Supplementary Information

Exploiting H-transfer as a tool for the catalytic reduction of biobased building blocks: the gas-phase production of 2-methylfurfural using FeVO₄ catalyst

L. Grazia^{a,b}, D. Bonincontro^a, A. Lolli^{a,b}, T. Tabanelli^a, C. Lucarelli^{b,c}, S. Albonetti^{a,b,*} and F.

Cavani^{a,b,*}

a Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy b Consorzio INSTM - Via G. Giusti, 9 - 50121 Firenze, Italy

c Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, 22100, Como, Italy

Figure S1 - XRD patterns of the dried (black) and calcined (red) FeVO₄. Reference patterns: (•) Fe₂O₃, (—) FeVO₄.

Figure S2 – DRIFT spectra recorded after methanol adsorption (left side) and desorption (right side) over FeVO₄ catalyst performed at 85°C. All the reported spectra have the same Y-axis scale

DRIFT spectra recorded after methanol adsorption and desorption; these experiments allow to demonstrate that methanol adsorbs in two different ways over the catalyst surface. The most important one is a dissociative adsorption that brings to the formation of methoxy species according to the IR bands observed at 2930 and 2828 cm⁻¹. On the other hand, methanol could be also adsorbed in an undissociative way according to the band at 2956 and 2856 cm⁻¹ attributed to molecular CH₃OH.

Figure S3_A – Effect of reaction time on FU conversion and products selectivity for FeVO₄ catalyst. Feed composition: FU 1%, CH₃OH 10%, N₂ 89%; Pressure 1 atm, Temperature 300°C, overall gas residence time 1.0 s. Legend: ◆ FU conversion, ■ MF selectivity, ■ DMF selectivity,
■ VINFU selectivity, ■ C-loss.

Figure S3_B – Effect of reaction time on FU conversion and products selectivity for FeVO₄ catalyst. Feed composition: FU 1%, CH₃OH 10%, N₂ 89%; Pressure 1 atm, Temperature 350°C, overall gas residence time 1.0 s. Legend: ◆ FU conversion, ■ MF selectivity, ■ DMF selectivity,
VINFU selectivity, ■ C-loss.

Figure S4 – Raman spectrum collected on FeVO₄ used at 320°C. The characteristic D3 band at 1600 cm⁻¹ confirmed the presence of amorphous carbonaceous deposits over the surface of the catalyst.

Figure S5 – FeVO₄ catalyst. Number of moles of gas formed, based on time, in the reaction of FU reduction with methanol at 320°C (solid line) and 250°C (dashed line). Feed composition: FU 1%, CH₃OH 10%, N₂ 89%; Pressure 1 atm, overall gas residence time 1,0 s. Legend: \diamond CO, \blacksquare CO₂, \blacktriangle CH₄, \bullet H₂.

Figure S6 – FeVO₄ catalyst. Number of moles of gas formed, based on the time, in the reaction of methanol decomposition at 320°C (first hour) and in the reaction of FU reduction with methanol at 320°C. Feed composition: FU 1%, CH₃OH 10%, N₂ 89%; Pressure 1 atm, overall gas residence time 1,0 s. Legend: \diamond CO, \blacksquare CO₂, \blacktriangle CH₄, \bullet H₂.

Figure S7_A – FeVO₄ catalyst. Methanol conversion and light compounds yield, based on the time, in the reaction of methanol decomposition at 320°C. Feed composition: FU 1%, CH₃OH 10%, N₂ 89%; Pressure 1 atm, overall gas residence time 1,0 s. Legend: \blacksquare CH₃OH conversion, \blacklozenge CO₂, \blacksquare CH₄, \blacklozenge H₂, \blacklozenge H₂O.

Figure S7_B – FeVO₄ catalyst. Reduction degree, based on time, obtained by-means of the oxygen balance.

Figure S8 – FeVO₄ catalyst. Number of moles of gaseous products formed, based on the time, for the catalytic test performed feeding only FU over pre-reduced catalyst. Feed composition: FU 1%, N₂ 99% ; Pressure 1 atm, Temperature 320°C, overall gas residence time 1,0 s. Legend: \diamond CO, \blacksquare CO₂, \blacktriangle CH₄, \bullet H₂.

Figure S9 – Thermogravimetric (—) and differential thermal (—) analysis (TGA/DTA) in air of spent FeVO4 used in the catalytic test performed feeding only 1% mol of FAL at 320°C. The weight loss of \approx 3% registered in the range of temperature between 290 and 360°C coupled with an exothermic DTA peak, well agree with the combustion of the carbonaceous deposits that derive from the decomposition of FAL.

