Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

1	Supporting Information
2	Direct use of humic acid mixtures to construct efficient Zr-
3	containing catalysts for Meerwein-Ponndorf-Verley reactions
4	Yufei Sha [‡] , Zhenhuan Xiao [‡] , Huacong Zhou*, Keli Yang, Yinmin Song, Na Li, Runxia He,
5	Keduan Zhi, Quansheng Liu*
6	College of Chemical Engineering, Inner Mongolia University of Technology; Inner Mongolia Key
7	Laboratory of High-Value Functional Utilization of Low Rank Carbon Resources, Huhhot 010051,
8	Inner Mongolia, China
9	[‡] These authors contributed equally to this work.
10	*Corresponding author.
11	Email address: hczhou@imut.edu.cn (H. Zhou), liuqs@imut.edu.cn (Q. Liu)
12	
13	
14	
15	
16	
17	
18	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 22	
33	

	Catalysts	H donor	Reaction conditions	C./%	Y./%	S./%	Refs.
1	Zr-HAs	IPA	70 °C,9 h, IPA	97.3	80.4	82.6	This work
2	Zr-HAs	IPA	50 °C, 15 h, IPA	97.2	97.2	>99	This work
3	Zr-PhyA	IPA	100 °C, 2 h, IPA	99.3	99.3	100.0	1
4	Zr-SBA-15	IPA	90 °C, 6 h, IPA	65.0	45.0	69.2	2
5	ZrPN	IPA	100 °C, 15h, IPA	93.0	90.0	96.8	3
6	γ-Fe ₂ O ₃ @HAP	IPA	180°C, 3 h, IPA	96.2	91.7	95.3	4
7	Ni-Cu/Al ₂ O ₃	IPA	200 °C, 4h, IPA	95.4	95.4	100	5
8	MgO	IPA	170 °C, 5 h, IPA	100.0	74.0	74.0	6
9	Fe/NC	IPA	160 °C, 15h, IPA	91.6	76.0	83.0	7
10	Ru/Uio-66	H_2	20 °C, H ₂ 0.5 MPa, 4h, H ₂ O	94.9	94.9	100	8
11	Ru(II) complex	H_2	85 °C, H ₂ 1 MPa, 2h, Ethanol	100.0	93.0	93.0	9
12	Pt(5 wt%)/Al2O3	H_2	25 °C, H ₂ 2 MPa, 8 h, in IPA	95.5	90.7	95.0	10
13	Pt/γ - Al_2O_3	H_2	50 °C, 1 atm, 7h, in methanol	80.0	79.2	99.0	11
14	5%Pt/TECN	H_2	100 °C, H ₂ 1 MPa, 5 h, H ₂ O	100.0	99.0	99.0	12
15	Au/TiO ₂	CO/H ₂ O	90 °C, 4 MPa CO	100.0	100.0	100.0	13
16	Fe(NiFe)O ₄ -SiO ₂	H_2	90 °C, H ₂ 2MPa, 4h, Heptane	94.3	94.3	100.0	14
17	Co/SBA-15	H_2	150 °C, 2MPa H ₂ ,1.5h,	95.0	91.2	96.0	15
18	Capped Ni	H_2	110 °C, H ₂ , 3 MPa, 3 h, IPA	96.6	91.8	95.0	16
19	Ni-Sn/AlOH	H_2	180 °C, H ₂ 3 MPa, 1 h, IPA	98.0	94.0	95.9	17
20	5 wt%Ni/NDC	H_2	200 °C, H ₂ 1MPa,5h, IPA	96.0	91.2	95.0	18
21	CuNi/MgAlO	H_2	100 °C, H ₂ 4MPa, 4 h, IPA	99.0	98.0	99.0	19
22	CuO-Cr ₂ O ₃	H_2	200 °C, H_2 6 Mpa, 3 h, Octane	75.0	64.5	86.0	20

Table S1. Comparison of Zr-HAs^C catalyst with different catalysts in typical literatures.^{*a*}

2 ^aC., conversion of furfural; Y., Yield of FA; S., Selectivity of FA.

Figure S1. TG analysis of the Zr-HAs^C catalyst

Figure S2. Comparison of the freshly prepared and recycled Zr-HAs^C catalysts after nine reuses.
 SEM of the fresh (a) and recycled Zr-HAs^C (b), XRD spectra (c), and FTIR patterns (d).

2 Figure S3. Characterization of the extracted HAs and corresponding Zr-HAs^E catalyst. SEM-EDS
3 of the extracted HAs (a, b) and Zr-HAs^E catalyst (c, d), FTIR spectra (e) and XRD patterns (f).

1

In the IR spectra of Zr-HAs^E, the peak at 1708 cm⁻¹ assigned to the C=O bond 4 vibration in the carboxylic acid groups became much weaker compared to that of 5 HAs^E, indicating that the carboxylic acid groups were converted into their metal salt 6 form after interaction with Zr^{4+, 21, 22} HAs^E and Zr-HAs^E also displayed the 7 characteristic asymmetric (HAs^E, 1603 cm⁻¹; Zr-HAs^E, 1579 cm⁻¹) and symmetric 8 vibrations (HAs^E,1370 cm⁻¹; Zr-HAs^E, 1413 cm⁻¹) of carboxylate groups. Compared 9 with the IR spectrum of HAs^E, the wavenumber difference of asymmetric and 10 symmetric vibrations of carboxylate anions in Zr-HAs^E was narrowed from 233 cm⁻¹ 11 12 to 16 cm⁻¹, which indicated that carboxylate groups were coordinated to Zr^{4+} ions.^{23, 24}

1 References:

- 2 1 J. L. Song, B. W. Zhou, H. C. Zhou, L. Q. Wu, Q. L. Meng, Z. M. Liu and B. X. Han, Angew.
- 3 *Chem. Int. Ed.*, 2015, **54**, 9399.
- 4 2 J. Iglesias, J. Melero, G. Morales, J. Moreno, Y. Segura, M. Paniagua, A. Cambra and B.
 5 Hernández, *Catalysts*, 2015, 5, 1911.
- 6 3 H. Li, J. He, A. Riisager, S. Saravanamurugan, B. Song and S. Yang, ACS Catal., 2016, 6, 7722.
- 7 4 F. Wang and Z. H. Zhang, ACS Sustainable Chem. Eng., 2017, 5, 942.
- 8 5 H. P. Reddy Kannapu, C. A. Mullen, Y. Elkasabi and A. A. Boateng, *Fuel Process Technol.*, 2015,
 9 137, 220.
- 10 6 N. S. Biradar, A. M Hengne, S. S. Sakate, R. K. Swami and C. V. Rode, *Catal. Lett.*, 2016, 146, 1611.
- 12 7 J. Li, J. L. Liu, H. J. Zhou and Y. Fu. ChemSusChem, 2016, 9, 1339.
- 13 8 Q. Yuan, D. Zhang, Lv. Haandel, F. Ye, T. Xue, E. J. M. Hensen and Y. Guan, *J. Mol. Catal. A-*14 *Chem.*, 2015, **406**, 58.
- 15 9 A. S. Gowda, S. Parkin and F. T. Ladipo, Appl. Organometal. Chem., 2012, 26, 86.
- 16 10 S. Bhogeswararao and D. Srinivas, J. Catal., 2015, 327, 65.
- 17 11 M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, K. Wilson, A. F. Lee and G. Kyriakou,
- 18 Appl. Catal. B-Environ., 2016, 180, 580.
- 19 12 X. F. Chen, L. G. Zhang, B. Zhang, X. C. Guo and X. D. Mu, Sci. Rep., 2016, 6, 1.
- 20 13 J. Dong, M. M. Zhu, G. S. Zhang, Y. M. Liu, Y. Cao, S. Liu and Y. D. Wang, Chin. J. Catal.,
- 21 2016, **37**, 1669.
- 22 14 A. Halilu, T. H. Ali, A. Y. Atta, P. Sudarsanam, S. K. Bhargava and S. B. Abd Hamid, *Energ*.
- 23 Fuel., 2016, **30**, 2216.
- M. Audemar, C. Ciotonea, K. D. O. Vigier, S. Royer, A. Ungureanu, B. Dragoi, E. Dumitriu and F.
 Jerome, *ChemSusChem*, 2015, 8, 1885.
- 26 16 H. Jeong, C. Kim, S. Yang and H. Lee, J. Catal., 2016, 344, 609.
- 27 17 A. M. D. Rodiansono, U. T. Santoso and S. Shimazu, Procedia Chem., 2015, 16, 531.
- 28 18 T. V. Kotbagi, H. R. G urav, A. S. Nagpure, S. V. Chilukuri and M. G. Bakker, RSC Adv., 2016, 6,
- 29 67662.

- 1 19 J. Wu, G. Gao, J. L. Li, P. Sun, X. D. Long and F. W. Li, Appl. Catal. B-Environ., 2017, 203, 227.
- 2 20 K. Yan, X. Wu, X. An and X. M. Xie, Funct. Mater. Lett., 2013, 6, 1.
- 3 21 Y. Park, D. S. Shin, S. H. Woo, N. S. Choi, K. H. Shin, S. M. Oh, K. T. Lee and S. Y. Hong, *Adv. Mater.*, 2012, 24, 3562.
- 5 22 L. P. Wang, H. Q. Zhang, C. X. Mou, Q. L. Cui, Q. J. Deng, J. Xue, X. Y. Dai and J. Z. Li, *Nano*6 *Res.*, 2015, 8, 523.
- 7 23 J. L. Song, L. Q. Wu, B. W. Zhou, H. C. Zhou, H. L. Fan, Y. Y. Yang, Q. L. Meng and B. X. Han,
- 8 *Green Chem.*, 2015, **17**, 1626.
- 9 24 L. Peng, J. L. Zhang, J. S. Li, B. X. Han, Z. M. Xue and G. Y. Yang, Chem Commun (Camb),
- 10 2012, **48**, 8688.
- 11