Electronic Supplementary Information

Isomerization of Glucose to Fructose Catalyzed by Lithium Bromide in Water

Chang Geun Yoo[†], Ning Li[†], Melanie Swannell, and Xuejun Pan*

Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States

[†] These authors contributed equally to this work.
* Corresponding author: Email: <u>xpan@wisc.edu</u>
Phone: 608-262-4951
Fax: 608-262-1228

	Time	Glucose	Mannose	Fructose	Decomposition products
	[min]	[%]	[%]	[%]	[%]
LiCl·3H ₂ O	30	79.6	0.7	17.4	2.3
	60	76.4	0.7	16.8	6.1
LiI·3H ₂ O	15	9.8	3.8	21.4	65.0
	30	11.7	3.4	21.2	63.7

Table S1. Products from glucose isomerization in in LiCl and LiI

Note: starting glucose concentration was 10 g/L; at 120 °C.

Table S2.	Yields of organ	ic acids from glue	cose at 120 °C in	molten salt hydrates
-----------	-----------------	--------------------	-------------------	----------------------

	Glucose	Mannose	Fructose	Lactic acid	Formic acid	Levulinic acid
	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]
LiCl_15 min	ND	ND	ND	37.8	10.8	19.6
LiCl_30 min	ND	ND	ND	39.1	10.6	27.1
LiBr_15 min	1.4	0.2	1.7	9.6	12.1	14.6

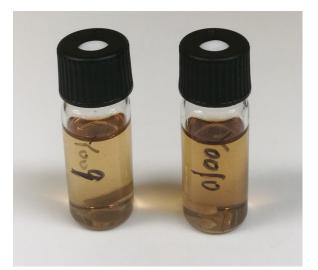
Note: starting glucose concentration was 10 g/L; NaOH concentrations in LiCl \cdot 3H₂O and LiBr \cdot 3H₂O were 125 and 100 mM, respectively. ND – not detected.

Halide salt	Residual glucose [%]	Fructose yield [%]	$R_G \times 10^4 [M/s]^*$	$R_{\rm F} \times 10^4 [{ m M/s}]^*$
L :01	00.5	7 7	0.07	0.05
LiCl LiBr	90.5 48.2	7.7 30.3	0.06 0.32	0.05 0.19
LiI	9.8	21.4	0.56	0.13
CaBr ₂	5.6	22.4	0.59	0.14
ZnCl ₂	67.1	0	0.20	0.00

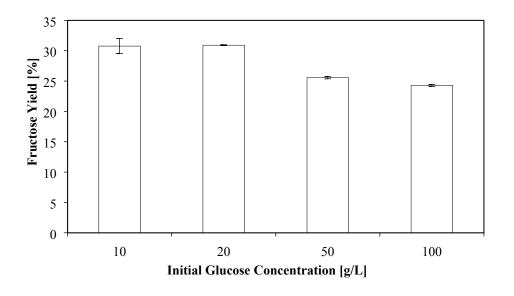
Table S3. Glucose conversion rate (R_G) and fructose formation rate (R_F) in different halide salt hydrates

Note: starting glucose concentration 10 g/L at 120 °C for 15 min. * Average rate during the first 15 min, mole/second.

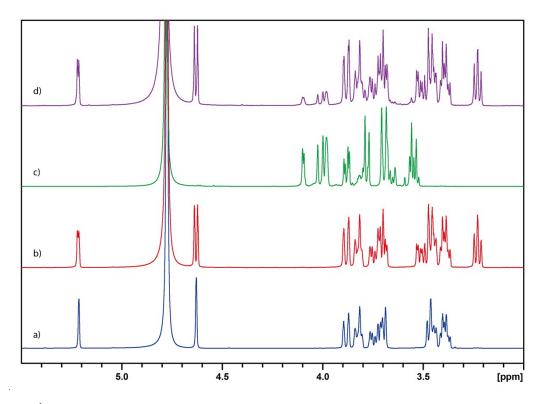
Table S4. Glucose conversion rate (R_G) and fructose formation rate (R_F) at different temperatures

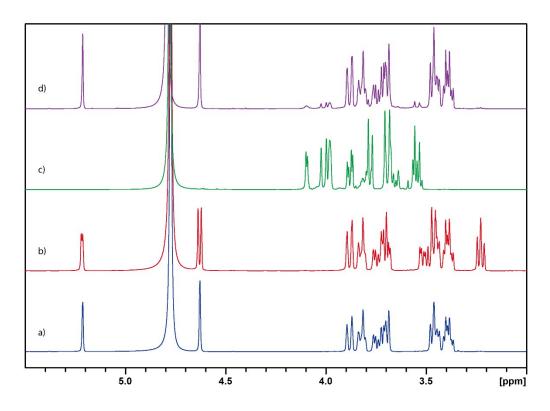

	110 °C		120 °C		130 °C		140°C	
t	$R_{G} \times 10^{4}$	$R_F \times 10^4$						
[min]	[M/s]	[M/s]	[M/s]	[M/s]	[M/s]	[M/s]	[M/s]	[M/s]
0								
5	0.49	0.19	0.64	0.45	0.93	0.56	0.99	0.57
15	0.30	0.16	0.34	0.19	0.32	0.17	0.38	0.15
30	0.16	0.09	0.18	0.09	0.19	0.07	0.23	0.03
60	0.09	0.05	0.10	0.04	0.11	0.02	0.12	0.00
120	0.05	0.02	0.06	0.01	0.06	0.00	0.06	0.00

Note: starting glucose concentration 10 g/L in LiBr·3H₂O. Average rate, mole/second.


Table S5. Conversion rate and isomer formation rate of different starting sugars

Starting material	$R_G \times 10^4 [M/s]$	$R_F \times 10^4 \text{ [M/s]}$	$R_M \times 10^4 [M/s]$
Glucose	0.64	0.45	0.01
Fructose	0.22	0.42	0.08
Mannose	0.05	0.49	0.72


Note: starting sugar concentration 10 g/L in LiBr \cdot 3H₂O at 120 °C for 5 min. Average rate during the first 5 min, mole/second.


Figure S1. LiI \cdot 3H₂O turned brown after reaction with glucose at 120 °C (Left: 15 min; right: 30 min).

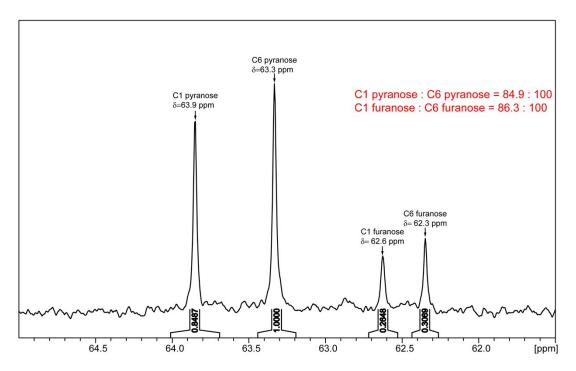

Figure S2. Isomerization of glucose with different starting glucose concentration in $LiBr \cdot 3H_2O$. Reaction conditions: 120 °C and 15 min.

Figure S3. ¹H spectra of a) glucose-2- d_1 , b) unlabeled glucose, c) unlabeled fructose, and d) mixed sugars (glucose and fructose) from the isomerization of unlabeled glucose in deuterated LiBr trihydrate.

Figure S4. ¹H spectra of a) glucose-2- d_1 , b) unlabeled glucose, c) unlabeled fructose, and d) mixed sugars (glucose and fructose) from the isomerization of glucose-2- d_1 in LiBr trihydrate.

Figure S5. Quantitative ¹³C NMR spectrum of the mixed sugars (glucose and fructose) from the isomerization of glucose-2- d_1 in LiBr trihydrate.

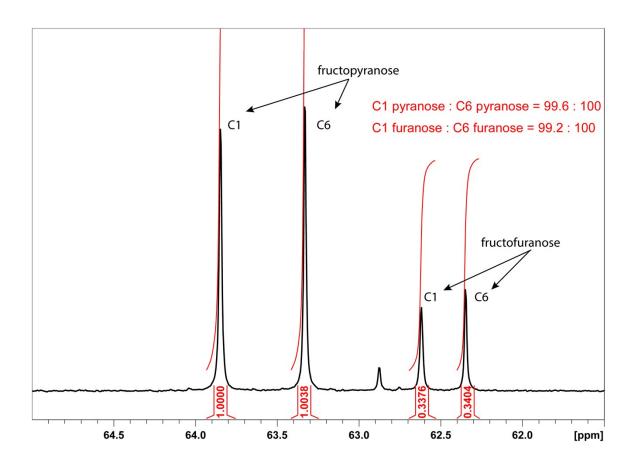


Figure S6. Quantitative ${}^{13}C$ NMR spectrum of unlabeled fructose in D₂O.