Supplementary Information

Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and mechanism study

Feiping Zhao, *a Eveliina Repo, a Yang Song, Dulin Yin, Samia B. Hammouda, Li Chen, Simo Kalliola, Jutao Tang, Kam C. Tam and Mika Sillanpää*a

^aLaboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland. E-mail: <u>Feiping.Zhao@lut.fi</u>; <u>Mika.Sillanpaa@lut.fi</u>

^bLaboratory for Functional Colloids & Sustainable Nanomaterials, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. E-mail: <u>mkctam@uwaterloo.ca</u>

^cNational & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, 410081 Changsha, China.

Sample	Elemental content (wt. %)			N content in adsorbent		PEI content	
	N	С	Н	S	mg/g	mmol/g	(wt. %) ^a
CNC	0	42.14	6.18	0.73	0	0	0
TEMPO-CNC	0	40.46	5.77	0.37	0	0	0
PEI-CNC1 (0.5:1)	8.64	42.84	7.11	2.57	86.4	6.17	26.54
PEI-CNC2 (1:1)	12.12	43.9	7.51	1.75	121.2	8.66	37.23
PEI-CNC3 (2:1)	15.05	44.49	7.73	1.38	150.5	10.75	46.23
PEI-CNC4 (4:1)	16.35	46.1	8.12	0.91	163.5	11.69	50.22

 Table S1 Elemental analysis results of CNC, TEMPO-CNC, and PEI-CNCs.

^a Calculated from nitrogen content (wt. %) and considered $(C_2H_5N)_n$ as the chemical formula of

PEI: $PEI\% = N\% \times M_{C_2H_5N}/M_N$.

Functional cost analysis of PEI-CNCs

Reagent	Cost (\$/kg) ^a
Cellulose nanocrystal	7
Polyethylenimine (50 wt. % in H ₂ O)	5
2,2,6,6-tetramethylpiperidinyloxy	7.2
N-(3-(dimethylamino)propyl)-N'-	12
ethylcarbodiimide hydrochloride	
N-hydroxysuccinimide	16

Table S2 The wholesale cost of reagents.

^a Prices obtained from wholesale suppliers (metric ton scale).

 Table S3 The pilot-scale cost analysis of PEI-CNCs.

	PEI-CNC1	PEI-CNC2	PEI-CNC3	PEI-CNC4
Yield (%)	68	65	59	33
Raw materials (\$/kg) ^a	30	30.8	33.4	58.8
Pilot-scale (\$/kg) ^b	42.6	43.7	47.4	83.5

^a Calculated based on the raw materials required to produce 1 kg of PEI-CNC having 1:0.5, 1:1, 1:2, and 1:4 CNC:PEI ratios in quantitative yield, according to Alsbaiee's method.¹

^b The costs of the raw materials were scaled by 142% as a rough estimate of the cost associated with an optimized process in a pilot scale manufacturing plant, according to Alsbaiee's method.¹

Notes and references

 A. Alsbaiee, B. Smith, L. Xiao, Y. Ling, D. E. Helbling and W. R. Dichtel, *Nature*, 2016, 529, 190–194.

Fig. S1 Simultaneous conductometric–potentiometric titration curves of 0.025 wt. % PEI-CNC1 (A), PEI-CNC2 (B), PEI-CNC3 (C), and PEI-CNC4 (D) by 0.01 M NaOH. Experimental condition: PEI-CNC, 10 mg; solution, 40 mL; initial pH of solution: 3.5; titration speed, 50 μ L/min.

Fig. S2 ζ-potentials of the pristine, modified, and cross-linked CNCs as a function of solution pH.

Fig. S3 TGA (A) and DTG (B) curves of CNC, TEMPO-CNC, and PEI-CNC1.

Fig. S4 Effect of pH on the adsorption efficiency (A) and adsorption capacity (C) of La(III) by different PEI-CNCs and effect of pH on the adsorption efficiency (B) and adsorption capacity (D) of different REEs by PEI-CNC3.

Fig. S5 The effect of amount of adsorbent (A) and the effect of temperature (B) on the adsorption efficiency of La(III) onto PEI-CNC3.

Fig. S6 Comparison of the adsorption efficiency of La(III), Eu(III), and Er(III) onto CNC, TEMPO-CNC, and PEI-CNC3. Experimental condition: dose, 1 g/L; pH 5.4; contact time, 10 h; REE concentration, 0.72 mM.

Fig. S7 Effect of competitive ions (Na⁺, Ca²⁺, and Fe³⁺) on the adsorption of La(III), Eu(III), and Er(III) onto PEI-CNC3 (Experimental condition: dose, 1 g/L; pH 5.4; contact time, 10 h; the concentration ratio of competitive ion to REE, 1:2 (mM)), and its application in the adsorption of REEs from seawater, which was collected from Gulf of Finland near Helsinki.