Supporting information for:

Sustainable functionalization of cellulose and starch with diallyl carbonate in ionic liquids

Zafer Söyler and Prof. Michael A. R. Meier*

Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, 76131 Karlsruhe, Germany,

E-mail: m.a.r.meier@kit.edu; Web: www.meier-michael.com

- 1) IR-Spectra of modified cellulose and starch (including optimization studies)
- 2) NMR data of modified starch
- 3) NMR data of phosphorylated, modified cellulose and starch
- 4) GPC data of modified cellulose and starch
- 5) TGA data of modified cellulose and starch
- 6) Tensile strength measurements of modified cellulose
- 7) NMR data of recovered DAC and BMIMCI

1) IR-Spectra of modified cellulose and starch (including optimization studies)

Fig. S1 ATR-IR spectra of filter paper and modified filter paper with diallyl carbonate (DAC) (DS: ~1.3) in BMIMCI/DMSO solvent mixture (18 h, 4 eq. DAC, 80 °C, 10% (w/w) DMSO & 2% (w/w) cellulose concentration). Spectra were normalized to the intensity of the glycopyranose oxygen absorption at around 1050 cm⁻¹.

Fig. S2 ATR-IR spectra of maize starch and modified maize starch with DAC (DS: ~1.2) in BMIMCI/DMSO solvent mixture (18 h, 4 eq. DAC, 80 °C, 10% (w/w) DMSO & 2% (w/w) starch concentration). Spectra were normalized to the intensity of the glycopyranose oxygen absorption at around 1015 cm⁻¹.

Fig. S3 ATR-IR spectra of carbonyl peak intensities (left) of modified filter paper with DAC in different ionic liquids, 1-butyl-3methylimidazolium chloride (BMIMCI), 1-ethyl-3-methylimidazolium acetate (EMIMOAc) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF₄) (18 h, 3 eq. DAC, 80 °C, 10% (w/w) DMSO & 2% (w/w) cellulose concentration) and ATR-IR spectra of carbonyl peak intensities (right) of modified filter paper with different molar ratios of DAC in BMIMCI/DMSO solvent mixture (18 h, 80 °C, 10% (w/w) DMSO & 2% (w/w) cellulose concentration). Spectra were normalized with the intensity of the glycopyranose oxygen absorption at around 1050 cm⁻¹.

Fig. S4 ATR-IR spectra of carbonyl peak intensities (left) of modified filter paper with DAC in BMIMCI/DMSO solvent mixture using different catalysts (18 h, 4 eq. DAC, 80 °C, 10 mol% of catalyst, 10% (w/w) DMSO & 2% (w/w) cellulose concentration) and ATR-IR spectra of carbonyl peak intensities (right) of modified filter paper with DAC in BMIMCI/DMSO solvent mixture at different reaction temperatures (18 h, 4 eq. DAC, 10% (w/w) DMSO & 2% (w/w) cellulose concentration). Spectra were normalized to the intensity of the glycopyranose oxygen absorption at around 1050 cm⁻¹.

2) NMR data of modified starch

Fig. S5 ¹H NMR (left) and ¹³C NMR (right) of modified starch with DAC.

3) NMR data of phosphorylated, modified cellulose and starch

Fig. S6 ³¹P NMR of modified filter paper with DAC.

Fig. S7 ³¹P NMR of modified maize starch with DAC.

4)	GPC	data	of	modified	cellulose	and	starch
----	-----	------	----	----------	-----------	-----	--------

Product ^a	M _w [kDa]	M _n [kDa] ^b	Ð
Filter paper	78	40	1.93
CC7	349	82	4.20
CC8	67	15	4.32

^aReaction conditions: 18 h, 3eq. DAC, BIMIMCI/DMSO solvent mixture (10% (w/w)) DMSO & 2% (w/w) cellulose concentration). 4All GPC measurements were carried out relative to poly(methyl methacrylate) calibration in DMAc/LiBr (1% w/w)

Fig. S8 GPC data of unmodified filter paper and modified filter paper with DAC at different temperatures.

Product ^a	M _n [kDa] ^b	M _w [kDa]	Ð
SC1	84	523	6.21
SC2	66	256	3.88
SC3	12	27	2.19

^aReaction conditions: 18 h, 3eq. DAC, BIMIMC//DMSO solvent mixture (10% (w/w) DMSO & 2% (w/w) starch concentration).
^bAll GPC measurements were carried out relative to poly(methyl methacrylate) calibration in DMAc/LiBr (1% w/w).

Fig. S9 GPC data of modified maize starch with DAC at different temperatures.

5) TGA data of modified cellulose and starch

Fig. S10 TGA data of unmodified filter paper, modified filter paper with DAC (CC5) and thiol-ene product of cellulose allyl carbonate (CC5T).

Fig. S11 TGA data of unmodified maize starch and modified maize starch with DAC.

6) Tensile strength measurement of modified cellulose

Fig. S12 Tensile strength measurement of modified filter paper with DAC (DS: ~1.3).

7) NMR data of recovered DAC and BMIMCI

Fig. S13 ¹H NMR of recovered DAC.

Fig. S14 ¹H NMR of recovered BMIMCI.