Electronic Supplementary Information

Synthesis of ethanol from paraformaldehyde, CO₂ and H₂

Jingjing Zhang,^{a,b} Qingli Qian,^{*a} Meng Cui,^{a,b} Chunjun Chen,^{a,b} Shuaishuai Liu,^{a,b} Buxing Han^{*a,b}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: qianql@iccas.ac.cn, hanbx@iccas.ac.cn

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

Figures

Fig. S1 The representative GC spectra of (a) liquid sample with internal standard toluene and (b) gaseous sample after the reaction of $(CH_2O)_n$ with CO_2 and H_2 . Reaction conditions were the same as that of entry 1 in Table 1.

Target 1

Target 3

Fig. S2 The GC-MS spectra of the liquid product after the reaction of $(CH_2O)_n$ with CO_2 and H_2 . Reaction conditions were the same as that of entry 1 in Table 1.

Target 1

Target 2

(replib) Ethanol

Fig. S3 The GC-MS spectra of reaction solution using $({}^{13}CH_2O)_n$ instead of $(CH_2O)_n$. Other reaction conditions were the same as that of entry 1 in Table 1. Notes:

1. The molecular weight of ethanol formed in the reaction was 47 Daltons. This demonstrates that the two C atoms in the ethanol product were from C of $(CH_2O)_n$ and C of CO_2 , respectively. 2. According to fragment analysis, the C atom of CH_3 group in ethanol product was from $(CH_2O)_n$.

Fig. S4 The ¹H NMR (a) and ¹³C NMR (b) spectra of reaction solution using $(CH_2O)_n$, and the ¹H NMR (c) and ¹³C NMR (d) spectra of reaction solution using $(^{13}CH_2O)_n$. Reaction conditions were the same as that of entry 1 in Table 1.

Notes: From the ¹H NMR spectra (c) of the ¹³C-labelled reaction, it can be seen that the proton signal of CH₃ group on the ethanol product splits into three peaks compared to the standard spectra (a), which is caused by the coupling with ¹³C atom. From the ¹³C NMR spectra (d) of the ¹³C-labelled reaction, it can be observed that the C signal of CH₃ group was abnormally high in contrast to the standard spectra (b). In addition, the C signal of CH₂ group splits into triple peaks, which is caused by the coupling with the adjacent ¹³C atom in the CH₃ group. Both ¹H NMR and ¹³C NMR spectra confirmed that the C atoms of CH₃ group in ethanol product are mostly from $(CH_2O)_n$.

Target 2

Target 3

Fig. S5 The GC-MS spectra of reaction solution using $(CD_2O)_n$ instead of $(CH_2O)_n$. Other reaction conditions were the same as that of entry 1 in Table 1.

Target 2

Fig. S6 The GC-MS spectra of reaction solution using D_2 instead of H_2 . Other reaction conditions were the same as that of entry 1 in Table 1.

Fig. S7 The GC spectra of reaction solution after hydrogenation of $(CH_2O)_n$ by Ru catalyst. Reaction conditions: 7.5 µmol Ru(acac)₃, 3 mmol LiI, 2 mL DMI, 3.2 mmol "CH₂O" monomer (0.1 g), 5 MPa H₂ (at room temperature), 180 °C, 1 h.

Fig. S8 The GC spectra of reaction solution after hydrogenation of $(CH_2O)_n$ by Co catalyst. Reaction conditions: 45 µmol CoBr₂, 3 mmol LiI, 2 mL DMI, 3.2 mmol "CH₂O" monomer (0.1 g), 5 MPa H₂ (at room temperature), 180 °C, 1h.

Fig. S9 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO₂ hydrogenation catalyzed by Ru(acac)₃ catalyst. Reaction conditions: 7.5 μ mol Ru(acac)₃, 3 mmol LiI, 2 mL DMI, 3 MPa CO₂ and 5 MPa H₂ (at room temperature), 180 °C, 9 h.

Fig. S10 The GC spectra of liquid products after the reaction of methanol with CO and H_2 catalyzed by Ru-Co catalyst. Reaction conditions: 7.5 µmol Ru(acac)₃ and 45 µmol CoBr₂, 3 mmol LiI, 2 mL DMI, 3.2 mmol methanol, 0.5 MPa CO and 5 MPa H_2 (at room temperature), 180 °C, 9 h.

Fig. S11 Effect of CO pressure on the ethanol formation in the reaction of $(CH_2O)_n$ with CO and H₂. Other conditions were the same as that of entry 1 in Table 1.

Fig. S12 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO_2 hydrogenation. Reaction conditions: 7.5 µmol Ru(acac)₃ and 45 µmol CoBr₂, 3 mmol LiI, 2 mL DMI, 3 MPa CO₂ and 5 MPa H₂ (at room temperature), 180 °C, 9 h.

Fig. S13 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO hydrogenation. Reaction conditions: 7.5 μ mol Ru(acac)₃ and 45 μ mol CoBr₂, 3 mmol LiI, 2 mL DMI, 0.7 MPa CO and 5 MPa H₂ (at room temperature), 180 °C, 9 h.

Fig. S14 The GC spectra of (a) liquid sample and (b) gaseous sample after the CO hydrogenation. Reaction conditions: 7.5 μ mol Ru(acac)₃ and 45 μ mol CoBr₂, 3 mmol LiI, 2 mL DMI, 3 MPa CO and 5 MPa H₂ (at room temperature), 180 °C, 9 h.