR spectra of the products were collected after filtration under argon and dried under vacuum for more than 6 hours to remove the volatiles.

General Catalytic Procedures for the Hydroboration of Aldehydes with 9-BBN:

In an argon atmosphere glovebox, aldehyde (1 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.01 mmol) and THF-d₈ (0.5 mL) were loaded in a dried Schlenk flask, then

9-BBN (0.5 M in THF, 2.2 mL, 1.1 mmol) was added in slowly. The reaction mixture was stirred in room temperature for 2 hours and monitored by NMR spectroscopy. NMR spectra of the products were collected after filtration under argon and dried under vacuum for more than 6 hours to remove the volatiles.

General Catalytic Procedures for the Hydroboration of Ketones with HBpin:

In an argon atmosphere glovebox, ketone (1 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.05 mmol) and C₆D₆ (0.4 mL) were loaded in a dried NMR tube, then HBpin (1.05 mmol) was added in slowly. The tube was sealed securely before being brought outside of the glovebox, continually shaken and monitored by NMR spectroscopy. NMR spectra of the products were collected after filtration under argon and dried under vacuum for more than 6 hours to remove the volatiles.

General Catalytic Procedures for the Hydroboration of Aldehydes with 9-BBN:

In an argon atmosphere glovebox, ketones (1 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.05 mmol) and THF-d₈ (0.5 mL) were loaded in a dried Schlenk flask, then 9-BBN (0.5 M in THF, 2.2 mL, 1.1 mmol) was added in slowly. The reaction mixture was stirred in room temperature for 2 hours and monitored by NMR spectroscopy. NMR spectra of the products were collected after filtration under argon and dried under vacuum for more than 6 hours to remove the volatiles.

General Catalytic Procedures for the Hydroboration of imine with HBpin:

In an argon atmosphere glovebox, imine (1 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.05 mmol) and C₆D₆ (0.4 mL) were loaded in a dried NMR tube, then HBpin compounds (1.05 mmol) was added in slowly. The tube was sealed securely before being brought outside of the glovebox, heated at 90 °C for 6 hours and monitored by NMR spectroscopy. NMR spectra of the products were collected after filtration under argon and dried under vacuum for more than 6 hours to remove the volatiles.

General Catalytic Procedures for the Hydroboration of Alkynes with HBpin:

In an argon atmosphere glovebox, alkyne (1 mmol), HBpin (1.2 mmol), 1,3,5-trimethoxybenzene (0.005 g), NaOH powder (0.08 mmol) and C_6D_6 (0.4 mL) were loaded in a dried NMR tube. The tube was sealed securely before being brought outside of the glove box, heated at 100 °C and monitored by NMR spectorscopy. Then the volatiles were removed under vacuum and the residue was purified by silica gel column chromatography using a mixture of petroleum ether and ethyl acetate as eluent.

Large-scale reaction of **1a** with HBpin:

In an argon atmosphere glovebox, **1a** (10 mmol), HBpin (10.2 mmol), NaOH powder (0.1 mmol) and toluene (15 mL) were loaded in a dried Schlenk tube. The mixture was stirred at room temperature for 15 minutes. Then mixture was filtrated and the volatiles were removed under vacuum for 4 hours. The corresponding hydroboration product **2a** was obtained as colorless oil (94% yield).

Spectral Data

2a (*CAS* 95843-98-4): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.27-7.22 (m, 4H, Ar*H*), 7.19-7.15 (m, 1H, Ar*H*), 4.84 (s, 2H, OC*H*₂), 1.17 (s, 12H, C*H*₃). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 139.15, 128.20, 127.28, 126.63 (*Ar*), 82.88 (*C*(CH₃)₂), 66.59 (OCH₂), 24.53 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.42. HRMS (ESI): m/z calcd for C₁₃H₁₉BNaO₃⁺: 257.1319 [(M+Na)]⁺; found: 257.1322.

2b (*CAS 1143018-79-4*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.14 (d, *J* = 7.8 Hz, 2H, Ar*H*), 7.03 (d, *J* = 7.8 Hz, 2H, Ar*H*), 4.79 (s, 2H, OC*H*₂), 2.23 (s, 3H, ArC*H*₃), 1.15 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 136.84, 136.14, 128.82, 126.73 (*Ar*), 82.75 (*C*(CH₃)₂), 66.46 (OCH₂), 24.49 (C(*C*H₃)₂), 21.00 (Ar*C*H₃). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.40. HRMS (ESI): m/z calcd for C₁₄H₂₁BNaO₃⁺: 271.1476 [(M+Na)]⁺; found: 271.1475.

2c (*CAS 1143018-81-8*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.26 (d, *J* = 8.5 Hz, 2H, Ar*H*), 6.84 (d, *J* = 8.5 Hz, 2H, Ar*H*), 4.84 (s, 2H, OC*H*₂), 3.75 (s, 2H, OC*H*₃), 1.24 (s, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 158.87, 131.26, 128.33, 113.48 (*Ar*), 82.66 (*C*(CH₃)₂), 66.24 (OCH₂), 54.99 (OCH₃), 24.42 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.34. HRMS (ESI): m/z calcd for C₁₄H₂₁BNaO₄⁺: 287.1425 [(M+Na)]⁺; found: 287.1428.

2d (*CAS 1143018-85-2*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.21 (d, *J* = 8.7 Hz, 2H, Ar*H*), 7.18 (d, *J* = 8.7 Hz, 2H, Ar*H*), 4.50 (s, 2H, OC*H*₂), 0.79 (s, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 137.64, 133.00, 128.33, 128.01 (*Ar*), 82.99 (*C*(CH₃)₂), 65.84 (OCH₂), 24.51 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.35. HRMS (ESI): m/z calcd for C₁₃H₁₈BClNaO₃⁺: 291.0930 [(M+Na)]⁺; found: 291.0934.

2e (*CAS 1566593-61-0*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.34 (d, *J* = 8.2 Hz, 2H, Ar*H*), 7.11 (d, *J* = 8.2 Hz, 2H, Ar*H*), 4.76 (s, 2H, OC*H*₂), 1.15 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 138.08, 131.18, 128.23, 121.00 (*Ar*), 82.87 (*C*(CH₃)₂), 65.76 (OCH₂), 24.44 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.38. HRMS (ESI): m/z calcd for C₁₃H₁₈BBrNaO₃⁺: 335.0425 [(M+Na)]⁺; found: 335.0427.

2*f* (*New Compound*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.49 (d, *J* = 8.1 Hz, 2H, Ar*H*), 7.36 (d, *J* = 8.1 Hz, 2H, Ar*H*), 4.89 (s, 2H, OC*H*₂), 1.17 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 143.21 (*Ar*), 129.49 (q, *J* = 32.3 Hz, *Ar*), 126.55 (*Ar*), 125.18 (q, *J* = 3.8 Hz, *Ar*), 124.17 (q, *J* = 272.0 Hz, *C*F₃), 83.16 (*C*(CH₃)₂), 65.89 (OCH₂), 24.50 (C(*C*H₃)₂).

¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.39. HRMS (ESI): m/z calcd for C₁₄H₁₈BF₃NaO₃⁺: 325.1193 [(M+Na)]⁺; found: 325.1194.

2*g* (1143018-83-0): ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.09 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.42 (d, *J* = 8.4 Hz, 2H, Ar*H*), 4.94 (s, 2H, OC*H*₂), 1.18 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 147.04, 146.48, 126.69, 123.38 (*Ar*), 83.20 (*C*(CH₃)₂), 65.36 (O*C*H₂), 24.41 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.39. HRMS (ESI): m/z calcd for C₁₃H₁₈BNNaO₅⁺: 302.1170 [(M+Na)]⁺; found: 302.1173.

2h (*New Compound*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.59 (d, *J* = 7.6 Hz, 1H, Ar*H*), 7.33-7.19 (m, 8H, Ar*H*), 4.83 (s, 2H, OC*H*₂), 1.18 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 140.95, 140.30, 136.05, 129.53, 128.90, 128.15, 127.80, 127.22, 127.13, 126.78 (*Ar*), 82.45 (*C*(CH₃)₂), 64.37 (OCH₂), 24.25 (C(CH₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.45. HRMS (ESI): m/z calcd for C₁₉H₂₃BNaO₃⁺: 333.1632 [(M+Na)]⁺; found: 333.1633.

2*i* (CAS 1640962-14-6): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.00-6.98 (m, 2H, ArH), 6.88-6.87 (m, 2H, ArH), 4.67 (s, 2H, OCH₂), 1.03 (s, 12H, C(CH₃)₂). ¹³C NMR (125 MHz,

C₆D₆, ppm): δ 143.46(*C*N), 131.04, 125.69, 117.79, 110.56 (*Ar*), 82.03 (*C*(CH₃)₂), 64.77 (OCH₂), 23.58 (C(CH₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.77. HRMS (ESI): m/z calcd for C₁₄H₁₈BNaO₃⁺: 282.1272 [(M+Na)]⁺; found: 282.1273.

2*j* (*CAS* 1811523-11-1): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.15 (d, *J* = 5.1 Hz, 1H, Ar*H*), 6.92 (d, *J* = 3.4 Hz, 1H, Ar*H*), 6.86 (t, *J* = 4.5 Hz, 1H, Ar*H*), 4.95 (s, 2H, OC*H*₂), 1.18 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 141.86, 126.46, 125.74, 125.38 (*Ar*), 82.98 (*C*(CH₃)₂), 61.49 (OCH₂), 24.50 (C(CH₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.36. HRMS (ESI): m/z calcd for C₁₁H₁₇BNaO₃S⁺: 263.0884 [(M+Na)]⁺; found: 263.0886.

2*k* (*CAS* 1809788-30-4): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.91 (d, *J* = 8.3 Hz, 1H, Ar*H*), 7.70 (d, *J* = 7.7 Hz, 1H, Ar*H*), 7.63 (d, *J* = 8.3 Hz, 1H, Ar*H*), 7.46 (d, *J* = 7.0 Hz, 1H, Ar*H*), 7.37-7.28 (d, *J* = 7.0 Hz, 1H, Ar*H*), 5.28 (s, 2H, OC*H*₂), 1.13 (s, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 134.52, 133.44, 130.82, 128.42, 128.04, 125.96, 125.52, 125.21, 124.71, 123.32 (*Ar*), 82.85 (*C*(CH₃)₂), 64.88 (OCH₂), 24.42 (C(*CH*₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.56. HRMS (ESI): m/z calcd for C₁₇H₂₂BNaO₃⁺: 307.1476 [(M+Na)]⁺; found: 307.1481.

2l (*New Compound*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 4.06 (br, 2H, piperidine*H*), 3.67 (d, *J* = 6.1 Hz, 2H, OCH₂), 2.65 (br, 2H, piperidine*H*), 1.66-1.63 (m, 3H, piperidine*H*), 1.41 (s,

9H, 'Bu*H*), 1.21 (s, 12H, C(C*H*₃)₂), 1.08 (qd, J = 12.6, 4.1 Hz, 2H, piperidine*H*). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 154.73 (*C*=O), 82.66 (*C*(CH₃)₂), 79.15 (O*C*(CH₃)₃), 69.15 (O*C*H₂), 43.73, 43.17 (N*C*H₂*C*H₂), 37.64 (OCH₂*C*H), 28.35 (C(*C*H₃)₃), 24.48 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 21.99. HRMS (ESI): m/z calcd for C₁₇H₃₂BNNaO₅⁺: 364.2266 [(M+Na)]⁺; found: 364.2270.

2m (*CAS* 1566593-62-1): ¹H NMR (500 MHz, CDCl₃, ppm): δ 3.61 (d, J = 6.5 Hz, 2H, OCH₂), 1.70-1.65 (m, 4H, C₆H₁₁), 1.62-1.59 (m, 1H, C₆H₁₁), 1.51-1.43 (m, 1H, C₆H₁₁), 1.21 (s, 12H, C(CH₃)₂), 1.18-1.08 (m, 3H, C₆H₁₁), 0.94-0.85 (m, 2H, C₆H₁₁). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 82.46 (*C*(CH₃)₂), 70.27 (OCH₂), 39.22, 29.24, 26.45, 25.69 (*C*₆H₁₁), 24.47 (C(CH₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.03. HRMS (ESI): m/z calcd for C₁₃H₂₅BNaO₃⁺: 263.1789 [(M+Na)]⁺; found: 263.1790.

2n (*CAS 1373393-10-2*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.22 (s, *4*H, Ar*H*), 4.81 (s, 4H, OC*H*₂), 1.16 (s, 24H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 138.18, 126.48 (*Ar*), 82.70 (*C*(CH₃)₂), 66.23 (OCH₂), 24.39 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.36. HRMS (ESI): m/z calcd for C₂₀H₃₂B₂NaO₆⁺: 413.2277 [(M+H)]⁺; found: 413.2278.

2o (*New Compound*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.24-7.16 (m, *4*H, Ar*H*), 4.83 (s, 4H, OC*H*₂), 1.17 (s, 24H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 139.14, 128.14, 125.61, 124.97 (*Ar*), 82.80 (*C*(CH₃)₂), 66.43 (OCH₂), 24.46 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 22.37. HRMS (ESI): m/z calcd for C₂₀H₃₂B₂NaO₆⁺: 413.2277 [(M+H)]⁺; found: 413.2280.

2p (*CAS* 149832-59-7): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.01 (d, J = 7.6 Hz, 2H, Ar*H*), 6.93 (t, J = 7.6 Hz, 2H, Ar*H*), 6.85 (t, J = 7.4 Hz, 1H, Ar*H*), 4.64 (s, 2H, OC*H*₂), 1.67-1.52 (m, 10H, BC₈H₁₄), 1.19-1.03 (m, 4H, BC₈H₁₄). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 139.25, 127.62, 126.53, 125.88 (*Ar*), 66.82 (OCH₂), 32.80, 32.56, 22.66 (BC₈H₁₄). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 57.30. HRMS (ESI): m/z calcd for C₁₅H₂₃BNaO₂⁺: 269.1683 [(M+H₂O+Na)]⁺; found: 269.1686.

2q (*New Compound*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.14 (d, *J* = 8.6 Hz, 2H, Ar*H*), 6.75 (d, *J* = 8.6 Hz, 2H, Ar*H*), 4.88 (s, 2H, OC*H*₂), 3.64 (s, 3H, OC*H*₃), 1.82-1.64 (m, 10H, BC₈*H*₁₄), 1.41-1.21 (m, 4H, BC₈*H*₁₄). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 158.89, 131.67, 128.13, 113.64 (*Ar*), 67.27 (OCH₂), 54.87 (OCH₃), 33.29, 33.03, 23.06 (BC₈H₁₄). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 57.37. HRMS (ESI): m/z calcd for C₁₈H₂₆BNNaO₂⁺: 322.1954 [(M+CH₃CN+Na)]⁺; found: 322.1956.

2r (2016862-41-0): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.11 (d, J = 8.2 Hz, 2H, ArH), 6.98 (d, J = 8.2 Hz, 2H, ArH), 4.70 (s, 2H, OCH₂), 1.86-1.75 (m, 10H, BC₈H₁₄), 1.35-1.28 (m, 4H, BC₈H₁₄). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 138.65, 133.38, 128.78, 128.19 (*Ar*), 66.96 (OCH₂), 33.80, 33.54, 23.61 (BC₈H₁₄). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 57.45. HRMS (ESI): m/z calcd for C₁₅H₂₂BClNaO₂⁺: 281.1474 [(M+ H₂O+H)]⁺; found: 281.1478.

2s (New Compound): ¹H NMR (500 MHz, C₆D₆, ppm): δ 6.90 (d, *J* = 4.6 Hz, 1H, Ar*H*), 6.76 (br, 1H, Ar*H*), 6.71-6.70 (m, 1H, Ar*H*), 4.94 (s, 2H, OC*H*₂), 1.86-1.79 (m, 10H, BC₈*H*₁₄), 1.38-1.24 (m, 4H, BC₈*H*₁₄). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 143.25, 128.29, 126.76, 125.42 (*Ar*), 62.89 (OCH₂), 33.80, 33.49, 23.60 (BC₈H₁₄). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 57.48. HRMS (ESI): m/z calcd for C₁₃H₁₉BNaOS⁺: 257.1142 [(M+Na)]⁺; found: 257.1142.

2t (New Compound): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.40-7.26 (m, 4H, Ar*H*), 7.14-6.96 (m, 5H, Ar*H*), 5.15 (s, 2H, OC*H*₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 147.82, 137.69, 128.43, 127.91, 127.06 122.19, 111.88 (*Ar*), 67.78 (O*C*H₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 23.57. HRMS (ESI): m/z calcd for C₁₃H₁₁BNaO₃⁺: 249.0693 [(M+Na)]⁺; found: 249.0695.

4a (*CAS* 1143018-72-7): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.10-7.07 (m, 2H, Ar*H*), 6.91-6.87 (m, 2H, Ar*H*), 6.80 (tt, *J* = 3.7, 1.5 Hz, 1H, Ar*H*), 5.11 (q, *J* = 6.5 Hz, 1H, OC*H*), 1.18 (d, *J* = 6.5 Hz, 3H, OCHC*H*₃), 0.77 (d, *J* = 13.8 Hz, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 145.27, 128.46, 127.29, 125.60 (*Ar*), 82.49 (*C*(CH₃)₂), 72.83 (OCH), 25.72 (OCH*C*H₃), 24.60 (d, *J* = 9.1 Hz, C(CH₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.53. HRMS (ESI): m/z calcd for C₁₄H₂₁BNaO₃⁺: 271.1476 [(M+Na)]⁺; found: 271.1479.

4b (*CAS* 1416719-04-4): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.02 (d, J = 8.1 Hz, 2H, ArH), 6.73 (d, J = 7.9 Hz, 2H, ArH), 5.11 (q, J = 6.5 Hz, 1H, OCH), 1.87 (s, 3H, ArCH₃), 1.21 (d, J = 6.5 Hz, 3H, OCHCH₃), 0.79 (d, J = 12.4 Hz, 12H, C(CH₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 141.40, 135.52, 128.14, 124.61 (*Ar*), 81.43 (*C*(CH₃)₂), 71.70 (OCH), 24.74 (OCHCH₃), 23.63 (d, J = 7.3 Hz, C(CH₃)₂), 20.04 (ArCH₃). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.52. HRMS (ESI): m/z calcd for C₁₅H₂₃BNaO₃⁺: 285.1632 [(M+Na)]⁺; found: 285.1634.

4c (*CAS* 1566593-64-3): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.02 (dt, *J* = 9.4, 2.4 Hz, 2H, Ar*H*), 6.50 (dt, *J* = 9.4, 2.5 Hz, 2H, Ar*H*), 5.11 (q, *J* = 6.4 Hz, 1H, OC*H*), 3.10 (s, 3H, OC*H*₃), 1.21 (d, *J* = 6.5 Hz, 3H, OCHC*H*₃), 0.79 (d, *J* = 10.9 Hz, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 159.30, 137.36, 126.89, 113.92 (*Ar*), 82.44 (*C*(CH₃)₂), 72.52 (OCH), 54.76 (OCH₃), 25.65 (OCHCH₃), 24.61 (d, *J* = 9.9 Hz, C(*CH*₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm):

δ 22.51. HRMS (ESI): m/z calcd for C₁₅H₂₃BNaO₄⁺: 301.1582 [(M+Na)]⁺; 301.1582.

4d (*CAS* 1416719-03-3): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.09-7.05 (m, 4H, Ar*H*), 5.25 (q, J = 6.0 Hz, 1H, OC*H*), 1.34 (d, J = 6.5 Hz, 3H, OCHC*H*₃), 1.00 (d, J = 13.5 Hz, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 143.73, 133.02, 128.62, 127.09 (*Ar*), 82.61 (*C*(CH₃)₂), 72.17 (OCH), 25.49 (OCH*C*H₃), 24.56 (d, J = 9.2 Hz, C(*C*H₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.52. HRMS (ESI): m/z calcd for C₁₄H₂₀BCINaO₃⁺: 305.1086 [(M+Na)]⁺; found: 305.1087.

4e (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.23 (dt, *J* = 8.9, 2.2 Hz, 2H, Ar*H*), 7.00 (dt, *J* = 8.6, 2.2 Hz, 2H, Ar*H*), 5.20 (q, *J* = 6.5 Hz, 1H, OC*H*), 1.32 (d, *J* = 6.5 Hz, 3H, OCHC*H*₃), 1.01 (d, *J* = 14.2 Hz, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 144.21, 131.56, 127.44, 121.10 (*Ar*), 82.64 (*C*(CH₃)₂), 72.14 (OCH), 25.47 (OCHCH₃), 24.59 (d, *J* = 7.3 Hz, C(*C*H₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.45. HRMS (ESI): m/z calcd for C₁₄H₂₀BBrNaO₃⁺: 349.0581 [(M+Na)]⁺; found: 349.0583.

4f (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.38 (td, *J* = 8.5, 6.7 Hz, 1H, Ar*H*), 6.54 (tdd, *J* = 8.4, 2.5, 0.8 Hz, 1H, Ar*H*), 6.45 (ddd, *J* = 10.5, 8.9, 2.5 Hz, 1H, Ar*H*), 5.70 (q,

J = 6.4 Hz, 1H, OC*H*), 1.40 (d, J = 6.4 Hz, 3H, OCHC*H*₃), 1.01 (d, J = 13.0 Hz, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 162.36 (dd, J = 247.1, 11.9 Hz, *Ar*), 159.48 (dd, J = 247.9, 11.8 Hz, *Ar*), 128.39 (dd, J = 14.1, 3.8 Hz, *Ar*), 128.00 (d, J = 15.4 Hz, *Ar*), 111.37 (dd, J = 20.9, 3.6 Hz, *Ar*), 103.50 (t, J = 25.7 Hz, *Ar*), 82.75 (*C*(CH₃)₂), 66.60 (d, J = 2.0 Hz, OCH), 24.51 (d, J = 5.1 Hz, C(*C*H₃)₂), 24.41 (OCHCH₃). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.49. HRMS (ESI): m/z calcd for C₁₄H₁₉BF₂NaO₃⁺: 307.1288 [(M+Na)]⁺; found: 307.1289.

4g (*CAS* 1416719-02-2): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.10 (d, J = 8.1 Hz, 2H, Ar*H*), 6.95 (dd, J = 8.1, 0.5 Hz, 2H, Ar*H*), 5.00 (q, J = 6.5 Hz, 1H, OC*H*), 1.08 (d, 3H, J = 6.5 Hz, OCHC*H*₃), 0.78 (d, J = 16.3 Hz, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 149.19 (*Ar*), 129.41 (q, J = 32.1 Hz, *Ar*), 125.94 (*Ar*), 125.42 (q, J = 3.7 Hz, *Ar*), 124.96 (q, J = 271.9Hz, *C*F₃), 82.79 (*C*(CH₃)₂), 72.18 (OCH), 25.38 (OCHCH₃), 24.51 (d, J = 1.9 Hz, C(*C*H₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.39. HRMS (ESI): m/z calcd for C₁₅H₂₀BF₃NaO₃⁺: 339.1350 [(M+Na)]⁺; found: 339.1351.

4h (New Compound): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.13-7.11 (m, 2H, Ar*H*), 6.91-6.89 (m, 2H, Ar*H*), 5.00 (q, J = 6.5 Hz, 1H, OC*H*), 2.55 (s, 1H, C=C*H*), 1.09 (d, J = 6.5 Hz, 3H, OCHC*H*₃), 0.75 (d, J = 14.8 Hz, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 145.93, 132.34, 125.64, 121.41 (*Ar*), 83.89 (*C*(CH₃)₂), 82.62 (*C*=C), 77.59 (C=*C*), 72.43 (OCH), 25.39 (OCHCH₃), 24.55 (d, J = 10.6 Hz, C(*C*H₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ

22.40. HRMS (ESI): m/z calcd for C₁₆H₂₁BNaO₃⁺: 295.1476 [(M+Na)]⁺; found: 295.1475.

4i (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.09-7.07 (m, 2H, Ar*H*), 6.92-6.89 (m, 2H, Ar*H*), 6.82 (tt, *J* = 3.7, 1.5 Hz, 1H, Ar*H*), 4.91 (dd, *J* = 7.4, 5.5 Hz, 1H, OC*H*), 1.55-1.43 (m, 2H, OCHC*H*₂), 0.78 (d, *J* = 16.1 Hz, 12H, C(C*H*₃)₂), 0.62 (t, *J* = 7.4 Hz, 3H, CH₂C*H*₃). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 143.03, 127.36, 126.32, 125.17 (*Ar*), 81.45 (*C*(CH₃)₂), 76.99 (OCH), 31.44 (OCHCH₂), 23.59 (d, *J* = 6.4 Hz, C(CH₃)₂), 9.00 (CH₂CH₃). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.53. HRMS (ESI): m/z calcd for C₁₅H₂₃BNaO₃⁺: 285.1632 [(M+Na)]⁺; found: 285.1635.

4j (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.07 (dd, J = 1.8, 0.9 Hz, 1H, Ar*H*), 6.15 (dt, J = 3.3, 0.8 Hz, 1H, Ar*H*), 6.05 (dd, J = 3.3, 1.8 Hz, 1H, Ar*H*), 5.41 (q, J = 6.6 Hz, 1H, OC*H*), 1.48 (d, J = 6.6 Hz, 3H, OCHC*H*₃), 1.04 (d, J = 3.1 Hz, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 157.06, 141.84, 110.27, 105.78 (*Ar*), 82.64 (*C*(CH₃)₂), 66.43 (OCH), 24.59 (d, J = 17.1 Hz, C(*C*H₃)₂), 21.28 (OCH*C*H₃). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.60. HRMS (ESI): m/z calcd for C₁₂H₁₉BNaO₄⁺: 261.1269 [(M+Na)]⁺; found: 261.1272.

4k (*CAS* 96649-78-4): ¹H NMR (500 MHz, C₆D₆, ppm): δ 4.15 (hept, *J* = 4.4 Hz, 1H, OC*H*), 1.87-1.83 (m, 2H, C*H*₂), 1.62-1.57 (m, 2H, C*H*₂), 1.47-1.391 (m, 2H, C*H*₂), 1.31-1.27 (m, 1H, *CH*₂), 1.16-1.11 (m, 3H, overlapped, *CH*₂), 1.07 (br, 12H, overlapped, C(*CH*₃)₂). ¹³C NMR

(125 MHz, C₆D₆, ppm): δ 82.15 (*C*(CH₃)₂), 72.61 (OCH), 34.70, 25.74 (CH₂), 24.69 (*C*(*C*H₃)₂), 24.05 (*C*H₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.27. HRMS (ESI): m/z calcd for C₁₂H₂₃BNaO₃⁺: 249.1632 [(M+Na)]⁺; found: 249.1636.

41 (New Compound): ¹H NMR (500 MHz, C₆D₆, ppm): δ 8.10 (dt, J = 7.0, 1.1 Hz, 1H, Ar*H*), 7.63 (dt, J = 9.0, 1.2 Hz, 1H, Ar*H*), 6.51 (ddd, J = 9.0, 6.7, 1.2 Hz, 1H, Ar*H*), 5.99 (td, J = 6.9, 1.4 Hz, 1H, Ar*H*), 5.24 (d, J = 8.3 Hz, 1H, OC*H*), 3.38 n(hept, J = 6.9 Hz, 1H, ArC*H*Me₂), 2.30-2.23 (m, 1H, OCHC*H*Me₂), 1.59 (q, J = 7.1 Hz, 6H, ArCH(C*H₃*)₂), 1.16 (d, J = 6.6 Hz, 3H, OCHCH(C*H₃*)₂), 0.95 (d, J = 16.2 Hz, 12H, C(C*H₃*)₂), 0.78 (d, J = 6.8 Hz, 3H, OCHCCH(C*H₃*)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 158.81, 138.72, 128.45, 122.08, 118.51, 110.59, 108.82 (*Ar*), 82.38 (*C*(CH₃)₂), 75.92 (OCH), 35.59 (*C*HMe₂), 27.00 (*C*HMe₂), 24.53 (d, J = 25.8 Hz, C(*C*H₃)₂), 23.74, 23.14 (CH*Me*₂), 19.37 (d, J = 2.6 Hz, CH*Me*₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.66. HRMS (ESI): m/z calcd for C₂₀H₃₁BN₂NaO₃⁺: 381.2320 [(M+Na)]⁺; found: 381.2319.

4m (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): δ 5.57 (d, *J* = 1.4 Hz, 1H), 4.92-4.89 (m, 1H), 3.93 (q, *J* = 3.0 Hz, 1H), 2.45-2.42 (m, 1H), 2.13 (dd, *J* = 14.2, 2.7 Hz, 1H), 2.01-1.96 (m, 4H), 1.87 (s, 3H), 1.76-1.66 (m, 2H), 1.54 (td, *J* = 11.1, 3.6 Hz, 1H), 1.49-1.42

(m, 2H), 1.35-1.30 (m, 1H), 1.20-1.10 (m, overlapped, 5H), 1.07 (d, J = 4.8 Hz, overlapped, 12H), 1.01 (s, 2H), 0.79 (s, overlapped, 2H), 0.76 (s, overlapped, 2H), 0.81-0.64 (m, overlapped, 4H). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 192.41, 175.10, 142.12, 127.15, 94.47, 82.43, 70.40, 50.05, 46.26, 46.17, 45.54, 39.63, 39.19, 37.37, 35.34, 35.33, 31.17, 31.05, 30.80, 29.18, 28.11, 24.65 (d, J = 10.0 Hz), 22.53, 20.41, 18.85, 14.63. ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 22.38. HRMS (ESI): m/z calcd for C₃₀H₄₅BNaO₆S⁺: 567.2922 [(M+Na)]⁺; found: 567.2925.

4n (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.05 (d, J = 7.4 Hz, 2H, Ar*H*), 6.93 (t, J = 7.7 Hz, 2H, Ar*H*), 6.84 (t, J = 7.4 Hz, 1H, Ar*H*), 4.98 (q, J = 6.5 Hz, 1H, OC*H*), 1.64-1.52 (m, 10H, BC₈*H*₁₄), 1.21 (d, J = 6.5 Hz, 3H, overlapped, OCHC*H*₃), 1.20-1.05 (m, 4H, overlapped, BC₈*H*₁₄). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 145.81, 128.62, 127.37, 125.71 (*Ar*), 73.87 (OCH), 33.68, 33.40 (BC₈H₁₄), 26.35 (OCHCH₃), 23.62 (BC₈H₁₄). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 57.10. HRMS (ESI): m/z calcd for C₁₆H₂₅BNaO₂⁺:283.1840 [(M+H₂O+Na)]⁺; found: 283.1838.

4m (*New Compound*): ¹H NMR (500 MHz, C₆D₆, ppm): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.20 (d, J = 8.1 Hz, 2H, Ar*H*), 6.75 (d, J = 8.1 Hz, 2H, Ar*H*), 5.20 (q, J = 6.0 Hz, 1H, OC*H*), 3.35 (s, 3H, OC*H*₃) 1.86-1.65 (m, 10H, BC₈*H*₁₄), 1.45 (d, J = 6.0 Hz, 3H, overlapped, OCHC*H*₃), 1.41-1.25 (m, 4H, overlapped, BC₈*H*₁₄). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 159.31, 137.93, 126.90, 114.05 (*Ar*), 73.55 (OCH), 54.76 (OCH₃) 33.68, 33.42 (BC₈H₁₄), 26.35 (OCHCH₃), 23.64 (BC₈H₁₄). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 56.31. HRMS (ESI): m/z calcd for C₁₉H₂₈BNNaO₂⁺: 336.2105 [(M+CH₃CN+Na)]⁺; found: 336.2107.

4p (1892609-31-2): ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.26-7.24 (m, 2H, Ar*H*), 7.19-7.15 (m, 2H, Ar*H*), 7.10-7.07 (m, 1H, Ar*H*), 4.13 (s, NC*H*₂), 2.56 (s, NC*H*₃), 1.14 (s, C(C*H*₃)₂). ¹³C NMR (125 MHz, C₆D₆, ppm): δ 140.69, 128.56, 128.00, 126.95 (*Ar*), 82.35 (*C*(CH₃)₂), 53.19 (NCH), 33.27 (NCH₃), 24.80 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, C₆D₆, ppm): δ 24.60. HRMS (ESI): m/z calcd for C₁₄H₂₃BNaO₂⁺: 248.1816 [(M+H)]⁺; found: 248.1816.

6a (*CAS* 3947-56-2): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.51-7.49 (m, 2H, Ar*H*), 7.42 (d, *J* = 18.5 Hz, 1H, ArC*H*=), 7.37-7.33 (m, 2H, Ar*H*), 7.30 (tt, *J* = 3.6, 1.7 Hz, 2H, Ar*H*), 6.19 (d, *J* = 18.5 Hz, 1H, =C*H*B), 1.33 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 149.48 (Ar*C*H=), 137.42, 128.85, 128.52, 127.01 (*Ar*), 116.32 (br, =*C*HB), 83.30 (*C*(CH₃)₂), 24.77 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.06. HRMS (ESI): m/z calcd for C₁₄H₁₉BNaO₂⁺: 253.1370 [(M+Na)]⁺; found: 253.1373.

6b (*CAS* 149777-84-4): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.39 (d, *J* = 10.1 Hz, 1H, overlapped, ArC*H*=), 7.37 (d, *J* = 8.2 Hz, 2H, overlapped, Ar*H*), 6.11 (d, *J* = 18.5 Hz, 1H, =C*H*B), 2.31 (s, 3H, ArC*H*₃), 1.29 (s, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 149.37 (Ar*C*H=), 138.76, 134.67, 129.16, 126.87 (*Ar*), 115.12 (br, =*C*HB), 83.07 (*C*(CH₃)₂), 24.67 (C(*C*H₃)₂), 21.17 (Ar*C*H₃). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.06. HRMS (ESI): m/z calcd for C₁₅H₂₁BNaO₂⁺: 267.1527 [(M+Na)]⁺; found: 267.1530.

6c (*CAS* 149777-83-3): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.44 (dt, *J* = 9.6, 2.4 Hz, 2H, Ar*H*), 7.36 (d, *J* = 18.4 Hz, 1H, ArC*H*=), 6.87 (dt, *J* = 9.6, 2.4 Hz, 2H, Ar*H*), 6.02 (d, *J* = 18.4 Hz, 1H, =C*H*B), 3.81 (s, 3H, OC*H*₃), 1.33 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 160.25 (*Ar*), 149.03 (Ar*C*H=), 130.35, 128.421 113.92 (*Ar*), 113.64 (br, =*C*HB), 83.17 (*C*(CH₃)₂), 24.76 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.42. HRMS (ESI): m/z calcd for C₁₅H₂₂BO₃⁺: 261.1657 [(M+H)]⁺; found: 261.1653.

6d (*CAS 223919-54-8*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.35-7.32 (m, 2H, ArH), 7.26 (d, J = 18.4 Hz, 1H, overlapped, Ar*CH*=), 7.24-7.21 (m, 2H, overlapped, Ar*H*), 6.06 (d, J = 18.4 Hz, 1H, =*CH*B), 1.24 (s, 12H, C(*CH*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 148.00 (Ar*C*H=), 135.94, 134.59, 128.77, 128.20 (*Ar*), 117.20 (br, =*C*HB), 83.44 (*C*(CH₃)₂), 24.78 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.05. HRMS (ESI): m/z calcd for C₁₄H₁₉BO₂: 265.1161 [(M+H)]⁺; found: 265.1163.

6e (*CAS 504433-86-7*): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.48-7.44 (m, 2H, ArH), 7.36 (d, J = 18.4 Hz, 1H, ArCH=), 7.02 (tt, J = 9.1, 2.3 Hz, 2H, ArH), 6.08 (d, J = 18.4 Hz, 1H, =CHB), 1.31 (s, 12H, C(CH₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 163.09 (d, J = 248.8 Hz, Ar), 148.11 (ArCH=), 133.67 (d, J = 3.1 Hz, Ar), 128.65 (d, J = 8.2 Hz, Ar), 116.16 (br, =*C*HB), 115.51 (d, *J* = 21.8 Hz, *Ar*), 83.33 (*C*(CH₃)₂), 24.74 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.31. HRMS (ESI): m/z calcd for C₁₄H₁₉BFO₂⁺: 249.1457 [(M+H)]⁺; found: 249.1457.

6f (*CAS* 633327-38-5): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.61 (d, J = 18.6 Hz, 1H, Ar*CH*=), 7.58 (td, J = 7.6, 1.7 Hz, 1H, Ar*H*), 7.29-7.25 (m, 1H, Ar*H*), 7.12 (t, J = 7.5 Hz, 1H, Ar*H*), 7.06-7.03 (m, 1H, Ar*H*), 6.26 (d, J = 18.6 Hz, 1H, =C*H*B), 1.33 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 160.66 (d, J = 251.6 Hz, Ar), 141.26 (d, J = 4.2 Hz, Ar*C*H=), 130.13 (d, J = 8.4 Hz, Ar), 127.33 (d, J = 3.5 Hz, Ar), 125.32 (d, J = 11.6 Hz, Ar), 124.05 (d, J = 3.6 Hz, Ar), 119.04 (br, =CHB), 115.76 (d, J = 22.0 Hz, Ar), 83.39 (*C*(CH₃)₂), 24.75 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.15. HRMS (ESI): m/z calcd for C₁₄H₁₈BFNaO₂⁺: 271.1276 [(M+Na)]⁺; found: 271.1279.

6g (*CAS* 1355094-04-0): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.79 (d, J = 18.4 Hz, 1H, ArC*H*=), 7.64 (dd, J = 7.3, 2.2 Hz, 1H, Ar*H*), 7.36 (dd, J = 7.5, 1.8 Hz, 1H, Ar), 7.25-7.22 (m, 2H, Ar*H*), 6.18 (d, J = 18.4 Hz, 1H, =C*H*B), 1.33 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 144.98 (Ar*C*H=), 135.63, 133.86, 132.58 (*Ar*), 129.74 (d, J = 15.0 Hz, *Ar*), 128.63 (d, J = 90.1 Hz, *Ar*), 126.9 (d, J = 21.7 Hz, *Ar*), 119.53 (br, =CHB), 83.50 (*C*(CH₃)₂), 24.83 (C(CH₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.02. HRMS (ESI): m/z calcd for C₁₄H₁₈BClNaO₂⁺: 287.0981 [(M+Na)]⁺; found: 287.0980.

6h (*CAS* 161395-82-0): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.48 (d, *J* = 18.1 Hz, 1H, Ar*CH*=), 7.25 (d, *J* = 5.1 Hz, 1H, Ar*H*), 7.09-7.08 (m, 1H, Ar*H*), 6.99 (dd, *J* = 5.1, 3.6 Hz, 1H, Ar*H*), 5.92 (d, *J* = 18.1 Hz, 1H, =C*H*B), 1.31 (s, 12H, C(C*H*₃)₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 143.90 (Ar*C*H=), 141.78, 127.67, 127.59, 126.26 (*Ar*), 116.14 (br, =*C*HB), 83.34 (*C*(CH₃)₂), 24.76 (C(*C*H₃)₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 30.07. HRMS (ESI): m/z calcd for C₁₂H₁₇BNaO₂S⁺: 259.0935 [(M+Na)]⁺; found: 259.0932.

6i (*CAS* 165904-22-3): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.16-7.10 (m, 4H, Ar*H*), 7.05-7.02 (m, 1H, Ar*H*), 2.66 (t, *J* = 8.1 Hz, 2H, C*H*₂), 1.10 (s, 12H, C(C*H*₃)₂), 1.05 (t, *J* = 8.1 Hz, 2H, C*H*₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 144.24, 128.04, 127.87, 125.36 (*Ar*), 82.90 (*C*(CH₃)₂), 29.84 (ArCH₂), 24.68 (C(CH₃)₂), 12.85 (br, BCH₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 33.79. HRMS (ESI): m/z calcd for C₁₄H₂₁BNaO₂⁺: 255.1527 [(M+Na)]⁺; found: 255.1526.

6j (*CAS* 355012-39-4): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.18-7.15 (m, 2H, Ar*H*), 6.85-6.82 (m, 2H, Ar*H*), 3.78 (s, 3H, OC*H*₃), 2.73 (t, *J* = 8.1 Hz, 2H, C*H*₂), 1.24 (s, 12H, C(C*H*₃)₂), 1.15 (t, *J* = 8.1 Hz, 2H, C*H*₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 157.44, 136.36, 128.69, 113.44 (*Ar*), 82.84 (*C*(CH₃)₂), 54.98 (OCH₃), 28.91 (Ar*C*H₂), 24.65 (C(*C*H₃)₂), 13.13 (br, B*C*H₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 33.79. HRMS (ESI): m/z calcd for C₁₅H₂₃BNaO₃⁺: 285.1632 [(M+Na)]⁺; found: 285.1635.

6k (*CAS* 1065498-70-5): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.18-7.15 (m, 2H, Ar*H*), 6.95-6.91 (m, 2H, Ar*H*), 2.72 (t, J = 8.1 Hz, 2H, C*H*₂), 1.21 (s, 12H, C(C*H*₃)₂), 1.12 (t, J = 8.1 Hz, 2H, C*H*₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 161.02 (d, J = 242.6 Hz, *Ar*), 139.86 (d, J = 3.3 Hz, *Ar*), 129.23 (d, J = 7.5 Hz, *Ar*), 114.70 (d, J = 20.9 Hz, *Ar*), 83.00 (*C*(CH₃)₂), 29.07 (ArCH₂), 24.68 (C(CH₃)₂), 13.10 (br, BCH₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 33.73. HRMS (ESI): m/z calcd for C₁₄H₂₀BFNaO₂⁺: 273.1433 [(M+Na)]⁺; found: 273.1436.

6l (*CAS* 444094-88-6): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.22-7.20 (m, 2H, Ar*H*), 7.15-7.13 (m, 2H, Ar*H*), 2.71 (t, *J* = 8.1 Hz, 2H, C*H*₂), 1.21 (s, 12H, C(C*H*₃)₂), 1.11 (t, *J* = 8.1 Hz, 2H, C*H*₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 142.75, 131.08, 129.32, 128.15 (*Ar*), 83.08 (*C*(CH₃)₂), 29.26 (ArCH₂), 24.73 (C(CH₃)₂), 12.80 (br, BCH₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 33.52. HRMS (ESI): m/z calcd for C₁₄H₂₀BClNaO₂⁺: 289.1137 [(M+Na)]⁺; found: 289.1140.

6m (*CAS* 748801-42-5): ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.39-7.36 (m, 2H, Ar*H*), 7.11-7.09 (m, 2H, Ar*H*), 2.71 (t, *J* = 8.1 Hz, 2H, C*H*₂), 1.23 (s, 12H, C(C*H*₃)₂), 1.12 (t, *J* =

8.1 Hz, 2H, CH₂). ¹³C NMR (125 MHz, CDCl₃, ppm): δ 143.28, 131.11, 129.76, 119.11 (*Ar*), 83.10 (*C*(CH₃)₂), 29.33 (ArCH₂), 24.75 (C(CH₃)₂), 12.75 (br, BCH₂). ¹¹B NMR (160 MHz, CDCl₃, ppm): δ 33.59. HRMS (ESI): m/z calcd for C₁₄H₂₀BBrNaO₂⁺: 333.0632 [(M+Na)]⁺; found: 233.0629.

Spectra

HRMS (negative ion mode)

Compound 7a:

b

2e

 $\mathbf{2f}$

2h

2j

2q

2s

69

2t

4a

4b

4d

4e

4g

6.891

75.021 75.008 -4.995 -4.982

 $\bigwedge^{1.092}_{0.762}$

ppm

4n

4p

6h

6j

Computational details

All the DFT calculations were performed with the Gaussian 09 software package.^{S4} Optimizations of structures with frequency calculations were carried out with the M06-2X functional^{S5} employing the basis set of $6-31G(d)^{S6}$ for all atoms. Transition states with only one imaginary frequency were examined by vibrational analysis and then submitted to intrinsic reaction coordinate (IRC)^{S7} calculations to ensure that such structures indeed connected two minima. Energies in solution (THF) were calculated by means of single-point calculations (SMD method^{S8} with the Bondi radii^{S9}) with the same functional using the basis set of 6-311++G(2d,p) for all atoms. The free energy correction from the frequency calculation was added to the single-point energy to obtain the free energy in solution. All of the solution-phase free energies reported herein correspond to the reference state of 1 mol/L, 298 K. NBO calculations were carried out using the NBO 5.9 program^{S10} at the M06/TZVP level of theory.

References

- S1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, Appl. Crystallogr., 2009, 42, 339-341.
- S2. G. M. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112-122.
- S3. G. M. Sheldrick, Acta Crystallographica Section C, 2015, 71, 3-8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2013.
- S5. Y. Zhao, D. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- S6. (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724-728. (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261. (c) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213-222. (d) J. D. Dill, J. A. Pople, J. Chem. Phys., 1975, 62, 2921-2923. (e) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys., 1982, 77, 3654-3665.
- S7. (a) K. J. Fukui, Phys. Chem., 1970, 74, 4161-4163. (b) K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
- S8. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phy. Chem. B, 2009, 113, 6378-6396.
- S9. A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
- S10. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, *Theoretical Chemistry Institute*; University of Wisconsin: Madison, WI, 2009.

Species	Solvation Energies	Thermal Correction of Gibbs
	(Hartree)	Free Energies (Hartree)
9-BBN dimer	-677.3749727	0.405637
NaOH•2thf	-702.9921601	0.209718
но-в	-413.9720623	0.194529
TS1	-1380.368932	0.639657
IN1	-966.448967	0.417829
1 a	-345.539616	0.080819
IN2	-1312.001918	0.522908
T82	-1311.965686	0.521759
IN3	-1312.053327	0.527645
В-Н	-338.6621382	0.188329
B H H	-684.2845525	0.297308

Energies of intermediates and transition states

The Cartesian coordinates for the optimized structures

9-]	BBN dimer			1	-2.140337	-1.929382	1.450443
5	-0.000431	0.894795	0.000000	6	-1.300159	2.622654	-1.293970
6	-0.000165	1.786282	1.310239	1	-2.140609	1.930723	-1.450079
6	1.300355	2.621863	1.293999	1	-1.313689	3.314430	-2.147116
6	1.558634	3.414692	0.000000	1	-0.000284	1.194047	-2.234141
6	-1.557642	3.415739	0.000000	1	1.314096	3.313685	-2.147077
6	-1.300159	2.622654	1.293970	1	2.140339	1.929375	-1.450408
1	0.978518	0.000151	0.000000				
1	-2.140609	1.930723	1.450079	Na	OH•2thf		
1	-0.000284	1.194047	2.234141	11	-0.161177	1.411304	0.807117
1	1.314096	3.313685	2.147077	8	-0.583366	1.638382	-1.173192
1	2.140339	1.929375	1.450408	1	-0.575382	2.378075	-1.791438
1	2.601284	3.754649	0.000000	6	2.468980	0.907696	-0.469136
1	0.957704	4.326699	0.000000	8	1.920777	0.562553	0.829622
1	-2.599856	3.756880	0.000000	6	2.101701	-0.833582	1.088420
1	-0.955781	4.327151	0.000000	6	2.467875	-1.458411	-0.254165
1	-1.313689	3.314430	2.147116	6	3.250918	-0.323830	-0.918963
6	1.300355	2.621863	-1.293999	1	1.618648	1.147881	-1.123433
6	-0.000165	1.786282	-1.310239	1	3.102315	1.790268	-0.336988
5	0.000423	-0.894805	0.000000	1	2.909652	-0.960272	1.820877
6	0.000161	-1.786298	1.310235	1	1.173486	-1.228157	1.516000
6	-1.300364	-2.621876	1.294006	1	3.042599	-2.380991	-0.143389
6	-1.558702	-3.414679	0.000000	1	1.562219	-1.676888	-0.828105
6	-1.300364	-2.621876	-1.294006	1	4.276328	-0.296501	-0.534561
6	0.000161	-1.786298	-1.310235	1	3.291723	-0.410992	-2.006831
1	-0.978529	-0.000179	0.000000	6	-2.843298	0.113814	0.917382
6	1.300174	-2.622648	-1.293973	8	-1.508537	-0.413255	0.996647
6	1.557713	-3.415711	0.000000	6	-1.208438	-1.134630	-0.224160
6	1.300174	-2.622648	1.293973	6	-2.533980	-1.257545	-0.969014
1	0.000277	-1.194058	2.234135	6	-3.223176	0.043555	-0.555503
1	2.140605	-1.930698	1.450099	1	-3.502517	-0.495904	1.549376
1	1.313711	-3.314431	2.147115	1	-2.836034	1.137626	1.311321
1	2.599951	-3.756779	0.000000	1	-0.514288	-0.525126	-0.815835
1	0.955925	-4.327168	0.000000	1	-0.768224	-2.097195	0.057455
1	2.140605	-1.930698	-1.450099	1	-2.383965	-1.334385	-2.048087
1	1.313711	-3.314431	-2.147115	1	-3.099456	-2.132209	-0.626756
1	0.000277	-1.194058	-2.234135	1	-2.734271	0.873391	-1.077330
1	-1.314098	-3.313711	-2.147074	1	-4.304376	0.043200	-0.714354
1	-2.140337	-1.929382	-1.450443				
1	-2.601377	-3.754558	0.000000				
1	-0.957851	-4.326736	0.000000	HC)-B		

но-в

2.147074

1

-1.314098 -3.313711

5	-1.259332	0.000294	-0.086731	6	0.359462	1.446013	1.702439
6	-0.467331	-0.000038	1.277690	5	2.167257	0.055433	-0.336621
6	0.372372	-1.301434	1.314068	6	3.055972	0.302647	-1.629138
6	1.244645	-1.555512	0.071025	6	4.322233	1.048170	-1.137252
6	0.530558	-1.300878	-1.269113	6	5.069330	0.360065	0.022510
6	-0.305570	0.000271	-1.335408	6	4.171462	-0.175224	1.155564
6	0.530908	1.301192	-1.268661	6	2.893707	-0.919157	0.688008
6	1.245379	1.554882	0.071416	1	2.312781	1.359766	0.368656
6	0.373122	1.300846	1.314479	6	3.194408	-2.263342	-0.001962
1	-1.120750	0.000008	2.163246	6	3.887727	-2.158578	-1.376304
1	-0.322413	2.144799	1.426379	6	3.376389	-1.041380	-2.310556
1	1.009260	1.310852	2.210033	1	2.564958	0.942987	-2.373403
1	1.587368	2.596644	0.094387	1	2.458149	-1.370900	-2.803627
1	2.154070	0.951882	0.126853	1	4.122387	-0.886662	-3.103717
1	-0.147647	2.143287	-1.464531	1	3.779613	-3.121391	-1.893103
1	1.272836	1.314519	-2.079032	1	4.964551	-2.039010	-1.228373
1	-0.861713	0.000526	-2.280632	1	2.235493	-2.772475	-0.129138
1	1.272695	-1.313978	-2.079300	1	3.815196	-2.890450	0.654532
1	-0.148159	-2.142693	-1.465604	1	2.300359	-1.130351	1.589321
1	1.585975	-2.597498	0.093656	1	4.771919	-0.833041	1.799353
1	2.153722	-0.953132	0.126867	1	3.861290	0.668767	1.788312
1	1.008405	-1.312166	2.209688	1	5.786610	1.071759	0.450107
1	-0.323664	-2.145030	1.425560	1	5.676770	-0.456859	-0.374701
8	-2.613966	0.000508	-0.220841	1	5.022930	1.189007	-1.972022
1	-3.056102	0.000469	0.639835	1	4.022933	2.056602	-0.817228
				6	0.831392	2.753504	2.373646
TS	51			1	1.908844	2.652570	2.566583
5	1.069987	1.385511	0.266437	1	0.354078	2.880631	3.356217
6	0.557214	2.603277	-0.639420	1	0.656187	0.615465	2.359717
6	-0.966844	2.464459	-0.825221	1	-1.685742	1.516196	2.477355
6	-1.772334	2.329747	0.479046	1	-1.417894	0.328271	1.226869
6	0.603363	4.031513	1.545348	11	-1.382657	-0.889259	-0.942039
6	0.986863	3.912081	0.057821	8	0.587115	-1.480808	-1.235398
1	0.843733	0.268517	-0.322884	1	0.966601	-2.198203	-1.756070
1	2.081544	3.973740	-0.019369	6	-4.334860	-0.276850	0.085718
1	1.010005	2.601497	-1.639991	8	-3.487364	-0.116855	-1.066986
1	-1.370518	3.311038	-1.401549	6	-4.091399	0.781162	-2.009047
1	-1.145684	1.574273	-1.454459	6	-5.557760	0.865505	-1.600481
1	-2.790471	1.995939	0.236051	6	-5.452639	0.750708	-0.077889
1	-1.894964	3.318252	0.927310	1	-4.727066	-1.301279	0.082867
1	1.185751	4.846963	1.992162	1	-3.727705	-0.135906	0.984251
1	-0.440026	4.345277	1.636931	1	-3.599210	1.759910	-1.934536
1	0.593137	4.786904	-0.480339	1	-3.933780	0.378893	-3.012987
6	-1.170322	1.362048	1.516878	1	-6.032386	1.789917	-1.935936

1	-6.116054	0.017535	-2.010994	6	-3.110020	0.798342	0.604723
1	-5.154457	1.711746	0.354201	6	-4.114967	1.942458	0.790279
1	-6.381580	0.431953	0.399808	6	-3.438472	3.137245	0.072706
6	-2.555893	-3.312053	0.800559	6	-2.132809	2.539699	-0.472191
8	-1.873535	-2.060298	0.959274	8	-2.390272	1.137032	-0.580422
6	-0.584655	-2.285481	1.566789	1	-2.405137	0.751753	1.449361
6	-0.232354	-3.706073	1.166851	1	-5.066722	1.695833	0.314512
6	-1.590555	-4.402961	1.282581	1	-3.240105	3.973191	0.746466
1	-3.489056	-3.287276	1.373594	1	-1.297551	2.697479	0.223678
1	-2.805059	-3.430524	-0.262269	6	-1.231656	-2.216832	0.972927
1	0.113569	-1.554210	1.152530	6	-0.213342	-3.371820	0.886090
1	-0.674959	-2.162214	2.654686	6	-0.463801	-3.982731	-0.508101
1	0.112357	-3.676532	0.127808	6	-1.836097	-3.428822	-0.875741
1	0.543322	-4.150369	1.794749	8	-1.842964	-2.112414	-0.322648
1	-1.666072	-5.314708	0.685815	1	-2.015486	-2.416318	1.714986
1	-1.798536	-4.660003	2.326223	1	0.809594	-2.999110	0.971029
				1	-0.440134	-5.074616	-0.506918
IN	1			1	-2.645565	-4.017180	-0.420555
11	-0.831093	-0.324935	-1.264966	1	-3.555165	-0.186411	0.453180
6	1.544671	2.254027	0.120089	1	-1.844934	2.903515	-1.460181
1	1.302016	2.915175	0.968883	1	-4.066969	3.503895	-0.741639
1	0.957310	2.619406	-0.736596	1	-4.307565	2.139573	1.846786
6	3.144786	-0.070204	-0.967866	1	-0.766977	-1.251779	1.198278
1	3.525431	-0.660675	-1.814286	1	-2.020851	-3.341657	-1.948976
6	3.723132	-0.703276	0.310231	1	0.284610	-3.615216	-1.215424
1	3.434807	-1.765197	0.312254	1	-0.387056	-4.099537	1.682477
1	4.824207	-0.683032	0.304767				
6	1.717576	0.191528	1.670251	1a			
1	1.494925	0.810535	2.554322	6	-1.989745	0.470601	-0.000002
1	1.224501	-0.777631	1.845313	1	-2.279159	1.542702	0.000022
6	1.103850	0.802412	0.392922	6	-0.528762	0.216748	0.000324
1	0.010331	0.858831	0.596063	6	0.360981	1.290447	0.000296
6	3.233751	-0.069370	1.622490	6	-0.050197	-1.096126	0.000328
1	3.501798	-0.724543	2.462259	6	1.732755	1.056239	-0.000186
1	3.773380	0.863840	1.805240	1	-0.024712	2.307694	0.000784
6	3.598355	1.383040	-1.205021	6	1.318203	-1.329094	0.000067
1	4.696821	1.464360	-1.200879	1	-0.768594	-1.910507	0.000357
1	3.273874	1.663251	-2.216919	6	2.208138	-0.252991	-0.000271
6	3.035832	2.425842	-0.219728	1	2.428595	1.889139	-0.000718
1	3.618795	2.417185	0.704834	1	1.697799	-2.346030	0.000300
1	3.184988	3.428789	-0.641337	1	3.278159	-0.438032	-0.000742
5	1.527821	-0.116841	-0.906604	8	-2.830042	-0.397489	-0.000418
1	1.044498	0.365391	-1.959661				
1	1.102409	-1.286774	-0.783468	IN	2		

6 -2.578699	1.222662	-1.490092	8	1.462497	-1.192413	2.036805
1 -2.568693	1.625039	-2.516680	1	2.270662	-3.094852	2.075658
1 -2.218774	2.029597	-0.836621	1	-0.645962	-3.491880	1.835219
6 -3.242170	-1.066607	0.348630	1	-0.736080	-2.121496	4.296333
1 -3.414755	-1.495933	1.349001	1	1.508947	-1.191006	4.108518
6 -3.505894	-2.199645	-0.662525	6	3.418143	-1.345039	-0.708890
1 -2.886421	-3.056463	-0.359194	6	4.335472	-0.956375	-1.891274
1 -4.551243	-2.543457	-0.614719	6	3.358394	-0.418711	-2.954835
6 -1.848000	-1.114310	-2.335789	6	2.031654	-1.034800	-2.522791
1 -1.805548	-0.764503	-3.380659	8	2.089963	-0.997130	-1.099327
1 -1.022540	-1.834094	-2.213599	1	3.465153	-2.422031	-0.504624
6 -1.602432	0.039003	-1.344646	1	5.083400	-0.212126	-1.606502
1 -0.605677	0.454961	-1.617920	1	3.642759	-0.693297	-3.972621
6 -3.172937	-1.870303	-2.130131	1	1.941212	-2.076080	-2.862781
1 -3.136485	-2.805708	-2.704816	1	0.554330	0.104615	3.329477
1 -3.989190	-1.294785	-2.575328	1	-1.214481	-1.411503	2.733367
6 -4.193350	0.134502	0.211464	1	0.402196	-3.920480	3.201238
1 -5.246469	-0.173747	0.306905	1	1.245894	-2.694553	0.667744
1 -3.990987	0.812978	1.052907	1	4.871874	-1.833510	-2.261501
6 -4.038380	0.935541	-1.092499	1	3.290677	0.672429	-2.901446
1 -4.551071	0.417534	-1.907671	1	1.141817	-0.482000	-2.833171
1 -4.561060	1.895094	-0.986100	1	3.631658	-0.808021	0.219877
5 -1.711722	-0.564789	0.181151				
1 -1.416881	0.308279	1.036947	TS	2		
1 -0.927212	-1.523154	0.323413	6	2.623441	-0.944044	1.883783
6 -0.939574	3.244197	1.545328	1	2.562255	-1.799166	2.574418
1 -1.041574	3.016266	2.626021	1	2.509839	-0.016753	2.449214
6 0.353105	2.828402	0.929739	6	3.009659	-0.296891	-1.053528
6 1.394338	2.371103	1.739772	1	3.169384	0.364428	-1.915451
6 0.516475	2.889904	-0.458157	6	2.954422	-1.755485	-1.602333
6 2.599678	1.962910	1.168481	1	2.287279	-1.762815	-2.478133
1 1.258737	2.335741	2.818406	1	3.946287	-2.046101	-1.974985
6 1.715662	2.475829	-1.028926	6	1.239590	-2.378942	0.226932
1 -0.311578	3.242428	-1.066067	1	1.049719	-3.131675	1.005206
6 2.755861	2.012883	-0.217190	1	0.335308	-2.359905	-0.405066
1 3.405724	1.599906	1.798578	6	1.430120	-0.986320	0.908237
1 1.839950	2.508121	-2.107515	1	0.516230	-0.792834	1.493235
1 3.689674	1.685902	-0.667332	6	2.446789	-2.824338	-0.613795
8 -1.817054	3.801938	0.935749	1	2.177753	-3.727358	-1.176085
11 0.621643	-0.019134	0.283867	1	3.249969	-3.123158	0.061671
6 1.348166	-2.595555	1.751652	6	4.116248	-0.027109	-0.014242
6 0.116482	-3.114873	2.519489	1	5.104422	-0.158638	-0.477227
6 -0.397359	-1.882000	3.285510	1	4.024081	1.015764	0.312140
6 0.814582	-0.956876	3.288203	6	4.025799	-0.900845	1.243773

1	4.392443	-1.908998	1.023027	1	-1.698652	-1.391643	2.536464
1	4.717149	-0.492497	1.989390	1	-3.169468	-1.699991	-1.149263
5	1.612004	-0.103479	-0.381098				
1	1.789284	1.982545	-0.177636	IN	3		
1	0.665334	0.264624	-1.031719	6	3.119513	-0.635900	-1.760757
6	1.754710	2.548339	0.837885	1	3.814008	0.073971	-2.237046
1	2.012093	3.592426	0.501882	1	2.357937	-0.880973	-2.513618
6	0.233278	2.586346	1.115625	6	2.394395	-2.256249	0.669223
6	-0.699588	3.195149	0.265670	1	1.833234	-3.059293	1.174520
6	-0.231230	1.941522	2.266744	6	3.337705	-1.660125	1.730528
6	-2.067792	3.143472	0.546198	1	2.718016	-1.371834	2.592694
1	-0.343039	3.721896	-0.620645	1	4.047493	-2.414966	2.101851
6	-1.598895	1.876119	2.548490	6	3.302695	0.615788	0.508171
1	0.538515	1.518263	2.909441	1	3.983874	1.372463	0.086695
6	-2.524943	2.470182	1.684997	1	2.661260	1.143805	1.233732
1	-2.781633	3.633852	-0.111679	6	2.383342	0.022288	-0.575649
1	-1.948473	1.376630	3.449333	1	1.842805	0.883787	-1.019601
1	-3.587369	2.432758	1.906811	6	4.133038	-0.418565	1.287121
8	2.478621	2.026417	1.794299	1	4.560074	0.066686	2.174884
11	-1.153119	0.541366	0.137614	1	4.992551	-0.721119	0.683725
6	-1.108450	-0.518881	-2.878203	6	3.105150	-2.905203	-0.532815
6	-0.064388	0.273912	-3.694279	1	3.785167	-3.707305	-0.207178
6	-0.387615	1.746381	-3.369240	1	2.332864	-3.386156	-1.150573
6	-1.804944	1.655788	-2.815631	6	3.885342	-1.928231	-1.427557
8	-1.804129	0.437423	-2.068417	1	4.843639	-1.684596	-0.960106
1	-1.834231	-1.020980	-3.531350	1	4.143766	-2.433601	-2.367461
1	0.956562	0.018494	-3.401046	5	1.414212	-1.084376	0.133061
1	-0.315017	2.402407	-4.239342	1	-0.338023	-2.774439	0.601947
1	-2.550487	1.587636	-3.621060	1	0.768229	-0.571627	1.090152
6	-2.720453	-2.328621	-0.377629	6	-0.458043	-2.574913	-0.474665
6	-3.738825	-3.105031	0.485477	1	-0.205199	-3.513946	-0.994469
6	-3.367726	-2.719376	1.933870	6	-1.917921	-2.251405	-0.733795
6	-1.969190	-2.129922	1.777545	6	-2.923838	-2.840607	0.038178
8	-2.021548	-1.461961	0.517698	6	-2.290399	-1.370709	-1.753216
1	-1.998171	-3.011138	-0.846049	6	-4.265357	-2.552841	-0.194439
1	-4.767272	-2.826372	0.248177	1	-2.646835	-3.527429	0.835464
1	-3.389369	-3.568966	2.619179	6	-3.633581	-1.069159	-1.981931
1	-1.197149	-2.911606	1.743108	1	-1.515733	-0.950557	-2.391596
1	-2.082319	2.463450	-2.136063	6	-4.625297	-1.657638	-1.201701
1	0.287545	2.120988	-2.592149	1	-5.032294	-3.019049	0.417359
1	-0.174363	0.066268	-4.761540	1	-3.905527	-0.386939	-2.782603
1	-0.665557	-1.259138	-2.206032	1	-5.671021	-1.427508	-1.380823
1	-3.639377	-4.180292	0.320483	8	0.386897	-1.546043	-0.895330
1	-4.048872	-1.953496	2.314350	11	-0.378986	0.519470	-0.519855

6	-0.990597	1.647170	2.160228
6	-1.037048	0.515135	3.208903
6	-2.054974	-0.483711	2.622846
6	-2.822509	0.371945	1.622743
8	-1.823054	1.228999	1.071216
1	-1.382422	2.590488	2.563775
1	-0.056089	0.052925	3.336031
1	-2.700911	-0.934154	3.380173
1	-3.590272	0.982793	2.120951
6	-1.174384	3.659069	-0.802542
6	-0.566292	5.016349	-1.129587
6	0.787254	4.910433	-0.422983
6	1.172106	3.457919	-0.698967
8	-0.071972	2.742001	-0.810816
1	-1.639778	3.652012	0.190497
1	-0.425064	5.121183	-2.210517
1	0.664105	5.075280	0.652920
1	1.768402	3.001411	0.096380
1	-3.278218	-0.183233	0.799848
1	-1.530799	-1.281386	2.087472
1	-1.368782	0.901377	4.176216
1	0.011803	1.824073	1.757308
1	-1.179832	5.848108	-0.776549
1	1.532638	5.615597	-0.796100
1	1.716451	3.354176	-1.644450
1	-1.910493	3.312988	-1.533380

<			
2	Ден		
1	1.967790	-1.916125	0.000000
5	1.241084	-0.964349	0.000000
6	0.609234	-0.365702	1.303316
6	0.609234	1.177087	1.289898
6	0.082787	1.827211	0.000000
6	0.609234	1.177087	-1.289898
6	0.609234	-0.365702	-1.303316
6	-0.814354	-1.006103	-1.288631
6	-1.623048	-0.775004	0.000000
6	-0.814354	-1.006103	1.288631
1	1.097768	-0.702255	2.224937
1	-0.700489	-2.089352	1.436953
1	-1.383537	-0.639868	2.153618
1	-2.483442	-1.455064	0.000000

1	-2.047655	0.230485	0.000000
1	-0.700489	-2.089352	-1.436953
1	-1.383537	-0.639868	-2.153618
1	1.097768	-0.702255	-2.224937
1	0.037307	1.560096	-2.146496
1	1.644724	1.509291	-1.447135
1	0.367974	2.886144	0.000000
1	-1.009428	1.823860	0.000000
1	0.037307	1.560096	2.146496
1	1.644724	1.509291	1.447135

B H H

6	-3.445807	0.154361	1.173304
1	-4.174064	0.970659	1.278466
1	-3.664720	-0.552817	1.985433
6	-1.124650	-0.973422	-0.427491
1	-0.425942	-1.776918	-0.694023
6	-0.812663	0.227635	-1.360229
1	0.268962	0.415446	-1.305337
1	-1.022999	-0.050117	-2.402454
6	-1.614742	1.869888	0.474714
1	-2.301116	2.713594	0.630545
1	-0.621874	2.220972	0.792390
6	-2.012449	0.684937	1.394504
1	-1.924031	1.024027	2.433945
6	-1.555182	1.536503	-1.026342
1	-1.055047	2.361272	-1.548175
1	-2.567707	1.507364	-1.434559
6	-2.560681	-1.532575	-0.571446
1	-2.728323	-1.865375	-1.605043
1	-2.636376	-2.434277	0.053660
6	-3.684330	-0.564229	-0.167366
1	-3.839211	0.168421	-0.962411
1	-4.624399	-1.125451	-0.102432
5	-0.964748	-0.435015	1.048460
1	0.685479	-2.572063	1.176722
6	1.069858	-1.627748	1.580065
1	1.611420	-1.854214	2.504473
6	1.985809	-0.968245	0.575168
6	2.465147	-1.669620	-0.529320
6	2.342200	0.372842	0.737865

6	3.288825	-1.043389	-1.462159
1	2.178477	-2.709520	-0.670118
6	3.162480	1.001154	-0.193623
1	1.957963	0.922827	1.593063
6	3.636725	0.294026	-1.297285
1	3.647768	-1.597944	-2.323927
1	3.430267	2.045040	-0.060450
1	4.271732	0.785553	-2.027935
8	0.001192	-0.767481	1.951841