Supplementary Information

Efficient and sustainable solvents for lignin dissolution: Aqueous choline carboxylate solutions

Airong Xu,^a Xin Guo,^a Yibo Zhang,^a Zhiyong Li,^b and Jianji Wang*^b

^a School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China

^b School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China

¹H-NMR Data of the ILs

[Ch][CH₃COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 1.59 (3H, s, CH₃CO₂),
 3.14 (9H, s, CH₃), 3.44 (2H, t, NCH₂), 3.84 (2H, m, CH₂OH).

[Ch][CH₃CH₂COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative toTMS): 0.89 (3H, t, CH₃CH₂), 1.82 (2H, m, CH₃CH₂), 3.14 (9H, s, CH₃), 3.44 (2H, t, NCH₂), 3.86 (2H, m, CH₂OH).

[Ch][CH₃(CH₂)₂COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 0.80 (3H, t, but-CH₃), 1.41 (2H, m, CH₃CH₂), 1.86 (2H, m, CH₂CO₂), 3.12 (9H, s, CH₃N), 3.43 (2H, t, NCH₂), 3.84 (2H, s, CH₂OH).

4. [Ch][CH₃(CH₂)₄COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 0.84 (3H, t, CH₃),
 1.16-1.27 (4H, m, CH₃(CH₂)₂), 1.35-1.43 (2H, m, CH₂-CH₂-CH₂CO₂), 1.79 (2H, t, CH₂CO₂)

[Ch][CH₃(CH₂)₁₀COO]: ¹H NMR (500MHz: D₂O; δ/ppm relative to TMS): 0.93 (3H, t, CH₃), 1.34 (16H, m, CH₃CH₂CH₂(CH₂)₈), 1.59 (2H, m, CH₃CH₂), 2.19 (2H, m, CH₃CH₂CH₂), 3.25 (9H, s, CH₃N), 3.56 (2H, t, NCH₂), 4.09 (2H, t, CH₂OH)

[Ch][CH₃CH(OH)COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 1.08 (3H, d, CH₃CH), 1.25 (1H, m, CH₃CH), 3.13 (9H, s, CH₃), 3.43 (2H, t, NCH₂), 3.85 (2H, m, CH₂OH)

[Ch][CH₂=CHCOO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 3.14 (9H, s, CH₃),
 3.44 (2H, t, NCH₂), 3.86 (2H, m, CH₂OH), 5.13, 5.91 (2H, m, CH₂CH), 5.68 (1H, t, CH₂CH).

8. [Ch][HOCH₂COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 3.13 (9H, s, CH₃),
3.33 (2H, s, CH₂CO₂), 3.43 (2H, t, NCH₂), 3.85 (2H, m, CH₂OH).

9. [Ch][NH₂CH₂COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 3.13 (9H, s, CH₃),
3.45 (2H, t, NCH₂), 3.85 (2H, m, HOCH₂)

10 [Ch]₃[OOCCH₂(HO)C(COO)CH₂COO]: ¹H NMR (500MHz: D₂O; δ/ppm relative to TMS): 2.51 (4H, m, CH₂COO), 3.11 (27H, s, CH₃N), 3.43 (6H, t, CH₂N), 3.97 (6H, m, CH₂OH)

11. [Ch]₂[OOC(CHOH)₂COO]: ¹H NMR (500MHz: DMSO-d₆; δ/ppm relative to TMS): 3.13 (18H, s, CH₃), 3.45 (4H, t, NCH₂), 3.77 (2H, s, CHCO₂), 3.85 (4H, m, CH₂OH).

[Ch]₂[OOC(CH₂)₂COO]: ¹H NMR (500MHz: D₂O₅ δ/ppm relative to TMS): 2.33 (4H, t, CH₂CO₂), 3.13 (18H, s, CH₃N), 3.44 (4H, t, NCH₂), 3.98 (4H, t, CH₂O).

13. [Ch][HOCH₂(CHOH)₄COO]: ¹H NMR (500MHz: D₂O_; δ/ppm relative to TMS): 3.18 (9H, s, CH₃), 3.50 (2H, t, NCH₂), 3.63 (1H, d, CH), 3.74 (2H, m, CH₂OH(NCH₂CH₂OH)), 3.80 (1H, d, CH), 4.01(1H, s, CH), 4.04 (2H, m, HOCH₂(HOCH₂(CHOH)₄COO)), 4.10 (1H, t, CH).

The ¹³C NMR and ¹⁵N NMR spectra of [Ch][CH₃CH₂COO] in H₂O-[Ch][CH₃CH₂COO] solvent and H₂O-[Ch][CH₃CH₂COO]-lignin (8 wt%) solution

Fig. S1 ¹³C NMR spectra of [Ch][CH₃CH₂COO] in H₂O-[Ch][CH₃CH₂COO] solvent

Fig. S2 The ¹³C NMR spectra of [Ch][CH₃CH₂COO] in H₂O-[Ch][CH₃CH₂COO]-lignin (8 wt%) solution

Fig. S3 The ¹⁵N NMR spectra of [Ch][CH₃CH₂COO] in H₂O-[Ch][CH₃CH₂COO] solvent.

Fig. S4 The ¹⁵N NMR spectra of [Ch][CH₃CH₂COO] in H₂O-[Ch][CH₃CH₂COO]-lignin (8 wt%) solution

Fig. S5 ¹H NMR spectrum of the recovered [Ch][CH₃(CH₂)₄COO] at room temperature. D_2O is used as an internal standard.

Entry	R	Solubility (gram per 100g of solvent)
1	1	47
2	3	58
3	6	67
4	9	70
5	12	62
6	15	0
<i>R</i> is the molar ratio of H_2O to [C ₄ mim][CH ₃ COO].		

Table S1 Solubility of lignin in H₂O-[C₄mim][CH₃COO] solvents at 25 °C