Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

A new selective route towards benzoic acid and derivatives from biomass-derived coumalic acid

Toni Pfennig,^{a,b} Jack M. Carraher, ^{a,b} Ashwin Chemburkar, ^{c,b} Robert L. Johnson,^{a,b} Austin Anderson,^{a,b} Jean-Philippe Tessonnier, ^{a,b} Matthew Neurock, ^{c,b} Brent H. Shanks ^{a,b}

^a Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.

^bNSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Ames, IA 50011, USA.

^c Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55438, USA

Figure S1. The conversion of coumalic acid to benzoic acid at 180 °C using 10 wt.-% Pd/C and the solvent GVL.

Figure S2. The conversion of coumalic acid to benzoic acid at 180 °C using 10 wt.-% Pd/C and the solvent 1,4-dioxane.

Figure S3. The conversion of methyl coumalate to methyl benzoate at 180 °C using 10 wt.-% Pd/C and the solvent toluene.

Figure S4. The conversion of methyl coumalate to methyl benzoate at 180 °C using 10 wt.-% Pd/C and the solvent GVL.

Figure S5. The conversion of methyl coumalate to methyl benzoate at 180 °C using 10 wt.-% Pd/C and the solvent 1,4-dioxane.

Structural assignment of intermediates and by-products

The structural assignment of intermediates, products and by-products were identified via 2D-NMR experiments of the reaction products obtained from a 48 h reaction of MeCMA and ethylene in benzene-d6 (Figure S1). Fully deuterated benzene-d6 was used due to its cheapness (compared to dioxane-d8) and as a result of identical findings when compared to dioxane-d8. We identified the bicyclic lactone intermediate and cylohexa-1,5-diene intermediate as well as the double Diels-Alder by-product from cycloaddition of the diene intermediate and ethylene (Figure S1-11). Additionally, GC-MS and UPLC-QDa analysis provided the mass of the identified compounds. The toluene peak in Figure S1-S11was the result of residual toluene (solvent used to mediate reactions) in the reactor head space and can thus, be neglected.

Figure S6. ¹H-NMR of the reaction of MeCMA and ethylene at 90 °C for 48 hrs (600 MHz, benzene-d6).

Methyl -3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-6-carboxylate intermediate (DAP): ¹H NMR (600 MHz, Benzene-d6) δ 6.81 (dd, J = 6.5, 2.3 Hz, 1H), 5.47 (dt, J = 4.0, 1.9 Hz, 1H), 3.36 (s, 3H), 1.66 - 1.55 (m, 1H), 1.40 - 1.31 (m, 1H), 0.98 - 0.87 (m, 1H), 0.80 - 0.69 (m, 1H), m/z: 180.1.

¹ H-label	δ ¹ H, ppm, (mult)	δ ¹³ C	¹ H Int.	¹ H- ¹ H-COSY	rel. mol-%
1	0.74 (m)	19.24	1.00	1-3, 1-7, 1-8, 1-14	
3	0.94 (m)	24.82	1.04	3-1, 3-7, 3-8, 3-20	
7	1.36 (m)	19.08	1.06	7-1, 7-3, 7-8, 7-14	
8	1.60 (m)	24.33	1.03	8-1, 8-3, 8-7, 8-20	73.01
15	3.36 (m)	51.49	2.99	-	
20	5.47 (s)	73.08	0.94	20-2, 20-8, 20-2	
23	6.81 (dd)	140.86	1.08	23-14, 23-20	

 Table S1. Tabulated NMR assignment of methyl -3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-6-carboxylate intermediate (DAP).

Figure S7. ¹H-¹H- COSY of the methyl -3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-6-carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S8. ¹H-¹H- COSY of the methyl -3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-6-carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S9. ¹³C-¹H- HSQC of the methyl -3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-6-carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Methyl cyclohexa-1,5-diene carboxylate (Diene): ¹H NMR (600 MHz, Benzene-d6) δ 6.56 (dq, J = 9.9, 1.9 Hz, 1H), 5.68 – 5.64 (m, 1H), 8.45 – 0.52 (m, 102H), 3.43 (s, 3H), 1.93 – 1.86 (m, 2H), 1.81 – 1.75 (m, 2H), m/z: 138.1.

¹ H-label	δ ¹ H, ppm, (mult)	δ ¹³ C	¹ H Int.	¹ H- ¹ H-COSY	rel. mol-%
9	1.79	20.60	2.40	9-10, 9-21, 9-24	
10	1.90	22.71	2.40	10-9, 10-24	
16	3.43	50.64	3.16	-	11 10
21	5.66	126.98	1.13	21-9, 21-22	11.10
22	6.56	121.66	1.04	22-10, 22-21	
24	6.82*	136.45	1.04	24-10	

Table S2. Tabulated NMR assignment of the methyl cyclohexa-1,5-diene carboxylate intermediate.

Figure S10. ¹H-¹H- COSY of the methyl cyclohexa-1,5-diene carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S11. ¹H-¹H- COSY of the methyl cyclohexa-1,5-diene carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S12. ¹³C-¹H- HSQC of the methyl cyclohexa-1,5-diene carboxylate intermediate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate: ¹H NMR (600 MHz, Benzene-*d*₆) δ 7.28 (dd, *J* = 6.9, 1.7 Hz, 1H), 3.48 (s, 3H), 3.28 – 3.25 (m, 1H), 2.36 – 2.32 (m, 1H), 1.33 – 1.29 (m, 2H), 1.29 – 1.23 (m, 2H), 1.16 – 1.08 (m, 2H), 1.05 – 0.97 (m, 2H), m/z: 166.1.

¹ H-label	δ ¹ H, ppm, (mult)	$\delta^{13}C$	¹ H Int.	¹ H- ¹ H-COSY	rel. mol-%
4	1.01 (m)	24.36	1.62	4-5, 4-6, 4-6a, 4-13	
5	1.12 (m)	24.88	1.92	5-4, 5-6, 5-6a, 5-14a	
6	1.26 (m)	24.57	2.11	6-4,6-5, 6-6a, 6-13	
6а	1.31 (m)	25.08	1.78	6a-4, 6a-5, 6a-6, 6a-14a	3.03
13	2.34 (m)	31.01	0.84	13-4, 13-6, 13-29	5.05
14a	3.27 (m)	28.74	1.21	14a-5, 14a-6a, 14a-29	
17	3.48 (s)	51.63	2.92	-	
29	7.28 (dd)	144.33	0.88	29-13, 29-14a	

Table S3. Tabulated NMR assignment of methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate.

Figure S13. ¹H-¹H- COSY of the methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S14. ¹H-¹H- COSY of the methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S15. ¹H-¹H- COSY of the methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S16. ¹³C-¹H- HSQC of the methyl bicyclo[2.2.2]oct-2-ene-2-carboxylate from the reaction of MeCMA with ethylene (600 MHz, benzene-d6).

Figure S17. Stability test of coumalic acid in 1,4-dioxane in the presence and absence of water at 180 °C.

Figure S18. Stability test of methyl coumalate in 1,4-dioxane in the presence and absence of water at 180 °C.

Figure S19. ¹H NMR (600 MHz, dioxane-d8) of 0.15M counalic acid and 3 vol.-% H₂O after 386 min at 171 °C.

Table S4. Rate constants and activation energy of the Diels-Alder reaction of coumalates with ethylene.							
Entry	Substrate	Temp. [°C]	10 ³ 1/T [K ⁻¹]	10 ⁻³ k _{obs} [min ⁻¹]	lnk	E _A [kJ/mol]	
1	MeCMA	90	2.75	0.99	-6.92		
2	MeCMA	100	2.68	2.03	-6.20	7671	
3	MeCMA	110	2.61	4.15	-5.49	70.74	
4	MeCMA	120	2.54	6.72	-5.00		
5	CMA	90	2.75	0.82	-7.11		
6	CMA	100	2.68	1.61	-6.43	77.06	
7	CMA	110	2.61	3.10	-5.77	77.00	
8	CMA	120	2.54	6.07	-5.10		

Table S5. Rate constants and activation energy of the decarboxylation reaction of the bicyclic intermediate DAP form coumalate reaction with ethylene.

Entry	Substrate	Temp. [°C]	$10^3 1/T [K^{-1}]$	10 ⁻³ k _{obs} [min ⁻¹]	lnk	E _A [kJ/mol]
1	MeCMA-DAP	140	2.42	2.56	-5.97	
2	MeCMA-DAP	149	2.36	5.65	-5.18	132.79
3	MeCMA-DAP	160	2.31	15.24	-4.18	
4	CMA-DAP	139	2.42	2.81	-5.88	
5	CMA-DAP	149	2.36	7.56	-4.88	141.56
6	CMA-DAP	158	2.32	17.31	-4.06	

Figure S20. Diels-Alder reactions kinetics of coumalic acid and ethylene at different temperatures.

Figure S21. Diels-Alder reaction kinetics of methyl coumalate and ethylene at different temperatures.

Figure S22. Decarboxylation reaction kinetics of the Diels-Alder product of methyl coumalate and ethylene at different temperatures and the corresponding Arrhenius plot.

Figure S23. Decarboxylation reaction kinetics of the Diels-Alder product of coumalic acid and ethylene at different temperatures and the corresponding Arrhenius plot

Figure S24. Reaction profile diagram of the coumalic acid breakdown in water