Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Enhanced activity and remarkable improved stability of a Burkholderia cepacia lipase by the coating with a triazolium alkylPEG sulfate ionic liquid

T. Nishihara, ^a A. Shiomi, ^a S. Kadotani, ^a T. Nokami, ^{a, b} T. Itoh^{a, b*}

^aDepartment of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan

^bCenter for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University

4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan

E-mmail: titoh@chem.tottori-u.ac.jp

Contents

General procedure	 S2
1. Synthesis of ionic liquids Tz1 , Tz2 , and Tz3	 S 3
1-1. Synthesis of Tz1 .	 S 3
1-2. Synthesis of Tz2 .	 S4
1-3. synthesis of Tz3 .	 S 5
2. Enzymatic reaction	 S7
2-1. Kinetic resolution of (±)- 1-phenylethanol (1a)	 S6
2-1-1. Results of Triazolium IL-catalyzed reactions.	 S7
2-1-2. Results of the control experiments.	 S7
2-2. Kinetic resolution of (±)- 1-indanole(1b)	 S8
2-3. Kinetic resolution of (±)-1-(naphthalen-2-yl)ethan-1-ol (1c)	 S 9
2-4. Kinetic resolution of (±)-1-(naphthalen-2-yl)propan-1-ol (1d)	 S 9
2-5. Kinetic resolution of (±)-1-(naphthalen-1-yl)ethan-1-ol (1e)	 S10
2-6. Kinetic resolution of (\pm) -2-chloro-1-phenylethan-1-ol (1f)	 S10
2-7. Kinetic resolution of (±)-1-(pyridin-4-yl)ethan-1-ol (1g)	 S11
2-8. Kinetic resolution of (±)-1-(pyridin-3-yl)ethan-1-ol (1h)	 S12
2-9. Kinetic resolution of (±)-1-(pyridin-2-yl)ethan-1-ol (1i)	 S13
2-10. Kinetic resolution of (±)-1-(E)-4-phenylbut-3-en-2-ol (1j)	 S13
2-11. Kinetic resolution of (±)-1-3-hydroxy-3-(thiophen-2-yl)propanenitrile (1k)	 S14
2-12. Kinetic resolution of (±)-methyl 2-hydroxy-2-phenylacetate (11)	 S15
Table S1. List of retention time (tR) of alcohols in the HPLC analysis reported in Table 1.	 S16
Table S2. List of retention time (<i>t</i> R) of acetates in the HPLC analysis reported in Table 1.	 S17
3. Determination of the Kinetic Parameters	 S18
3-1. (<i>R</i>)-1h as a model substrate.	 S18

Table S3. Results of IL1-PS in i -Pr ₂ O for (<i>R</i>)-1h.	 S18
Figure S1. Lineweaver-Burk plots of IL1-PS-catalyzed reaction of (R) -1h in <i>i</i> -Pr ₂ O.	 S18
Table S4. Results of Tz1-PS in <i>i</i> -Pr ₂ O for (R) -1h.	 S18
Figure S2. Lineweaver-Burk plots of Tz1-PS-catalyzed reaction of (R) -1h in <i>i</i> -Pr ₂ O.	 S19
Table S5. Results of Tz2-PS in <i>i</i> -Pr ₂ O for (R) -1h.	 S19
Figure S3. Lineweaver-Burk plots of Tz2-PS-catalyzed reaction of (R) -1h in <i>i</i> -Pr ₂ O.	 S19
Table S6. Results of Tz3-PS in <i>i</i> - Pr_2O for (<i>R</i>)-1h.	 S20
Figure S4. Lineweaver-Burk plots of Tz3-PS-catalyzed reaction of (R) -1h in <i>i</i> -Pr ₂ O.	 S20
Figure S5. Recycle procedure of Tz1-PS	 S20
Table S7. Results of recyclable use experiment of Tz1-PS in $[N_{222MEM}]$ [Tf ₂ N]	 S21
¹ H NMR of S9	 S22
¹³ C NMR of 89	 S22
¹ H NMR of Tz1	 S23
¹³ C NMR of Tz1	 S23
¹ H NMR of Tz2	 S24
¹³ C NMR of Tz2	 S24
¹ H NMR of Tz3	 S25
¹³ C NMR of Tz3	 S25
References	 S26

General Procedures

Regents and solvents were purchased from common commercial sources and were used as received or purified by distillation over appropriate drying agents. Reactions requiring anhydrous conditions were carried out under argon with dry, freshly distilled solvents, and magnetic stirring. Reactions except the preparation of the ionic liquids were monitored by thin layer chromatography using silica gel plate and GC. Thin layer chromatography was performed with the indicated solvents and Wako gel B-5F. The ¹H-NMR spectra and ¹³C-NMR spectra were recorded by a Bruker Avance III spectrometer. Chemical shifts are expressed in ppm downfield from tetramethylsilane (TMS) in CDCl₃ as an internal reference. IR spectra were obtained on SHIMADZU FT-IR 8000 spectrometers. High resolution mass spectra were recorded on a Thermo Fisher Scientific EXACTIVE mass spectrometer. Optical rotation was measured with a JASCO DIP-370 digital polarimeter. The rate was determined by gas chromatography analysis (Quadrex bonded fused silica methyl silicone, ϕ 0.25 mm × 25 m, N₂). The optical purity was determined by HPLC analysis using Daicel OD, OD-H, OB, AD, or OJ-H and capillary gas chromatography (Chiraldex G-TA, ϕ 0.25 mm × 20 m, 100 °C, He).

1. Synthesis of ionic liquids Tz1, Tz2, and Tz3

1-1. Synthesis of Tz1.

A mixture of NaN₃ (2.39 g, 35.9 mmol) and 1-chlorobutane (1.33 g, 14.4 mmol) in DMF (18.5ml) was stirred at 80°C for 21 h. To this mixture was added copper iodide (0.35 g, 1.84 mmol) and trimethylsilylethyne (1.74 g, 18.3 mmol), then the mixture was stirred for 72 h at the same temperature. After being cooled to rt, the precipitate was removed by filtration through a glass sintered filter, then the filtrate was dryness by evaporation. Silicagel flash column chromatography gave 1-butyl-4-(trimethylsilyl)-1,2-3-triazole **S1**^[1] (1.18 g, 6.01 mmol) and 1-butyl-1,2-3-triazole **S2**^[1] (0.29 g, 2.32 mmol) in 42% and 16% yield, respectively. To a THF (6.0 ml) solution of S1 was added tributylammonium fluoride (TBAF, 9.01 mmol) and the moixture was stirred for 24 h, then evaporated to dryness to give S2 (0.69g, 15.5 mmol) in 92% yield. S2 (0.69g, 5.51 mmol) was dissolved in 2 ml of acetonitrile (CH₃CN), then iodomethane (3.89 g, 27.6 mmol) was added at 0°C under dark conditions. The mixture was stirred at rt for one week, then washed with ether 3 times, then lyophilized to dryness to afford 3-butyl-1-methyl-1*H*-1,2,3-triazol-3-ium iodide (S3)^[2] (1.41 g, A mixture of $S3^{[2]}$ (0.52)96% vield. g. 1.87 5.27 mmol) in mmol) and [NH₄][C₁₆H₃₃(OCH₂CH₂)₁₀OSO₃]^[3](1.47 g, 1.87 mmol) in 2.0 ml of acetone was stirred at rt for 24 h, then filtrated through a membrane filter to remove the precipitate (NH₄I) formed. To the filtrate was diluted with dry acetone (10 ml) and active charcoal (2.12 g) and the mixture was stireed at 50°C for 2 h, then remove the active charcoal by filtration through a glass sintered filter with a Celite pad. The filtrate was dried by evapolation and subsequent lyophilization to afford Tz1 (0.497 g, 0.55 mmol) in 30% yield.

Tz1: mp 28.3°C; ¹H NMR (600 MHz, CDCl₃, *J*=Hz) δ 0.88 (3H, t, *J*=7.2), 1.00 (3H, t, *J*=7.2), 1.25 (30H, m), 1.46 (2H, sextet, *J*=7.2), 1.60 (2H, m), 1.61 (2H, m), 3.4 (2H, t, *J*=6.6), 3.58 (2H, d, *J*=5.4), 3.65-3.63 (34H, m), 3.72 (2H, m), 4.25 (3H, s), 4.73 (2H, t, *J*=7.8), 9.22 (1H, s), 9.44(1H, s); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 13.36, 14.09, 22.64, 25.76, 26.04, 29.31, 29.45, 29.49, 29.52, 29.57, 29.60, 29.64, 31.41, 31.87, 41.12, 54.08, 61.49, 61.67, 61.70, 62.79, 69.98, 70.10, 70.13, 70.25, 70.42, 71.50, 71.71, 72.50, 72.66, 131.41, 132.29; IR(neat, cm⁻¹) 3421, 2916, 2850, 1538, 1466, 1345, 1280, 1242, 1109, 964, 842; ESI-MS (Cation): calcd for C₇H₁₄N₃⁺ 140.1182, found 140.1180.

S1: ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 0.33 (9H, s), 0.96 (3H, t, *J*=7.4), 1.37 (2H, m, *J*=7.4), 1.89 (2H, m), 4.38 (2H, t, *J*=7.4), 7.48 (1H, s); ¹³C NMR (150 MHz, CDCl₃, *J*=Hz) δ -0.9, 13.7, 20.0, 32.7, 49.7, 128.9, 146.7; IR(neat, cm⁻¹) 3116, 2956, 2860, 2932, 1677, 14), 1466, 1382, 1248, 1382, 1092, 1048, 1001, 839, 756, 655, 631.

S2^[1]: ¹H NMR (600 MHz, CDCl₃, *J*=Hz) δ 0.96 (3H, t, *J*=7.2), 1.36 (m, 2H, *J*=7.2), 1.90 (2H, m), 4.40 (2H, t, *J*=7.2), 7.55 (1H, s), 7.70 (1H, s); ¹³C NMR (150 MHz, CDCl₃, *J*=Hz) δ 13.7, 19.9, 32.5, 50.1, 123.3, 134.0; IR (neat, cm⁻¹)3447, 3123, 2960, 2935, 2875, 1642, 1482, 1466, 1381, 1268, 1216, 1115, 1072, 1028, 952, 787, 753, 703, 639.

S3 ^[2]: ¹H NMR (600 MHz, CDCl₃, *J*=Hz) δ 1.00 (3H, t, *J*=7.8), 1.44 (2H, m, *J*=7.2), 2.05(2H, m), 4.54 (3H, s), 4.76 (2H, t, *J*=7.2), 9.38 (1H, s), 9.49 (1H, s); ¹³C NMR (150 MHz, CDCl₃, *J*=Hz) δ 13.4, 19.3, 31.4, 41.3, 54.1, 131.3, 132.1; IR(neat, cm⁻¹) 3461, 3134, 3077, 2956, 2936, 2874, 1528, 1463, 1346, 1311, 1212, 1192, 1126, 1086, 807, 748, 732, 687, 651.

1-2. Synthesis of Tz2.

A mixture of NaN₃ (1.62 g, 25.0 mmol) and benzylbromide (1.82 g, 10.7 mmol) in CH₃CN (25 ml) was stirred at 65°C for 24 h. After allowed to cool to rt, the mixture was diluted with ethyl acetate (20 ml) and washed with water. The organic layer was dried with anhydrous MgSO₄ and evaporated to dryness. To the resulting residue were added *t*-BuOH/H₂O=1/1 (18 ml), CuSO₄ (74.0 mg, 0.46 mmol), sodium ascorbate (185.9 mg, 0.94 mmol), and trimethylsilylacetylene (933 mg, 9.50 mmol), then the mixture was stirred at rt for 17 h. The reaction was quenched by addition of saturated NH₄Cl aqueous solution, then extracted with ethyl axcetate. The organic layer was washed with water 3 times, then evaporated to dryness. SiO₂ flash column chromatography gave 1-benzyl-4-(trimethylsilyl)-1,2,3-triazole **S5** (1.620 g, 7.01 mmol) in 66% yield (2 steps) as a white solid.

To a *t*-BuOH (2.0 ml) solution of **S5** (223.3 mg, 0.97 mmol) was added *t*-BuOK (168 mg, 1.5 mmol) and the mixture was stirred at 40°C for 14 h, then the mixture was diluted water (2.0 ml) and extracted with ether 3 times. The organic layer was dried with MgSO₄ and evaporated to dryness, then subsequent SiO₂ flash column chromatography afforded 1-benzyl-1,2,3-triazole **S6**^[4] (121.6 mg, 0.76 mmol) in 78% yield as a white solid.

To a **S6** (101.7 mg, 0.63 mmol) solution of 0.1 ml of acetonitrile (CH₃CN) was added iodomethane (178.3 mg, 1.26 mmol) at 0°C. The mixture was stirred at rt for 2 days under dark conditions and washed with ether 3 times, then the organic layer was evaporated to dryness and subsequent lyophilization to afford 3-benzyl-1-methyl-1*H*-1,2,3-triazol-3-ium iodide (**S7**) (112 mg, 0.37 mmol) in 59% yield. A mixture of **S7** (99.7 m g, 1.87 mmol) and $[NH_4][C_{16}H_{33}(OCH_2CH_2)_{10}OSO_3]^{[3]}$ (261.3 mg, 0.33 mmol) in 2.0 ml of acetone was stirred at rt for 24 h, then precipitate (NH₄I) produced

was removed through a membrane filter and the filtrate was dried by evapolation and subsequent lyophilization to give **Tz2** (283.7 mg, 0.55 mmol) in 91% yield.

Tz2: mp: 29.0 °C; ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 9.24(s, 1H), 9.21(s, 1H), 7.59-7.57(m, 2H), 7.41(t, 3H, *J*=3.6), 5.95(s, 2H), 4.48(s, 3H), 3.74-3.57(m, 36H), 3.43(t, 2H, *J*=6.6), 1.57(t, 2H, *J*=7.2), 1.31(m, 26H), 0.88(t, 3H, *J*=7.2);¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 132.50, 131.32, 131.16, 130.03, 129.54, 129.51, 72.52, 71.56, 70.61, 70.54, 70.51, 70.46, 70.26, 70.18, 70.04, 69.87, 68.86, 66.34, 61.57, 57.52, 41.00, 31.92, 29.70, 29.65, 29.63, 29.51, 29.36, 26.10, 22.69, 14.12; IR(neat, cm⁻¹) 3922.48, 3149.64, 3075.42, 3044.15, 2991.81, 2917.26, 281.04, 1774.84, 1529.57, 1494.27, 1455.32, 1385.77, 1345.32, 1301.16, 1282.12, 1215.74, 1173.44, 1114.49, 1090.39, 1029.65, 950.03, 913.82, 827.69, 791.18, 720.39, 693.46, 577.66; ESI-MS: calcd for C₁₀H₁₂N₃⁺174.1026, found 174.1024

S5: ¹H NMR(600MHz, MeOD, *J*=Hz): δ 7.88(s, 1H), 7.27-7.21(m, 5H), 5.2(s, 2H), 0.20(s, 1H); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz): δ 148.21, 136.10, 130.16, 129.86, 129.69, 129.18, 54.65, -0.04; IR(neat, cm⁻¹) 3106.29, 3026.32, 2957.55, 2901.92, 1884.20, 149.42, 1484.22, 1458.54, 1448.95, 1415.97, 1354.82, 1322.12, 1246.28, 1193.17, 1153.38, 1099.55, 1075.69, 1053.47, 1028.95, 1001.12, 947.49, 840.35, 763.62, 722.69, 695.82, 651.57, 635.43, 584.50, 473.52, 406.40.

S6^[4]: ¹H NMR (600 MHz, CDCl₃, *J*=Hz) δ 8.00 (s, 1H), 7.76 (s, 1H), 7.41-7.34 (m, 5H), 4.94 (s, 2H); ¹³C NMR (150 MHz, CDCl₃, *J*=Hz) δ 134.71, 134.26, 129.13, 128.75, 123.02, 123.26, 53.99; IR (neat, cm⁻¹) 3136.70, 3107.65, 3064.95, 3026.49, 2974.70, 2942.66, 2703.01, 2418.95, 2304.10, 2112.10, 1957.13, 1869.75, 1810.34, 1754.79, 1686.44, 1606.93, 1496.27, 1464.41, 1454.53, 1438.61, 1371.11, 1337.73, 1307.90, 1285.70, 1216.55, 1160.43, 1113.82, 1085.03, 1075.20, 1030.94, 967.42, 951.23, 898.40, 812.36, 773.80, 724.44, 693.01, 573.82, 457.01

S7: ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 9.40(s, 1H), 9.32(s, 1H), 7.60-7.59(m, 2H), 7.43(t, 3H, *J*=3.0), 5.97(s, 2H), 4.51(s, 3H); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 132.41, 131.16, 131.05, 130.13, 129.59, 129.54, 57.50, 41.19; IR(neat, cm⁻¹) 3922.41, 3149.07, 3075.56, 3044.16, 2992.05, 2966.63, 2938.61, 2876.43, 2124.81, 1949.31, 1774.32, 1529.26, 1494.18, 1455.04, 1385.67, 1319.13, 1301.15, 1282.61, 1215.34, 1173.41, 1152.63, 1089.47, 1029.40, 791.30, 719.94, 693.30, 577.54.

1-3. synthesis of Tz3.

A mixture of NaN₃ (2.40 g, 36.9 mol) and 1-bromobutane (2.03 g, 14.8 mmol) in DMF (18 ml) was stirred at 80°C for 16 h, then allowed to cool to rt. To the mixture was addee CuI (359.2 mg, 1.89 mmol) and propargyl alcohol (1.115 g, 19.9 mmol), and the mixture was stirred at 80°C for 18 h. After allowed to cool to rt, the precipitate formed was removed by filtration through glass sintered

filter and the filtrate was evaporated and subsequent SiO_2 column chromatography to give (1-butyl-1,2,3-triazol-4-yl)methanol (S8) (1.024 g, 6.77 mmol) in 46% yield.

Reaction of **S8** (780.1 mg, 5.03 mmol) with iodomethane (1.464 g, 10.3 mmol) for 3 days under dark conditions gave **S9** (1.394 g, 4.72 mmol) in 94% yiled.

A mixture of $[NH_4][C_{16}H_{33}(OCH_2CH_2)_{10}OSO_3]^{[3]}$ (779.7 mg, 1.00 mmol) and 1-butyl-4-(hydroxymethyl)-3-methyl-1*H*-1,2,3-triazolium iodide (**S9**)(296.7 mg, 1.00 mmol) in acetone (5.0 ml) was stirered at rt for 24 h, then NH₄I precipitated was remnoved by filtration through a membrane filter. The filtrate was evaporated to dryness and subsequent lyophilization to afford **Tz3** (923.6 mg) in 99% yield.

Tz3: mp 25.0°C; ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 8.80(s, 1H), 4.99(s, 2H), 4.58(t, 2H, *J*=7.2), 4.37(s, 3H), 3.75-3.58(m, 38H), 3.44(t, 2H, *J*=6.6), 2.03(m, 2H), 1.58-1.56(m, 2H), 1.47-1.25(m, 26H), 1.00(t, 3H, *J*=7.2), 0.88(t, 3H, *J*=7.2); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 143.95, 129.95, 72.3, 71.57, 70.37, 70.10, 70.01, 61.42, 53.99, 52.71, 39.10, 31.94, 31.22, 29.71, 29.68, 29.64, 29.52, 29.38, 26.10, 22.71, 19.48, 14.16; IR(neat, cm⁻¹) 3236.72, 2923.16, 2854.40, 2114.50, 1465.96, 1349.20, 1301.97, 1251.88, 1115.11, 952.20; ESI-MS: calcd for C₈H₁₆N₃O⁺170.1288, found 170.1287.

S8: ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 7.56(s, 1H), 4.78(s, 2H), 4.34(t, 2H, *J*=7.2), 1.90-1.85(m, 2H), 1.38-1.26(m, 2H), 0.95(t, 3H, *J*=7.2); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 147.83, 121.64, 56.15, 50.07, 32.20, 19.66, 13.41; IR(neat, cm⁻¹) 3332.02, 3139.57, 2959.70, 2934.83, 2874.04, 1463.15, 1437.93, 1380.94, 1336.93, 1221.28, 1144.61, 1050.36, 1013.79, 772.45, 655.51.

S9: ¹H NMR(600 MHz, CDCl₃, *J*=Hz) δ 9.02(s, 1H), 5.03(s, 2H), 4.87(s, 1H), 4.65(t, 2H, *J*=7.2), 4.39(s, 3H), 2.05-2.00(m, 2H), 1.47-1.41(m, 2H), 0.99(t, 3H, *J*=7.2); ¹³C NMR(150 MHz, CDCl₃, *J*=Hz) δ 143.56, 129.75, 54.04, 52.63, 39.76, 31.22, 19.39, 13.39; IR(neat, cm⁻¹) 3288.44, 3076.94, 2958.96, 2935.38, 2872.89, 1583.84, 1459.12, 1381.21, 1317.49, 1236.78, 1160.85, 1124.86, 1078.67, 1040.50, 809.14, 637.21, 531.80; ESI-MS: calcd for C₈H₁₆N₃O⁺170.1288, found 170.1276.

2. Enzymatic reaction

2-1. Kinetic resolution of (±)- 1-phenylethanol (1a).

2-1-1. Results of Triazolium IL-catalyzed reactions.

Tz1-PS catalyzed reaction:

A mixture of (±)-1a (50.3 mg, 0.41 mmol), vinyl acetate (54.5 mg, 0.63 mmol), and Tz1-PS (5.3 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and removed the enzyme by filtration through a glass sintered filter with a Celite pad, then silica gel thin layer chromatography (TLC) (hexane/ ethyl acetate= 4:1) gave (*R*)-2a and (*S*)-1a.

The reaction rate of the lipase-catalyzed reaction was determined by capillary GC-analysis (Quadrex bonded fused silica methyl silicone, $\phi 0.25 \text{ mm} \times 25 \text{ m}$, He) in the presence of an internal reference. The enantioselectivity was determined by HPLC analysis using a chiral column (Chiralcel OB, hexane: 2-propanol = 8 : 1, 200 : 1).

(*R*)-2a: 21.9 mg, 0.133 mmol, Y= 32.6 %, >99 % *ee*, $[\alpha]^{24}_{D}$ +119.1 (c 1.08, CHCl₃)

(S)-1a: 24.3 mg, 0.199 mmol, Y= 48.5 %, 71.0 % *ee*, $[\alpha]^{19}_{D}$ -19.6 (c 1.02, CHCl₃)

Conv. 41.5%, *E* value >200 (4271), Rate: 595.6 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed reaction:

(*R*)-**2a**: 10.8 mg, 0.0658 mmol, Y= 16.0 %, >99 % *ee*, $[\alpha]^{24}_{D}$ +113.8 (c 1.13, CHCl₃) (*S*)-**1a**: 19.3 mg, 0.158 mmol, Y= 38.5 %, 75.6 % *ee*, $[\alpha]^{24}_{D}$ -159.1 (c 0.93, CHCl₃) Conv. 43.1%, *E* value >200 (4582), Rate: 630.7 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed reaction:

(*R*)-2a: 23.8 mg, 0.145 mmol, Y= 35.3 %, >99 % *ee*, $[\alpha]^{27}{}_{D}$ +86.9 (c 0.99, CHCl₃) (*S*)-1a: 22.9 mg, 0.188 mmol, Y= 45.7 %, 83.4 % *ee*, $[\alpha]^{28}{}_{D}$ -12.6 (c 1.08, CHCl₃) Conv. 45.5%, *E* value >200 (5280), Rate: 501.7 mM h⁻¹ mg enzyme⁻¹

2.1-2. Results of the control experiments.

Commercial Lipase-PS catalyzed reaction:

To a solution of (\pm)-1a (50.0 mg, 0.41 mmol), vinyl acetate (53.0 mg, 0.62 mmol) in *i*-Pr₂O (2.0 mL) was added Lipase PS (25 mg, Enzyme content: 0.25 mg) and the mixture was stirred at 35 °C for 8 h. The reaction rate of the lipase-catalyzed reaction was determined by capillary GC-analysis. (*R*)-2a and (*S*)-3a were obtained by preparative silica gel thin layer chromatography (TLC).

(*R*)-2a: 30.9 mg, 0.19 mmol, Y= 46.0 %, >99 % ee

(*S*)-1a: 18.0 mg, 0.15 mmol, Y= 36 %, 88 % *ee*

Conv. 47.0%, *E* value >200 (584), Rate: 90 mM h⁻¹ mg enzyme⁻¹

Celite free Lipase PS catalyzed reaction:

Commercial lipase PS (1.00 g, enzyme protein 10 mg; 3.1×10^{-4} mmol) was dissolved in 10 ml of 0.1 M phosphate buffer (pH 7.2) and the mixture was centrifuged twice at 3,500 rpm for 5 min, then the resulting supernatant was lyophilized to afford the Celite-free lipase PS (224 mg). The estimated amount of the lipase protein in this Celite-free lipase PS powder was 4.5 % (w/w).

To a solution of (±)-1a (50.2 mg, 0.41 mmol), vinyl acetate (52.9 mg, 0.62 mmol) in *i*-Pr₂O (2.0 mL) was added the Celite free Lipase PS (4.5 mg, enzyme content: 0.20 mg) and the mixture was stirred at 35 °C for 8 h. The reaction rate of the lipase-catalyzed reaction was determined by capillary GC-analysis. (*R*)-2a and (*S*)-3a were obtained by preparative silica gel thin layer chromatography (TLC). (*R*)-2a: 26.9 mg, 0.16 mmol, Y= 40.0 %, >99 % *ee*

(S)-1a: 19.5 mg, 0.16 mmol, Y= 39 %, 86 % ee

Conv. 46.0%, *E* value >200 (556), Rate: 84 mM h^{-1} mg enzyme⁻¹

IL1-PS catalyzed reaction:

To a solution of (\pm)-1a (50.1 mg, 0.41 mmol) and vinyl acetate (52.9 mg, 0.62 mmol) in *i*-Pr₂O (2.0 mL) was added **IL1-PS** (7.0 mg, the enzyme content: 0.20 mg) and the mixture was stirred at 35°C for 30 min. (*R*)-2a and (*S*)-3a were obtained by preparative silica gel thin layer chromatography (TLC).

(*R*)-2a: 18.1 mg, 0.11 mmol, Y= 27.0 %, >99 % ee

(S)-1a: 20.0 mg, 0.16 mmol, Y= 39 %, 77 % ee

Conv. 43.0%, *E* value >200 (E 466), Rate: 884 mM h^{-1} mg enzyme⁻¹

2-2. Kinetic resolution of (±)- 1-indanole(1b).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1b (53.6 mg, 0.40 mmol), vinyl acetate (52.2 mg, 0.61 mmol), and Tz1-PS (5.4 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 4:1) gave (*R*)-2b and (*S*)-1b.

(*R*)-**2b**: 21.6 mg, 0.123 mmol, Y= 30.7 %, >99 % *ee*, $[\alpha]^{28}_{D}$ +9.16 (c 0.62, CHCl₃)

(*S*)-1b: 14.6 mg, 0.109 mmol, Y = 27.2 %, >99 % *ee*, $[\alpha]^{27}_{D} + 4.62$ (c 0.91, CHCl₃)

Conv. 50.0%, *E* value >200 (15198), Rate: 577.0 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-**2b**: 32.7 mg, 0.1856 mmol, Y= 46.4 %, >99 % *ee*, $[\alpha]^{28}{}_{D}$ +67.5 (c 1.04, CHCl₃) (*S*)-**1b**: 24.7 mg, 0.1841 mmol, Y= 46.0 %, 44.9 % *ee*, $[\alpha]^{28}{}_{D}$ +26.8 (c 1.11, CHCl₃) Conv. 44.9%, *E* value >200(5082), Rate: 828.3 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-**2b**: 35.3 mg, 0.200 mmol, Y= 50.1 %, >99 % *ee*, $[\alpha]^{25}_{D}$ +88.8 (c 1.55, CHCl₃) (*S*)-**1b**: 26.3 mg, 0.196 mmol, Y= 49.0 %, >99 % *ee*, $[\alpha]^{25}_{D}$ +24.5 (c 1.15, CHCl₃) Conv. 50.0%, *E* value >200(15198), Rate: 984.4 mM h⁻¹ mg enzyme⁻¹

2-3. Kinetic resolution of (±)-1-(naphthalen-2-yl)ethan-1-ol (1c).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1c (68.7 mg, 0.40 mmol), vinyl acetate (53.8 mg, 0.62 mmol), and Tz1-PS (6.8 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml

of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 7:1) gave (R)-2c and (S)-1c.

(*R*)-2c: 39.9 mg, 0.186 mmol, Y= 46.6%, >99% *ee*, $[\alpha]^{28}_{D}$ +8.49 (c 1.20, CHCl₃)

(S)-1c: 28.6 mg, 0.166 mmol, Y= 41.5%, 91.7% ee, $[\alpha]^{29}_{D}$ -15.4 (c 1.04, CHCl₃)

Conv. 47.9%, *E* value >200 (6560), Rate: 365.5 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-2c: 21.2 mg, 0.0989 mmol, Y= 24.7%, >99% *ee*, $[\alpha]^{24}_{D}$ +89.6 (c 1.86, CHCl₃) (*S*)-1c: 54.0 mg, 0.314 mmol, Y= 78.4%, 28.6% *ee*, $[\alpha]^{25}_{D}$ -15.7 (c 1.54, CHCl₃) Conv. 22.3%, *E* value >200(660), Rate: 338.3 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2c: 15.1 mg, 0.0705 mmol, Y= 17.6%, >99% *ee*, $[\alpha]^{27}_{D}$ +110.3 (c 1.42, CHCl₃) (*S*)-1c: 52.5 mg, 0.305 mmol, Y= 76.2%, 22.6% *ee*, $[\alpha]^{19}_{D}$ -16.8 (c 1.31, CHCl₃) Conv. 18.5%, *E* value >200 (498), Rate: 300.1 mM h⁻¹ mg enzyme⁻¹

2-4. Kinetic resolution of (±)-1-(naphthalen-2-yl)propan-1-ol (1d).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1d (74.6 mg, 0.40 mmol), vinyl acetate (57.3 mg, 0.62 mmol), and Tz1-PS (7.8 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 7:1) gave (*R*)-2d and (*S*)-1d.

(*R*)-2d: 39.9 mg, 0.0898 mmol, Y = 22.4%, >99% *ee*, $[\alpha]^{29}_{D}$ +6.85 (c 1.49, CHCl₃)

(*S*)-1d: 53.4 mg, 0.234 mmol, Y= 58.5%, 64.2% *ee*, $[\alpha]^{29}_{D}$ -2.54 (c 4.25, CHCl₃)

Conv. 39.1%, *E* value >200 (3898), Rate: 37.2 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-2d: 23.7 mg, 0.104 mmol, Y= 26.0%, >99% *ee*, $[\alpha]^{27}_{D}$ +72.8 (c 0.81, CHCl₃) (*S*)-1d: 51.4 mg, 0.276 mmol, Y= 69.0%, 32.7% *ee*, $[\alpha]^{27}_{D}$ -1.41 (c 1.11, CHCl₃)

Conv. 24.7%, *E* value >200 (2754), Rate: 32.6 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2d: 17.8 mg, 0.0780 mmol, Y= 19.5%, >99% *ee*, $[\alpha]^{26}_{D}$ +84.5 (c 1.70, CHCl₃) (*S*)-1d: 56.1 mg, 0.301 mmol, Y= 75.3%, 21.7% *ee*, $[\alpha]^{26}_{D}$ -19.5 (c 1.13, CHCl₃) Conv. 47.9%, *E* value >200 (6560), Rate: 365.5 mM h⁻¹ mg enzyme⁻¹

2-5. Kinetic resolution of (±)-1-(naphthalen-1-yl)ethan-1-ol (1e).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1e (68.9 mg, 0.40 mmol), vinyl acetate (56.7 mg, 0.66 mmol), and Tz1-PS (6.9 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 4:1) gave (*R*)-2e and (*S*)-1e.

(*R*)-2e: 4.3 mg, 0.0201 mmol, Y= 5.0%, >99% *ee*, $[\alpha]^{26}_{D}$ +4.00 (c 0.35, CHCl₃)

(*S*)-1e: 59.6 mg, 0.346 mmol, Y= 86.5%, 3.5% *ee*, $[\alpha]^{26}_{D}$ -1.31 (c 1.07, CHCl₃)

Conv. 3.4%, *E* value >200 (2070), Rate: 2.2 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-2e: 7.7 mg, 0.0359 mmol, Y= 9.0%, >99% *ee*, $[\alpha]^{25}{}_{D}$ +45.07 (c 0.75, CHCl₃) (*S*)-1e: 65.0 mg, 0.377 mmol, Y= 94.4%, 7.6% *ee*, $[\alpha]^{25}{}_{D}$ -6.67 (c 1.29, CHCl₃) Conv. 7.1%, *E* value >200 (2155), Rate: 8.8 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2e: 18.1 mg, 0.0845 mmol, Y= 21.1%, 97.6% *ee*, $[\alpha]^{26}_{D}$ +49.5 (c 1.48, CHCl₃) (*S*)-1e: 49.3 mg, 0.286 mmol, Y= 71.6%, 24.5% *ee*, $[\alpha]^{26}_{D}$ -16.5 (c 1.33, CHCl₃) Conv. 20.1%, *E* value 105, Rate: 13.0 mM h⁻¹ mg enzyme⁻¹

2-6. Kinetic resolution of (±)-2-chloro-1-phenylethan-1-ol (1f).

Lipase PS-catalyzed reaction:

A mixture of (\pm)-**1f** (62.2 mg, 0.40 mmol), vinyl acetate (54.4 mg, 0.63 mmol), and **lipase PS** (33.0 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 4:1) gave (*S*)-**2f** and (*R*)-**1f**. The produced acetate **2f** was assigned to be as (*S*)-form and the unreacted alcohol **1f** was to be (*R*)-form by the Cahn-Ingold-Prelog priority rule. However, the stereoselectivity of the enzyme was the same as other compounds.

(*S*)-2**f**: 7.5 mg, 0.0378 mmol, Y= 9.4%, >99% *ee*, $[\alpha]^{24}_{D}$ +11.733 (c 0.75, CHCl₃) (*R*)-1**f**: 44.5 mg, 0.284 mmol, Y= 71.0%, 11.4% *ee*, $[\alpha]^{24}_{D}$ -6.38 (c 1.63, CHCl₃) Conv. 10.2%, *E* value >200 (2237), Rate: 2.5 mM h⁻¹ mg enzyme⁻¹ **IL1-PS-catalyzed reaction:** A mixture of (±)-1f (62.4 mg, 0.40 mmol), vinyl acetate (53.9 mg, 0.63 mmol), and IL1-PS (6.0 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 4:1) gave (*S*)-2f and (*R*)-1f.

(S)-2f: 22.1 mg, 0.111 mmol, Y= 27.8%, 97.9% ee, $[\alpha]^{24}_{D}$ +45.9 (c 0.88, CHCl₃)

(*R*)-**1f**: 36.3 mg, 0.232 mmol, Y= 58.0%, 44.9% *ee*, $[\alpha]^{22}_{D}$ -23.9 (c 1.08, CHCl₃)

Conv. 31.4%, *E* value 147, Rate: 68.1 mM h⁻¹ mg enzyme⁻¹

Tz1-PS catalyzed acetylation:

A mixture of (±)-**1f** (62.6 mg, 0.40 mmol), vinyl acetate (52.8 mg, 0.60 mmol), and **Tz1-PS** (6.3 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate= 4:1) gave (*S*)-**2f** and (*R*)-**1f**.

(S)-2f: 22.0 mg, 0.11.7 mmol, Y = 27.7%, 96.5% ee, $[\alpha]^{23}_{D} + 73.4$ (c 1.54, CHCl₃)

(*R*)-**1f**: 32.0 mg, 0.2043 mmol, Y= 51.1%, 48.0% *ee*, $[\alpha]^{24}_{D}$ -12.0 (c 1.22, CHCl₃)

Conv. 33.2%, E value 90, Rate: 66.8 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*S*)-**2f**: 17.3 mg, 0.0871 mmol, Y= 21.7%, 97.2% *ee*, $[\alpha]^{22}{}_{D}$ +66.8 (c 1.00, CHCl₃) (*R*)-**1f**: 41.4 mg, 0.2644 mmol, Y= 66.1%, 40.2% *ee*, $[\alpha]^{23}{}_{D}$ -21.3 (c 1.25, CHCl₃) Conv. 29.3%, *E* value 1.5, Rate: 59.9 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*S*)-**2f**: 19.8 mg, 0.0997 mmol, Y= 24.9%, 97.4% *ee*, $[\alpha]^{21}{}_{D}$ +65.1 (c 1.13, CHCl₃) (*R*)-**1f**: 35.1 mg, 0.224 mmol, Y= 56.0%, 42.5% *ee*, $[\alpha]^{22}{}_{D}$ -24.9 (c 1.11, CHCl₃) Conv. 30.4%, *E* value 115, Rate: 63.2 mM h⁻¹ mg enzyme⁻¹

2-7. Kinetic resolution of (±)-1-(pyridin-4-yl)ethan-1-ol (1g).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1g (49.3 mg, 0.40 mmol), vinyl acetate (58.0 mg, 0.61 mmol), and Tz1-PS (6.9 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (ethyl acetate only) gave (*R*)-2g and (*S*)-1g.

(*R*)-2g: 18.8 mg, 0.115 mmol, Y= 28.6%, >99% *ee*, $[\alpha]^{27}$ _D -0.0087 (c 2.51, CHCl₃)

(*S*)-1g: 29.0 mg, 0.236 mmol, Y= 58.9%, 49.8% *ee*, $[\alpha]^{28}_{D}$ -1.159 (c 0.69, CHCl₃)

Conv. 33.3%, *E* value >200 (3287), Rate: 1016.3 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-**2g**: 23.6 mg, 0.143 mmol, Y= 35.7%, 99.8% *ee*, $[\alpha]^{25}{}_{D}$ +95.1 (c 2.00, CHCl₃) (*S*)-**1g**: 28.8 mg, 0.234 mmol, Y= 58.5%, 58.0% *ee*, $[\alpha]^{26}{}_{D}$ -46.9 (c 2.26, CHCl₃) Conv. 36.8%, *E* value >200 (1803), Rate: 592.2 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-**2g**: 25.9 mg, 0.157 mmol, 39.2 %, >99 % *ee*, $[\alpha]^{25}_{D}$ +74.0 (c 2.53, CHCl₃) (*S*)-**1g**: 29.3 mg, 0.238 mmol, 59.5 %, 55.7 % *ee*, $[\alpha]^{26}_{D}$ -21.5 (c 1.17, CHCl₃) Conv. 35.9%, *E* value >200 (701), Rate: 605.7 mM h⁻¹ mg enzyme⁻¹

2-8. Kinetic resolution of (±)-1-(pyridin-3-yl)ethan-1-ol (1h).

Tz1-PS catalyzed acetylation:

A mixture of (±)-1h (49.6 mg, 0.40 mmol), vinyl acetate (54.1 mg, 0.63 mmol), and Tz1-PS (5.2 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (ethyl acetate only) gave (*R*)-2h and (*S*)-1h.

(*R*)-**2h**: 24.5 mg, 0.149 mmol, Y= 37.3%, >99% *ee*, $[\alpha]^{27}_{D}$ +2.37 (c 2.11, CHCl₃)

(*S*)-1h: 36.0 mg, 0.292 mmol, Y= 73.1%, 56.5% *ee*, $[\alpha]^{27}_{D}$ -1.19 (c 3.19, CHCl₃)

Conv. 36.2%, *E* value >200 (589), Rate: 723.9 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-**2h**: 18.3 mg, 0.115 mmol, Y= 28.8%, >99% *ee*, $[\alpha]^{27}_{D}$ +82.9 (c 0.81, CHCl₃) (*S*)-**1h**: 38.3 mg, 0.311 mmol, 77.8%, Y= 47.9% *ee*, $[\alpha]^{26}_{D}$ -15.6 (c 1.10, CHCl₃) Conv. 32.4%, *E* value >200 (3220), Rate: 310.3 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-**2h**: 18.6 mg, 0.151 mmol, Y= 37.8%, >99% *ee*, $[\alpha]^{23}_{D}$ +84.5 (c 2.51, CHCl₃) (*S*)-**1h**: 18.2 mg, 0.1102 mmol, Y= 27.6%, 40.9% *ee*, $[\alpha]^{23}_{D}$ -20.8 (c 1.71, CHCl₃) Conv. 29.2%, *E* value >200 (373), Rate: 342.4 mM h⁻¹ mg enzyme⁻¹

2-9. Kinetic resolution of (±)-1-(pyridin-2-yl)ethan-1-ol (1i)

Tz1-PS catalyzed acetylation:

A mixture of (±)-1i (49.5 mg, 0.40 mmol), vinyl acetate (55.2 mg, 0.64 mmol), and Tz1-PS (5.1 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml

of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (ethyl acetate only) gave (R)-2i and (S)-1i.

(*R*)-2i: 16.3 mg, 0.132 mmol, Y= 33.0 %, >99% *ee*, $[\alpha]^{27}_{D}$ +1.16 (c 0.69, CHCl₃)

(*S*)-**1i**: 23.7 mg, 0.192 mmol, Y= 48.1%, 42.2% *ee*, $[\alpha]^{28}$ _D -2.37 (c 2.11, CHCl₃)

Conv. 36.2%, *E* value >200(589), Rate: 604.8 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-**2i**: 11.2 mg, 0.0678 mmol, Y= 17.0%, >99% *ee*, $[\alpha]^{25}{}_{D}$ +23.6 (c 0.95, CHCl₃) (*S*)-**1i**: 19.5 mg, 0.158 mmol, Y= 39.6%, 24.0% *ee*, $[\alpha]^{25}{}_{D}$ -3.8 (c 1.07, CHCl₃) Conv. 19.4%, *E* value >200 (2528), Rate: 65.3 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2i: 17.2 mg, 0.104 mmol, Y= 26.0%, >99% *ee*, $[\alpha]_{D}^{26}$ +68.1 (c 0.96, CHCl₃)

(*S*)-1i: 17.6 mg, 0.145 mmol, Y= 36.1%, 62.9% *ee*, $[\alpha]^{26}_{D}$ -7.78 (c 0.72, CHCl₃)

Conv. 38.7%, *E* value >200 (764), Rate: 145.2 mM h⁻¹ mg enzyme⁻¹

2-10. Kinetic resolution of (±)-1-(E)-4-phenylbut-3-en-2-ol (1j)

Tz1-PS catalyzed acetylation:

A mixture of (±)-1j (59.2 mg, 0.40 mmol), vinyl acetate (56.2 mg, 0.64 mmol), and Tz1-PS (6.2 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 40 min. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate = 6:1) gave (*R*)-2j and (*S*)-1j.

(*R*)-2j: 33.3 mg, 0.175 mmol, Y= 43.8%, >99% *ee*, $[\alpha]^{27}_{D}$ +28.0 (c 0.35, CHCl₃)

(S)-1j: 29.2 mg, 0.197 mmol, Y= 49.3%, 77.7% ee, $[\alpha]^{27}$ -2.42 (c 1.32, CHCl₃)

Conv. 43.8%, *E* value >200(4744), Rate: 549.7 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-2j: 17.8 mg, 0.0937 mmol, Y= 23.4%, >99% *ee*, $[\alpha]_{D}^{23}$ +135.2 (c 1.25, CHCl₃)

(*S*)-1j: 29.2 mg, 0.258 mmol, Y= 64.5%, 36.1% *ee*, $[\alpha]^{23}_{D}$ -12.7 (c 1.18, CHCl₃)

Conv. 26.5%, *E* value >200 (2849), Rate: 471.9 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2j: 14.9 mg, 0.0784 mmol, Y= 19.6%, >99% *ee*, $[\alpha]^{26}_{D}$ +116.7 (c 1.16, CHCl₃) (*S*)-1j: 42.7 mg, 0.288 mmol, Y= 72.1%, 27.0% *ee*, $[\alpha]^{26}_{D}$ -8.79 (c 1.41, CHCl₃) Conv. 21.3%, *E* value >200 (2603), Rate: 397.6 mM h⁻¹ mg enzyme⁻¹

2-11. Kinetic resolution of (±)-1-3-hydroxy-3-(thiophen-2-yl)propanenitrile (1k)

A mixture of (±)-1k (60.9 mg, 0.40 mmol), vinyl acetate (55.7 mg, 0.64 mmol), and lipase PS (30.5 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 12 h. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate = 1:1) gave (*R*)-2k and (*S*)-1k.

(*R*)-2k: 8.2 mg, 0.0420 mmol, Y= 10.2%, 98.8% *ee*, $[\alpha]^{27}_{D}$ +83.0 (c 0.66, CHCl₃)

(S)-1k: 52.9 mg, 0.3969 mmol, Y= 86.8%, 13.5% *ee*, $[\alpha]^{26}_{D}$ -68.9 (c 1.22, CHCl₃)

Conv. 12.0%, E value 189, Rate: 6.6 mM h⁻¹ mg enzyme⁻¹

IL1-PS catalyzed acetylation:

A mixture of (±)-1k (61.5 mg, 0.40 mmol), vinyl acetate (53.1 mg, 0.62 mmol), and IL1-PS (6.0 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 1 h. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate = 1:1) gave (*R*)-2k and (*S*)-1k.

(*R*)-2k: 26.0 mg, 0.133 mmol, Y= 33.3%, 92.3% *ee*, $[\alpha]^{27}$ _D -14.2 (c 1.07, CHCl₃)

(S)-1k: 34.5 mg, 0.2252 mmol, Y= 56.3%, 47.6% *ee*, $[\alpha]^{28}{}_{D}$ +80.2 (c 0.91, CHCl₃)

Conv. 34.0%, *E* value 40, Rate: 294.9 mM h⁻¹ mg enzyme⁻¹

Tz1-PS catalyzed acetylation:

A mixture of (±)-1k (61.2 mg, 0.40 mmol), vinyl acetate (53.8 mg, 0.62 mmol), and Tz1-PS (6.2 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 1 h. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate = 1:1) gave (*R*)-2k and (*S*)-1k.

(*R*)-2k: 24.9 mg, 0.128 mmol, Y= 31.1%, 97.2% *ee*, $[\alpha]^{24}_{D}$ +77.0 (c 1.06, CHCl₃)

(*S*)-1k: 41.7 mg, 0.272 mmol, Y= 66.4%, 43.3% *ee*, $[\alpha]^{24}_{D}$ -14.5 (c 1.02, CHCl₃)

Conv. 30.8%, *E* value 108, Rate: 167.9 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*R*)-2k: 16.2 mg, 0.0831 mmol, Y= 20.8%, 96.4% *ee*, $[\alpha]^{28}_{D}$ -88.3 (c 1.20, CHCl₃)

(*S*)-1k: 44.5 mg, 0.291 mmol, Y= 72.6%, 24.1% *ee*, $[\alpha]^{27}_{D}$ +80.4 (c 1.66, CHCl₃)

Conv. 20.0%, *E* value 75, Rate: 160.2 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*R*)-2k: 20.2 mg, 0.106 mmol, Y= 26.6%, 95.9% *ee*, $[\alpha]^{24}{}_{D}$ +89.7 (c 1.69, CHCl₃) (*S*)-1k: 45.5 mg, 0.2970 mmol, Y= 74.2%, 32.0% *ee*, $[\alpha]^{25}{}_{D}$ -9.73 (c 1.11, CHCl₃) Conv. 25.0%, *E* value 65, Rate: 218.9 mM h⁻¹ mg enzyme⁻¹

2-12. Kinetic resolution of (±)-methyl 2-hydroxy-2-phenylacetate (11)

Tz1-PS catalyzed acetylation:

A mixture of (±)-11 (66.5 mg, 0.40 mmol), vinyl acetate (55.2 mg, 0.64 mmol), and Tz1-PS (6.7 mg) in *i*-Pr₂O (2.0 ml) was stirred at 35°C for 1 h. The reaction was quenched by addition of 1.0 ml of ethyl acetate and the enzyme was removed by filtration through a glass sintered filter with a Celite pad, then silica gel TLC (hexane/ ethyl acetate = 4:1) gave (*S*)-21 and (*R*)-11. The acetate 21 produced was assigned to be as (*S*)-form and the alcohol 11 unreacted was to be (*R*)-form by the Cahn-Ingold-Prelog priority rule. However, the stereoselectivity of the enzyme was the same as other compounds.

(*S*)-21: 25.2 mg, 0.121 mmol, Y= 30.3%, 90.6% *ee*, $[\alpha]^{21}_{D}$ +115.8 (c 2.03, CHCl₃)

(*R*)-11: 25.4 mg, 0.1528 mmol, Y= 38.2%, >99% *ee*, $[\alpha]^{22}_{D}$ -150.3 (c 2.02, CHCl₃)

Conv. 52.4%, *E* value 151, Rate: 17.5 mM h⁻¹ mg enzyme⁻¹

Tz2-PS catalyzed acetylation:

(*S*)-**2**I: 32.3 mg, 0.155 mmol, Y= 38.8%, 96.5% *ee*, $[\alpha]^{22}{}_{D}$ +100.0 (c 1.13, CHCl₃) (*R*)-**1**I: 32.6 mg, 0.2023 mmol, Y= 50.6%, 81.4% *ee*, $[\alpha]^{23}{}_{D}$ -78.9 (c 1.26, CHCl₃) Conv. 45.8%, *E* value 142, Rate: 16.0 mM h⁻¹ mg enzyme⁻¹

Tz3-PS catalyzed acetylation:

(*S*)-**2**I: 35.0 mg, 0.168 mmol, Y= 42.0%, 95.1% *ee*, $[\alpha]^{24}{}_{D}$ +128.4 (c 1.00, CHCl₃) (*R*)-**1**I: 35.3 mg, 0.2124 mmol, Y= 53.1%, 93.6% *ee*, $[\alpha]^{25}{}_{D}$ -141.9 (c 1.04, CHCl₃) Conv. 49.6%, *E* value 140, Rate: 17.5 mM h⁻¹ mg enzyme⁻¹

Compound	Separation conditions: flow speed (solvent ratio), column temp	tR(min.)	Compound	Separation conditions: flow speed (solvent ratio), column temp	tR(min.)
он	OB-H	S: 8.494	ОН	OD-H	S: 16.164
	1.0 ml/min	R: 12.756		1.0ml/min	R: 18.096
	5.0%		Ň	7.0%	
1a	35℃		1g	35℃	
он	OD-H	S: 16.945	OH	ОВ-Н	S: 6.912
	1.0ml/min	R: 19.046		1.0ml/min	R: 10.911
	2.0%		N	11.1%	
1b	35°C		1h	35°C	
ŎН	ОВ-Н	S: 35.269	ОН	OD-H	S: 23.885
	1.0ml/min	R: 40.379		1.0ml/min	R: 21.317
	1.0%		Ň	1.0%	
1c	35°C		1i	35°C	
ОН	OD-H	S: 8.104	ОН	OJ-H	S: 39.065
	1.0ml/min	R: 8.989		1.0ml/min	R: 41.715
	11%			1.0%	
1d	35°C		1j	35°C	
∽он	OB-H	S: 17.048	ОН	OJ-H	S: 38.558
	1.0ml/min	R: 26.603	S CN	1.0ml/min	R: 43.239
	2.5%			15%	
1e	35°C		1k	25°C	
ОН	OB-H	R ^{a)} : 21.883	ОН	ОВ-Н	R ^{a)} : 16.143
CI	1.0ml/min	S ^{a)} : 26.773		1.0ml/min	S ^{a)} : 17.255
	1.0%		Ö	5.0%	
1f	35°C		11	35°C	

Table S1. List of retention time (tR) of alcohols in the HPLC analysis reported in Table 1.

^{a)}The assignment was made by the Cahn-Ingold-Prelog priority rule.

Compound	Separation conditions: flow speed (solvent ratio), column temp	tR(min.)	Compound	Separation conditions: flow speed (solvent ratio), column temp	tR(min.)
QAc	OB-H	S: 19.825	QAc	ОВ-Н	S: 7.644
	1.0ml/min	R: 17.606		1.0ml/min	R: 6.962
	0.5%		Ň	5.0%	
2a	35°C		2f	35°C	
QAc	OD-H	S: 16.297	OAc	OD-H	S: 13.005
	0.5ml/min	R: 10.122		1.0ml/min	R: 11.175
	0.1%		N	4.8%	
2b	40°C		2g	35°C	
QAc	OD-H	S: 15.558	OAc	ОВ-Н	S: 16.048
	1.0ml/min	R: 13.642		1.0ml/min	R: 17.484
	1.5%		Ň	2.5%	
2c	35°C		2h	35°C	
OAc	OB-H	S: 19.863	OAc	ОВ-Н	S: 7.932
	1.0ml/min	R: 17.437		1.0ml/min	R: 9.319
	0.5%			5.0%	
2d	35°C		2ј	35°C	
OAc	OJ-H	S: 15.348	QAc	OJ-H	S: 58.997
	1.0ml/min	R: 14.376	S CN	0.5ml/min	R: 65.606
	0.5%			0.1%	
2e	35°C		2k	25°C	
OAc	OJ-H	R ^{a)} : 11.616	OAc	ОВ-Н	R ^{a)} : 21.621
CI	1.0ml/min	S ^{a)} : 9.511		1.0ml/min	S ^{a)} : 19.006
	1.0%		0	1.0%	
2k	35°C		21	35°C	

Table S2. List of retention time (tR) of acetates in the HPLC analysis reported in Table 1

^{a)} The assignment was made by the Cahn-Ingold-Prelog priority rule.

3. Determination of the Kinetic Parameters

The reaction rates were determined by the experiments as follows: the reaction mixture was sampled at appropriate reaction interval (10 min, 15 min, and 20 mim) and determined % conversion by capillary GC analysis (Quadrex bonded fused silica methyl silicone, ϕ 0.25 mm × 25 m, He) in the presence of an internal reference.

3-1. (*R*)-1h as a model substrate.

 $V (M \min^{-1} mg^{-1})^{a}$ $1 / V (M^{-1} \min mg)^{a}$ [S] (M) $1/[S](M^{-1})$ 9.58 0.35 2.86 0.104 0.3 3.33 0.064 15.6 0.25 4.000.103 9.71 0.2 5.00 15.1 0.066 0.15 6.67 0.053 19.0 0.1 10.0 0.033 30.1

Table S3. Results of IL1-PS in *i*-Pr₂O for (*R*)-1h.

^{a)}"mg" corresponds to the lipase protein

Figure S1. Lineweaver-Burk plots of **IL1**-PS-catalyzed reaction of (*R*)-**1h** in *i*-Pr₂O. Here "y" means 1/[V], "x" means 1/[S]. Using the results, kinetic date were determined as follows: $V_{max} = 0.436 \text{ (M min}^{-1} \text{ mg}^{-1})$, $K_m = 1.166 \text{ (M)}$, $K_{cat} = 2.33 \text{ (min}^{-1})$, $K_{cat/}K_m = 2.00 \text{ (M}^{-1} \text{ min}^{-1})$.

		2 ()	
[S] (M)	$V (M \min^{-1} mg^{-1})^{a}$	$1/[S](M^{-1})$	$1 / V (M^{-1} \min mg)^{a}$
0.35	2.86	0.078	12.8
0.3	3.33	0.076	13.2
0.25	4.00	0.071	14.1
0.2	5.00	0.068	14.6

Table S4. Results of Tz1-PS in *i*-Pr₂O for (*R*)-1h.

0.15	6.67	0.062	16.0
0.1	10.0	0.049	20.4

^{a)}"mg" corresponds to the lipase protein

Figure S2. Lineweaver-Burk plots of **Tz1**-PS-catalyzed reaction of (*R*)-**1h** in *i*-Pr₂O. Here "y" means 1/[V], "x" means 1/[S]. Using the results, kinetic date were determined as follows: V_{max}= 0.103 (M min⁻¹ mg⁻¹), K_m=0.106 (M), K_{cat}=0.566 (min⁻¹), K_{cat}/K_m=5.32 (M⁻¹ min⁻¹).

[S] (M)	V (M min ⁻¹ mg ⁻¹) ^{a)}	$1/[S](M^{-1})$	$1 / V (M^{-1} \min mg)^{a)}$
0.35	2.86	0.044	22.6
0.3	3.33	0.061	16.4
0.25	4.00	0.036	28.1
0.2	5.00	0.038	26.3
0.15	6.67	0.027	37.1
0.1	10.0	0.017	57.9

Table S5. Results of Tz2-PS in *i*-Pr₂O for (*R*)-1h.

^{a)}"mg" corresponds to the lipase protein

Figure S3. Lineweaver-Burk plots of **Tz2**-PS-catalyzed reaction of (*R*)-**1h** in *i*-Pr₂O. Here "y" means 1/[V], "x" means 1/[S]. Using the results, kinetic date were determined as follows: $V_{max} = 0.315$ (M min⁻¹ mg⁻¹), $K_m = 1.68$ (M), $K_{cat} = 1.57$ (min⁻¹), $K_{cat/}K_m = 0.937$ (M⁻¹ min⁻¹).

[S] (M)	$V (M \min^{-1} mg^{-1})^{a}$	$1/[S](M^{-1})$	$1 / V (M^{-1} \min mg)^{a)}$
0.35	2.86	0.044	22.9
0.3	3.33	0.036	27.7
0.25	4.00	0.039	25.9
0.2	5.00	0.024	41.5
0.15	6.67	0.020	50.9
0.1	10.0	0.016	64.3

Table S6. Results of Tz3-PS in *i*-Pr₂O for (*R*)-1h.

^{a)}"mg" corresponds to the lipase protein

Figure S4. Lineweaver-Burk plots of **Tz3**-PS-catalyzed reaction of (*R*)-**1h** in *i*-Pr₂O. Here "y" means 1/[V], "x" means 1/[S]. Using the results, kinetic date were determined as follows: $V_{max} = 0.141$ (M min⁻¹ mg⁻¹), K_m=0.844 (M), K_{cat}=0.778 (min⁻¹), K_{cat}/K_m=0.922 (M⁻¹ min⁻¹).

Figure S5. Recycle procedure of Tz1-PS.

	Substrate	Reaction		Isolated acetate and alcohol				
Run	Amount:	time		Amount:	mmal	%Viald	% ee	
	mg		product	mg	mmoi	70 I leiu		Conv. and E value
1-4	50.5	1 h	(<i>R</i>)-2a:	28.6	0.176	43.7%	>99% ee	Conv. 48.0%,
ISt			(<i>S</i>)-1a:	17.2	0.758	35.2%	92.4% ee	<i>E</i> >200
and	49.5	1 h	(<i>R</i>)-2a:	28.9	0.176	42.9%	>99% ee	Conv. 49.2%,
200			(<i>S</i>)-1a:	20.0	0.164	40.0%	96.9% ee	<i>E</i> >200
and	49.8	1.5 h	(<i>R</i>)-2a:	28.5	0.175	42.1%	>99% ee	Conv. 50.0%,
310			(<i>S</i>)-1a:	11.7	0.0958	23.4%	>99% ee	<i>E</i> >200
441-	50.5	2.5 h	(<i>R</i>)-2a:	29.3	0.202	44.6%	>99% ee	Conv. 50.0%,
4th			(<i>S</i>)-1a:	9.6	0.0786	28.8%	>99% ee	<i>E</i> >200
<i>Cu</i> 1	50.7	2 h	(<i>R</i>)-2a:	28.8	0.176	44.0%	>99% ee	Conv. 50.0%,
Sth			(<i>S</i>)-1a:	11.0	0.0900	22.5%	>99% ee	<i>E</i> >200
(4).	51.8	2 h	(<i>R</i>)-2a:	31.3	0.191	47.7%	>99% ee	Conv. 50.0%,
6th			(<i>S</i>)-1a:	25.5	0.209	52.3%	>99% ee	<i>E</i> >200
7.1	50.8	1.5 h	(<i>R</i>)-2a:	24.3	0.146	36.5%	99.2% ee	Conv. 48.7%,
/th			(<i>S</i>)-1a:	19.1	0.156	39.1%	94.0% ee	<i>E</i> >200
0.1	59.1	1.5 h	(<i>R</i>)-2a:	23.9	0.146	36.4%	>99% ee	Conv. 46.4%,
8th			(<i>S</i>)-1a:	13.7	0.112	28.0%	86.6% ee	<i>E</i> >200
0.1	54.4	1.5 h	(<i>R</i>)-2a:	28.1	0.171	42.8%	>99% ee	Conv. 47.6%,
9th			(<i>S</i>)-1a:	26.9	0.220	55.1%	90.8% ee	<i>E</i> >200
10/1	51.0	2 h	(<i>R</i>)-2a:	20.9	0.127	31.8%	>99% ee	Conv. 48.8%,
Toth			(<i>S</i>)-1a:	20.1	0.165	41.1%	95.2% ee	<i>E</i> >200
(1 a)	50.0	2 h	(<i>R</i>)-2a:	31.1	0.191	47.7%	>99% ee	Conv. 50.0%,
a month"			(<i>S</i>)-1a:	27.0	0.225	50.3%	>99% ee	<i>E</i> >200
(50.0	2 h	(<i>R</i>)-2a:	27.5	0.169	41.8%	>99% ee	Conv. 48.8%,
6 months /			(<i>S</i>)-1a:	20.1	0.165	41.1%	95.2% ee	<i>E</i> >200
12 months	49.0	2 h	(<i>R</i>)-2a:	27.8	0.1693	42.3%	>99% ee	Conv. 50.0%,
b)			(<i>S</i>)-1a:	19.9	0.1629	40.7%	>99% ee	<i>E</i> >200
18 months	51.3	5 h	(<i>R</i>)-2a:	24.2	0.149	36.1%	>99% ee	Conv. 44.2%,
b)			(<i>S</i>)-1a:	22.0	0.180	44.0%	79.1% ee	E > 200
a b)	51.2	5 h	(<i>R</i>)-2a:	30.2	0.184	44.9%	98.5% ee	Conv. 50.2%,
2 years			(S)-1a:	20.6	0.1686	41.1%	99.3% ee	<i>E</i> >200

Table S7. Results of recyclable use experimentof Tz1-PS in [N_{221MEM}][Tf₂N].

^{a)}Stored at rt (ca. 25°C). ^{b)} Stored at 4°C in a refrigerator

S22

¹H NMR of **Tz1**

¹³C NMR of Tz1

S23

¹H NMR of **Tz2**

S24

¹H NMR of **Tz3**

References

[1] Y. Jeong, J-S. Ryu, J. Org. Chem. 2010, 75, 4183.

[2] N. Srivastava, M. Shukla, S. Saha, Indian J. Chem. 2010, 49A, 757.

[3] T. Itoh, Y. Matsushita, Y. Abe, S-H. Han, S. Wada, S. Hayase, M. Kawatsura, S. Takai, M.

Morimoto, Y. Hirose, Y. Chem. Eur. J. 2006, 12, 9228.

[4] R. Romeo, S. V. Giofre, C. Carnovale, A. Campisi, R. Parenti, L. Bandini, M. A. Chiacchio, *Bioorg. Med. Chem.* 2013, *21*, 7929.