Recycling of Homogeneous Catalysts in Reactive Ionic Liquid -

Solvent-Free Aminofunctionalizations of Alkenes

Thiemo A. Faßbach^a, Robin Kirchmann^a, Arno Behr^a and Andreas J. Vorholt^{*,a}

a Fakultät für Bio- und Chemieingenieurwesen, Lehrstuhl für Technische Chemie, Technische Universität
 Dortmund, Emil-Figge-Straße 66, 44227 Dortmund (Germany)
 E-mail: <u>andreas.vorholt@bci.tu-dortmund.de</u>

Electronic Supplementary Information

Table of Content

1. EXPERIMENTAL RESULTS	1
1.1. Hydroamination of eta -farnesene with dimcarb	1
1.2. Hydroamination of eta -myrcene with dimcarb	3
1.3. Hydroamination isoprene with dimcarb	3
1.4. TELOMERIZATION OF 1,3-BUTADIENE WITH DIMCARB	4
1.5. Hydroaminomethylation of 1-dodecene with dimcarb	5
1.5.1. Reaction parameters	5
1.5.2. Recycling experiments	6
2. PRODUCT CHARACTERIZATION & ANALYTICS	7
2.1. REACTIVE IONIC LIQUID	7
2.1.1. Dimethylammonium dimethylcarbamate (dimcarb)	7
2.2. Hydroamination products with dimcarb	9
2.2.1. Dimethyl farnesylamines	9
2.2.2. Dimethyl myrcenylamines	12
2.2.3. Dimethyl isoprenylamines	15
2.3. TELOMERIZATION PRODUCTS WITH DIMCARB	
2.3.1. Dimethyl octadienylamines	
2.4. Hydroaminomethylation products	21
2.4.1. Dimethyl tridecylamine	21
2.5. LIGAND OXIDATION	24
2.5.1. DPPBTS	24
2.5.2. DPPBTS-oxide	25
2.6. ICP-OES ANALYTICS	26
2.7. GC-FID AND GC-MS ANALYTICS	26

1. Experimental results

1.1. Hydroamination of β -farnesene with dimcarb

Run #	Y _{hydroamination} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
0	81	5 ^[a]	0.3	205	34.7
1	59	4 ^[a]	0.2	67	11.3
2	39	4 ^[a]	0.2	33	5.6
3	15	5 ^[a]	0.3	7	1.1
4	6	4 ^[a]	0.2	5	0.8

Table 1: Results of the hydroamination of β -farnesene with dimcarb using the DPPB-ligand

Reaction conditions: Precursor=Pd(tfa)₂, 0.1 mol% based on β -farnesene,

ligand=1,4-*bis*(diphenylphosphino)butane, metal/ligand=1/4, $n_{dimcarb}$ =45 mmol, $n_{\beta farnesene}$ =15 mmol, *T*=100 °C, *t*=3 h, 500 rpm, yields (Y) given in % based on β -farnesene and determined by GC-FID using decane as internal standard.

Recycling conditions: Dimcarb was refilled to 45 mmol (addition of 7.5 mmol), phase separation under schlenk technique, addition of 15 mmol β -farnesene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase and relatively to the initially employed amount of the respective element (in %)

[a]: value is below limit of quantification for phosphorous (6 ppm)

Run #	Y _{hydroamination} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
0	68	2 ^[a]	< 0.1	3	0.1
1	86	2 ^[a]	< 0.1	14	0.6
2	86	2 ^[a]	< 0.1	3	0.1
3	88	2 ^[a]	< 0.1	2 ^[b]	< 0.1
4	91	2 ^[a]	< 0.1	2 ^[b]	< 0.1
5	92	2 ^[a]	< 0.1	3	0.1
6	89	2 ^[a]	< 0.1	2 ^[b]	< 0.1
7	90	2 ^[a]	< 0.1	1 ^[b]	< 0.1
8	84	2 ^[a]	< 0.1	2 ^[b]	< 0.1
9	64	1 ^[a]	< 0.1	12	0.7
10	28	2 ^[a]	< 0.1	26	1.7
11	9	n.d.	-/-	n.d.	-/-
12	0	n.d.	-/-	n.d.	-/-

Table 2. Results of the hy	vdroamination of	<i>B</i> -farnesene with dim	carb using the DPPBTS-ligand
Tuble 2. Results of the fi	yarounnation or	p furnesene with unit	

Reaction conditions: Precursor=Pd(tfa)₂, 0.1 mol% based on β -farnesene,

ligand=1,4-bis(diphenylphosphino)butane-tetra-sulfonate, metal/ligand=1/4, n_{dimcarb}=45 mmol,

 $n_{\beta \text{-farnesene}}$ =15 mmol, *T*=100 °C, *t*=3 h, 500 rpm, yields (Y) given in % based on β -farnesene and determined by GC-FID using decane as internal standard.

Recycling conditions: Dimcarb was refilled to 45 mmol (addition of 7.5 mmol), phase separation under schlenk technique, addition of 15 mmol β -farnesene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase and relatively to the initially employed amount of the respective element (in %)

[a]: value is below limit of quantification for phosphorous (6 ppm)

[b]: value is below limit of quantification for palladium (3 ppm)

1.2. Hydroamination of β -myrcene with dimcarb

Run #	Y _{hydroamination} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
0	58	4 ^[a]	0.2	< 1 ^[b]	< 0.1
1	83	4 ^[a]	0.2	< 1 ^[b]	< 0.1
2	77	3 ^[a]	0.2	2 ^[b]	0.4
3	60	3 ^[a]	0.2	3	0.5
4	64	3[a]	0.3	11	2.1

Table 3: Results of the hydroamination of β -myrcene with dimcarb

Reaction conditions: Precursor=Pd(tfa)₂, 0.1 mol% based on β -myrcene,

ligand=1,4-bis(diphenylphosphino)butane-tetra-sulfonate, metal/ligand=1/4, n_{dimcarb}=45 mmol,

 n_{β -myrcene=15 mmol, T=100 °C, t=3 h, 500 rpm, yields (Y) given in % based on β -myrcene and determined by GC-FID using dodecane as internal standard.

Recycling conditions: Dimcarb was refilled to 45 mmol (addition of 7.5 mmol), phase separation under schlenk technique, addition of 15 mmol β -myrcene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase and relatively to the initially employed amount of the respective element (in %)

[a]: value is below limit of quantification for phosphorous (6 ppm)

[b]: value is below limit of quantification for palladium (3 ppm)

1.3. Hydroamination isoprene with dimcarb

		,	•		
Run #	Y _{hydroamination} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
0	39	4 ^[a]	0.3	< 1 ^[b]	< 0.1
1	69	3 ^[a]	0.3	< 1 ^[b]	< 0.1
2	77	5 ^[a]	0.6	< 1 ^[b]	< 0.1
3	67	5 ^[a]	0.4	< 1 ^[b]	< 0.1
4	93	4 ^[a]	0.5	< 1 ^[b]	< 0.1

Table 4: Results of the h	vdroamination isc	prene with dimcarb
Tuble 11 Hestills of the fi	yai oaimiation ist	prene mich annours

Reaction conditions: Precursor=Pd(tfa)₂, 0.1 mol% based on isoprene,

ligand=1,4-*bis*(diphenylphosphino)butane-*tetra*-sulfonate, metal/ligand=1/4, *n*_{dimcarb}=45 mmol,

 $n_{isoprene}$ =15 mmol, T=100 °C, t=3 h, 500 rpm, yields (Y) given in % based on isoprene and determined by GC-FID using dodecane as internal standard.

Recycling conditions: Dimcarb was refilled to 45 mmol (addition of 7.5 mmol), phase separation under schlenk technique, addition of 15 mmol isoprene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase and relatively to the initially employed amount of the respective element (in %)

[a]: value is below limit of quantification for phosphorous (6 ppm)

[b]: value is below limit of quantification for palladium (3 ppm)

1.4. Telomerization of 1,3-butadiene with dimcarb

Run #	Y _{telomerization} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
0	83	5 ^[a]	0.18	1 ^[b]	< 0.1
1	90	4 ^[a]	0.14	2 ^[b]	< 0.1
2	93	4 ^[a]	0.14	2 ^[b]	< 0.1
3	91	3 ^[a]	0.1	2 ^[b]	< 0.1
4	87	4 ^[a]	0.18	2 ^[b]	< 0.1
5	91	4 ^[a]	0.14	1 ^[b]	< 0.1
6	89	4 ^[a]	0.14	1 ^[b]	< 0.1
7	90	4 ^[a]	0.14	< 1 ^[b]	< 0.1
8	90	4 ^[a]	0.14	1 ^[b]	< 0.1
9	91	5 ^[a]	0.18	< 1 ^[b]	< 0.1
10	91	6 ^[a]	0.21	< 1 ^[b]	< 0.1
11	89	5 ^[a]	0.18	< 1 ^[b]	< 0.1
12	87	4 ^[a]	0.14	< 1 ^[b]	< 0.1
13	93	5 ^[a]	0.18	< 1 ^[b]	< 0.1

Table 5: Results of the telomerization of 1,3-butadiene with dimcarb

Run #	Y _{telomerization} [%]	c(P) [ppm]	Leaching P [%]	c(Pd) [ppm]	Leaching Pd [%]
14	90	4 ^[a]	0.14	1 ^[b]	< 0.1
15	89	4 ^[a]	0.14	1 ^[b]	< 0.1
16	90	3 ^[a]	0.1	1 ^[b]	< 0.1
17	91	4 ^[a]	0.14	1 ^[b]	< 0.1
18	89	4 ^[a]	0.14	< 1 ^[b]	< 0.1
19	92	3 ^[a]	0.1	1 ^[b]	< 0.1
20	91	4 ^[a]	0.14	1 ^[b]	< 0.1
21	91	4 ^[a]	0.14	1 ^[b]	< 0.1
22	92	4 ^[a]	0.14	1 ^[b]	< 0.1
23	91	4 ^[a]	0.14	1 ^[b]	< 0.1
24	91	4 ^[a]	0.14	1 ^[b]	< 0.1
25	90	4 ^[a]	0.14	1 ^[b]	< 0.1
26	92	10	0.35	< 1 ^[b]	< 0.1
27	90	4 ^[a]	0.14	< 1 ^[b]	< 0.1
28	93	4 ^[a]	0.14	1 ^[b]	< 0.1
29	89	4 ^[a]	0.14	1 ^[b]	< 0.1
30	90	5 ^[a]	0.18	1 ^[b]	< 0.1

Reaction conditions: Precursor=Pd(acac)₂, 0.03 mol% based on 1,3-butadiene, ligand=TPPTS

(=triphenylphosphine-*tri*-sulfonate), metal/ligand=1/4, $n_{dimcarb}$ =30 mmol, $n_{1,3-butadiene}$ =38 mmol, *T*=80 °C, *t* =2 h, 500 rpm, yields (Y) given in % based on 1,3-butadiene and determined by GC-FID using dibutyl ether as internal standard.

Recycling conditions: Extraction of the product with cyclohexane (2x2 mL), dimcarb was refilled to 30 mmol (addition of 11 mmol), addition of 38 mmol 1,3-butadiene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase and relatively to the initially employed amount of the respective element (in %)

[a]: value is below limit of quantification for phosphorous (6 ppm)

[b]: value is below limit of quantification for palladium (3 ppm)

1.5. Hydroaminomethylation of 1-dodecene with dimcarb

1.5.1. Reaction parameters

Entry	X _{1-dodecene} [%]	Ү _{нам} [%]	S _{нам} [%]
Liitiy			
1 ^[a]	51	1	1
2 ^[b]	60	19	42
3 [c]	83	25	39
4 ^[d]	55	40	87

Table 6: Parameter screening for the hydroaminomethylation of 1-dodecene with dimcarb

Reaction conditions: Precursor=[Rh(cod)Cl]₂, 0.1 mol% based on 1-dodecene, ligand=sulfo-XantPhos, metal/ligand=1/4, $n_{dimcarb}$ =30 mmol, $n_{1-dodecene}$ =15 mmol, T=140 °C, t=4 h, p_{syngas} =50 bar, p_{CO}/p_{H2} =1/1; 500 rpm, Conversion (X) and yields (Y) are given in % based on 1-dodecene and determined by GC-FID using dibutyl ether as internal standard. Selectivity (S) was calculated as moles of products per converted mole of 1-dodecene [*a*]: 0.05 mol% [Rh(cod)Cl]₂ [*b*]: 0.2 mol% [Rh(cod)Cl]₂ [*c*]: p_{syngas} =70 bar [*d*]: p_{CO}/p_{H2} =1/2.5

Figure 1: The sulfo-XantPhos ligand

1.5.2. Recycling experiments

Table 7: Results of the recycling experiments of the hydroaminomethylation of 1-dodecene with dimcarb

Run #	Ү _{нам} [%]	c(P) [ppm]	c(Rh) [ppm]
0	41	7	< 1 ^[a]
1	35	7	< 1 ^[a]

2	33	6	< 1 ^[a]
3	31	6	1 ^[a]
4	29	8	< 1 ^[a]
5	23	8	< 1 ^[a]

Reaction conditions: Precursor=[Rh(cod)Cl]₂, 0.1 mol% based on 1-dodecene, ligand=sulfo-XantPhos,

metal/ligand=1/4, $n_{dimcarb}$ =30 mmol, $n_{1-dodecene}$ =15 mmol, T=140 °C, t=4 h, p_{syngas} =50 bar, p_{CO}/p_{H2} =1/2.5; 500 rpm, Conversion (X) and yields (Y) are given in % based on 1-dodecene and determined by GC-FID using dibutyl ether as internal standard.

Recycling conditions: Dimcarb was refilled to 45 mmol (addition of 7.5 mmol), phase separation under schlenk technique, addition of 15 mmol 1-dodecene, restarting of the reaction.

Leaching is given in concentration (in ppm) in the product phase.

[a]: value is below limit of quantification for rhodium (3 ppm)

2. Product Characterization & Analytics

2.1. Reactive Ionic Liquid

2.1.1. Dimethylammonium dimethylcarbamate (dimcarb)

Chemical Formula: C₅H₁₄N₂O₂ Exact Mass: 134.1

¹**H NMR** (500 MHz, CDCl₃) δ [ppm] = 10.05 (m, 2H (3)), 2.22 (s, 12H (1, 1', 2, 2').

¹³**C NMR** (126 MHz, CDCl₃) δ [ppm] = 162.68 (4), 35.72 (1, 1'), 34.46 (2, 2').

2.1.1.1. ¹H-NMR Spectrum

2.1.1.2. ¹³C-NMR Spectrum

2.2. Hydroamination products with dimcarb

2.2.1. Dimethyl farnesylamines

Chemical Formula: C₁₇H₃₁N Exact Mass: 249.2

¹**H NMR** (500 MHz, CDCl₃) δ [ppm] = 5.45 – 5.30 (m, 1H (*3*, *3'*)), 5.20 – 5.01 (m, 2H (*7*, *7'*, *12*, *12'*)), 2.87 – 2.70 (m, 2H (*1*, *1'*)), 2.20 – 2.12 (m, 6H (*16*, *16'*, *17*, *17'*)), 2.12 – 1.90 (m, 8H (*5*, *5'*, *6*, *6'*, *10*, *10'*, *11*, *11'*)), 1.70 – 1.50 (m, 12H (*4*, *4'*, *9*, *9'*, *14*, *14'*, *15*, *15'*).

¹³C NMR (126 MHz, CDCl₃) δ [ppm] = 137.81 (2, 2'), 135.09 (8, 8'), 131.38 (13, 13'), 124.51 (7, 7'), 122.51 (12, 12'), 66.63 (3, 3'), 57.97 (1, 1'), 45.54 (16, 16'), 45.51 (17, 17'), 39.86 (11, 11'), 35.84 (5, 5'), 28.44 (10, 10'), 26.53 (6, 6'), 25.82 (15, 15'), 17.79 (4, 4'), 16.09 (14, 14'), 13.29 (9, 9').

EI-MS (m/z) = 249 [M]⁺ (13%), 180 (15), 161 (3), 133 (11), 120 (6), 112 (100), 98 (22), 93 (27), 81 (17), 69 (64), 58 (72), 44 (31).

HRMS [M+H] ⁺	calculated:	250.25293
	measured:	250.25286

2.2.1.1. ¹H-NMR Spectrum

2.2.1.2. ¹³C-NMR Spectrum

2.2.1.3. Calibration Line

2.2.2. Dimethyl myrcenylamines

Chemical Formula: C₁₂H₂₃N Exact Mass: 181.2

¹**H NMR** (500 MHz, CDCl₃) δ [ppm] = 5.47 – 5.31 (m, 1H (*3*, *3'*)), 5.19 – 5.05 (m, 1H (*7*, *7'*)), 2.90 – 2.67 (m, 2H (*1*, *1'*)), 2.20 – 2.13 (m, 6H (*11*, *11'*, *12*, *12'*)), 2.13 – 2.03 (m, 4H (*5*, *5'*, *6*, *6'*)), 1.67 (s, 3H (*4*, *4'*)), 1.65 – 1.57 (m, 6H (*9*, *9'* 10, *10'*)).

¹³C NMR (126 MHz, CDCl₃) δ [ppm] = 137.78 (2, 2'), 131.55 (8, 8'), 124.60 (7, 7'), 122.43 (3, 3'),
57.97 (1, 1'), 45.56 (11, 11'), 45.53 (12, 12'), 35.89 (5, 5'), 28.51 (6, 6'), 25.87 (10, 10'), 17.79 (4, 4'), 13.28 (9, 9').

EI-MS (m/z) = 181 [M]⁺ (6%), 166 (31), 124 (3), 112 (15), 110 (31), 107 (8), 98 (3), 96 (11), 95 (4), 94 (4), 93 (16), 91 (6), 82 (20), 81 (5), 79 (5), 77 (7), 71 (5), 69 (15), 67 (12), 58 (100), 55 (5), 53 (10).

HRMS: [M+H]⁺ (calculated) = 182.19033 (measured) = 182.19021

2.2.2.1. ¹H-NMR Spectrum

2.2.2.3. Calibration line

2.2.3. Dimethyl isoprenylamines

Chemical Formula: C₇H₁₅N Exact Mass: 113.1

¹**H NMR** (400 MHz, CDCl₃) δ [ppm] = 5.48 – 5.14 (m, 1H (3, 3')), 2.95 – 2.68 (m, 2H (1, 1')), 2.19 (m, 6H (6, 6', 7, 7')), 1.75 – 1.57 (m, 6H (4, 4', 5, 5')).

¹³C NMR (100 MHz, CDCl₃) δ [ppm] = 133.91 (2, 2[']), 121.87 (3, 3[']), 57.22 (1, 1[']), 45.39 (6, 6[']),
45.33 (7, 7[']), 26.03 (4, 4[']), 18.09 (5, 5[']).

EI-MS (m/z) = 113 [M]⁺ (39%), 112 (45), 99 (5), 98 (78), 96 (8), 83 (4), 82 (16), 80 (3), 71 (3), 70 (10), 69 (26), 68 (6), 67 (9), 59 (3), 58 (100), 57 (7), 56 (8), 55 (8), 54 (4), 53 (12), 51 (5).

HRMS: [M+H]⁺ (calculated) = 114.12773 (measured) = 114.12736

2.2.3.1. ¹H NMR Spectrum

2.3. Telomerization products with dimcarb

2.3.1. Dimethyl octadienylamines

Chemical Formula: C₁₀H₁₉N Exact Mass: 153.2

¹**H NMR** (500 MHz, CDCl₃) δ [ppm] = 5.81 – 5.62 (m, 1H (2)), 5.62 – 5.29 (m, 2H (*6*, 7)), 4.95 – 4.78 (m, 2H (1)), 3.00 – 2.50 (m, 2H (8)), 2.33 – 2.03 (m, 6H (*9*, 10)), 1.96 (m, 4H (*3*, 5)), 1.44 – 1.34 (m, 2H (4)).

¹³**C NMR** (126 MHz, CDCl₃) δ [ppm] = 138.59 (2), 133.65 (6), 127.52 (7), 114.50 (1), 61.92 (8), 45.04 (9, 10), 33.17 (3), 31.71 (5), 28.43 (5).

EI-MS (m/z): 153 [M]⁺ (8%), 138 (5), 110 (24), 98 (16), 84 (34), 67 (17), 58 (100), 45 (24).

HRMS [M+H]⁺ calculated: 154.15903 measured: 154.15865

2.3.1.1. ¹H-NMR Spectrum

2.3.1.3. Calibration line

2.4. Hydroaminomethylation products

2.4.1. Dimethyl tridecylamine

¹**H NMR** (400 MHz, CDCl₃) δ [ppm] = 2.29 – 2.22 (m, 2H (*13*)), 2.21 (s, 3H (*14*)), 2.16 (s, 3H (*14*)), 1.44 (m, 2H (*15*)), 1.26 (d, 22H (*2*, *3*, *4*, *5*, *6*, *7*, *8*, *9*, *10*, *11*, *12*)), 0.87 (t, *J* = 6.8 Hz, 3H (*1*)).

¹³C NMR (101 MHz, CDCl₃) δ [ppm] = 60.33 (13), 45.82 (14, 15), 32.37, 31.36, 30.13, 30.11, 30.09, 30.08, 30.07, 28.09, 27.96, 27.36, (3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 23.14 (2), 14.56 (1).

EI-MS (m/z): 227 [M]⁺ (7%), 114 (1), 84 (3), 71 (1), 58 (100)

 HRMS [M+H]⁺
 calculated:
 228.26858

 measured:
 228.26831

2.4.1.1. ¹H-NMR spectrum

2.4.1.2. ¹³C-NMR spectrum

2.4.1.3. Calibration line

2.5. Ligand Oxidation

2.5.1. DPPBTS

Figure 2: Structure of the DPPBTS-ligand

Figure 3: ³¹P-NMR of the pure ligand in D_2O . Chemical Shift of the phosphorous(III) atom is **-15.25**

2.5.2. DPPBTS-oxide

Figure 4: Structure of the oxidized DPPBTS-ligand

2.6. ICP-OES analytics

The content of phosphorous and palladium in the product phases were determined via ICP-OES (Iris Intrepid by *Thermo Elemental*). For this, 0.23 g of a sample was measured out in a Teflon cup and 2.5 mL nitric acid (65%) and 4 mL sulfuric acid (96%) were added. The digestion process was conducted in a *CEM* MARS 6 Digestion / Extraction System microwave. Upon completion of the digestion process, the samples were treated with 2 ml pure water (purified with PURELAB® flex 3 Water System, *ELGA LabWater*) and 1 mL of H₂O₂ (*Fisher Scientific*, optima grade, phosphorous free). The prepared samples were allowed to rest for twelve hours before measurement. All contents of phosphorous and palladium given in the tables were collected by double determination.

2.7. GC-FID and GC-MS analytics

Routine gas chromatographic analyses were performed on an *Agilent 7890B* instrument equipped with a flame ionization detector (FID) and a HP-5 capillary column (30 m, diameter 0.32 mm, film thickness 0.25 μ m) connected to an auto sampler (*7693*) and an injector (*G4513A*). GC-MS analyses of the products were carried using an Agilent *5977A MSD* (70 eV) on the same device. For both GC-FID and GC-MS the following heat ramp was used with a split ratio of 50:1.

		•	
	heating rate / °C min ⁻¹	Temperature / °C	hold time / min
Start	-/-	40	3
Ramp 1	7.5	150	0
Ramp 2	40	320	8

Table 8: Heat ramp for GC measurements