Construction of the tetrahydroquinoline spiro skeleton via cascade [1,5]-hydride transfer-involved C(sp³)-H functionalization "on water"

Shuai Zhu, Chunqi Chen, Mingyan Xiao, Liping Yu, Liang Wang*, Jian Xiao*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. E-mail: chemjianxiao@163.com

Supporting Information

1. General Information	2
2. Experimental Procedures	2
3. Characterization of Products	3
4. ¹ H and ¹³ C-NMR Spectra	16
5. Crystallographic Data	52

1. General Information

Reagents were purchased from chemical companies. All the reactions were performed in sealed tube and monitored by TLC (0.2 mm silica gel-coated HSGF 254 plates). The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ or DMSO-d₆ solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d₆ (δ 2.54, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) were reported in ppm using solvent CDCl₃ (δ (ppm) = 77.16 ppm) as an internal standard. HRMS analyses were performed on a Waters XEVO QTOF mass spectrometer.

2. Experimental Procedures

To a 15 mL pressure tube equipped with a magnetic stirrer bar were added water (1 mL), 4-hydroxycoumarin **1** (0.15 mmol), 2-(pyrrolidin-1-yl)benzaldehyde **2** (0.1 mmol)¹. The resulting mixture was then stirred at room temperature (25 $^{\circ}$ C). Reaction was monitored by TLC till 2-(pyrrolidin-1-yl)benzaldehyde **2** was consumed up. Afterwards the mixture was extracted thrice with ethyl acetate (3×5 mL), and the combined organic phases were washed with brine, dried over MgSO₄, and filtered. The volatile was removed in vacuo and the residue was purified on silica gel column, eluated with the gradient of petroleum ether and ethyl acetate to afford the desired product **3**.

To a 15 mL pressure tube equipped with a magnetic stirrer bar were added water (1 mL), 1,3-carbonyl **4** (0.15 mmol), 2-(pyrrolidin-1-yl)benzaldehyde **2a** (0.1 mmol). The resulting mixture was then stirred at room temperature (25 $^{\circ}$ C). Reaction was monitored by TLC till 2-(pyrrolidin-1-yl)benzaldehyde **2a** was consumed up. Afterwards the mixture was extracted thrice with ethyl acetate (3×5 mL), and the combined organic phases were washed with brine, dried over MgSO₄, and filtered. The volatile was removed in vacuo and the residue was purified on silica gel column, eluated with the gradient of petroleum ether and ethyl acetate to afford the desired product **5**.

To a 15 mL pressure tube equipped with a magnetic stirrer bar were added water (1 mL), 2-fluorobenzaldehyde **6** (0.1 mmol), pyrrrolidine **7** (0.15 mmol). The resulting mixture was then stirred at room temperature (25 °C). Reaction was monitored by TLC till 2-fluorobenzaldehyde **6** was consumed up. Then **8** (0.15 mmol) was added to the mixture, and it was heated to 60 °C for 48 h. Afterwards the mixture was extracted thrice with ethyl acetate (3×5 mL), and the combined organic phases were washed with brine, dried over MgSO₄, and filtered. The volatile was removed in vacuo and the residue was purified on silica gel column, eluated with the gradient of petroleum ether and ethyl acetate to afford the desired product **9**.

3. Characterization of Products

1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3a).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 26.2 mg yellow was funrished. The isolated yield was 82% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.69 (td, J = 8.4, 1.6 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.17 (dd, J = 9.3, 6.0 Hz, 1H), 7.07 (d, J = 7.4 Hz, 1H), 6.68 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 3.88 (dd, J = 9.4, 5.6 Hz, 1H), 3.62 – 3.56 (m, 2H), 3.40 – 3.35 (m, 1H), 3.08 (d, J = 16.4 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.97 (ddd, J = 11.7, 8.8, 4.9 Hz, 2H), 1.68 – 1.61 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.66, 164.82, 155.19, 143.17, 137.28, 128.31, 127.53, 127.12, 124.90, 118.34, 117.63, 117.26, 116.22, 111.27, 63.82, 55.12, 47.47, 36.24, 28.02, 23.38.; **HRMS (ESI):** calcd. for C₂₀H₁₈NO₃ [M+H]⁺: 320.1287, found: 320.1286.

6'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3b).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 26.5 mg yellow was funrished. The isolated yield was 75% and the diastereoselectivity was 71:29.

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 – 7.99 (m, 1H), 7.70 (dd, *J* = 11.3, 4.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 6.53 (d, *J* = 8.2 Hz, 1H), 3.75 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.56 (t, *J* = 7.8 Hz, 1H), 3.43 (s, 1H), 3.39 (d, *J* = 8.8 Hz, 2H), 2.10 – 2.00 (m, 1H), 2.00 – 1.91 (m, 2H), 1.68 – 1.60 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 191.12, 164.05, 154.18, 143.33, 136.48, 132.90, 126.64, 126.25, 124.07, 117.40, 116.70, 116.09, 116.02, 108.78, 62.90,

54.41, 46.63, 32.09, 27.08, 22.33; **HRMS (ESI):** calcd. for $C_{20}H_{17}CINO_3$ [M+H]⁺: 354.0897, found: 354.0891.

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3c).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.5 mg yellow was funrished. The isolated yield was 78% and the diastereoselectivity was 71:29.

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (dd, J = 7.8, 1.5 Hz, 1H), 7.74 – 7.68 (m, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.05 (s, 1H), 6.52 (d, J = 8.7 Hz, 1H), 3.83 (dd, J = 9.4, 5.6 Hz, 1H), 3.59 – 3.52 (m, 2H), 3.37 – 3.30 (m, 1H), 3.02 (d, J = 16.6 Hz, 1H), 2.04 (ddd, J = 9.4, 8.6, 3.3 Hz, 1H), 1.95 (ddd, J = 13.9, 8.2, 4.7 Hz, 2H), 1.67 – 1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 191.27, 163.83, 154.12, 140.75, 136.47, 126.97, 126.29, 126.18, 124.06, 119.86, 119.10, 117.29, 116.68, 111.29, 63.06, 53.79, 46.61, 34.59, 27.02, 22.32; HRMS (ESI): calcd. for C₂₀H₁₇ClNO₃ [M+H]⁺: 354.0897, found: 354.0899.

8'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3d).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.5 mg yellow was funrished. The isolated yield was 78% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 7.99 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 8.4 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.25 – 7.19 (m, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.63 (dd, J = 8.0, 1.6 Hz, 1H), 6.57 (s, 1H), 3.88 (dd, J = 9.6, 5.4 Hz, 1H), 3.59 – 3.51 (m, 2H), 3.33 (dd, J = 15.8, 8.7 Hz, 1H), 3.05 (d, J = 16.4 Hz, 1H), 2.11 – 2.01 (m, 1H), 2.00 – 1.95 (m, 2H), 1.68 – 1.62 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 192.47, 164.70, 155.15, 144.06, 137.49, 133.15, 129.20, 127.22, 125.07, 118.25, 117.71, 116.69, 115.97, 111.05, 63.42, 54.66, 47.53, 36.03, 28.00, 23.41; **HRMS (ESI):** calcd. for C₂₀H₁₇ClNO₃ [M+H]⁺: 354.0897, found: 354.0895.

9'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3e).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 25.7 mg yellow was funrished. The isolated yield was 73% and the diastereoselectivity was 65:35.

¹**H NMR** (500 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.5 Hz,

1H), 7.27 (t, J = 10.2 Hz, 2H), 7.22 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.81 (t, J = 7.7 Hz, 1H), 4.32 (dd, J = 17.5, 8.7 Hz, 1H), 3.75 (t, J = 11.6 Hz, 2H), 3.41 (t, J = 10.2 Hz, 1H), 3.09 (d, J = 16.9 Hz, 1H), 2.15 (dt, J = 20.9, 10.6 Hz, 1H), 1.93 (d, J = 18.8 Hz, 2H), 1.82 – 1.74 (m, 1H); ¹³C **NMR** (125 MHz, CDCl₃) δ 192.50, 167.75, 155.55, 140.87, 137.56, 129.03, 127.26, 127.11, 125.47, 125.27, 122.49, 120.44, 119.02, 117.83, 69.26, 54.43, 53.21, 35.18, 28.30, 23.60; **HRMS (ESI):** calcd. for C₂₀H₁₇CINO₃ [M+H]⁺: 354.0897, found: 354.0896.

8'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3f).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 29.7 mg yellow was funrished. The isolated yield was 75% and the diastereoselectivity was 68:32.

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (dd, J = 7.8, 1.6 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 7.9 Hz, 1H), 6.77 (dd, J = 7.9, 1.8 Hz, 1H), 6.72 (d, J = 1.6 Hz, 1H), 3.87 (dd, J = 9.7, 5.5 Hz, 1H), 3.58 – 3.52 (m, 1H), 3.50 (d, J = 16.4 Hz, 1H), 3.36 – 3.29 (m, 1H), 3.03 (d, J = 16.4 Hz, 1H), 2.09 – 2.01 (m, 1H), 2.01 – 1.94 (m, 2H), 1.68 – 1.60 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 191.37, 163.68, 154.11, 143.25, 136.48, 128.48, 126.18, 124.05, 120.21, 117.81, 117.22, 116.67, 116.33, 112.85, 62.42, 53.59, 46.48, 34.90, 26.96, 22.36; **HRMS (ESI):** calcd. for C₂₀H₁₇BrNO₃ [M+H]⁺: 398.0392, found: 398.0396.

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline] -2,4-dione (3g).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 32.1 mg yellow was funrished. The isolated yield was 83% and the diastereoselectivity was 69:31.

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 1.2 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.79 (s, 1H), 3.85 (dd, J = 9.5, 5.5 Hz, 1H), 3.61 (td, J = 10.9, 5.9 Hz, 2H), 3.41 – 3.36 (m, 1H), 3.10 (d, J = 16.7 Hz, 1H), 2.06 (dt, J = 7.9, 6.6 Hz, 1H), 2.02 – 1.96 (m, 2H), 1.66 (ddd, J = 20.4, 11.0, 5.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.24, 164.86, 155.16, 143.13, 137.60, 129.85, 128.55, 127.26, 125.17, 122.24, 118.31, 117.76, 112.66, 107.61, 63.99, 54.63, 47.46, 35.67, 28.08, 23.33; HRMS (ESI): calcd. for C₂₁H₁₇F₃NO₃ [M+H]⁺: 388.1161, found: 388.1163.

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3h).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.9 mg yellow was funrished. The isolated yield was 83% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.11 (dt, J = 14.7, 6.7 Hz, 1H), 6.43 (t, J = 6.4 Hz, 1H), 6.40 (d, J = 8.3 Hz, 1H), 3.80 (dd, J = 9.2, 5.7 Hz, 1H), 3.59 (dt, J = 8.7, 5.4 Hz, 1H), 3.40 – 3.34 (m, 2H), 3.30 (d, J = 4.2 Hz, 1H), 2.08 – 2.00 (m, 1H), 2.00 – 1.92 (m, 2H), 1.68 – 1.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.40, 164.87, 162.00, 160.08, 155.18, 137.47, 127.84, 127.76, 127.23, 125.07, 118.37, 117.71, 106.94, 106.93, 102.93, 102.75, 63.61, 54.41, 47.74, 28.92, 28.91, 28.88, 28.87, 28.11, 23.33; HRMS (ESI): calcd for C₂₀H₁₈FNO₃[M+H]⁺:338.1192, found:338.1190.

8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3i).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 26.6 mg yellow was funrished. The isolated yield was 80% and the diastereoselectivity was 69:31.

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (dd, J = 7.8, 1.1 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.50 (d, J = 7.5 Hz, 1H), 6.44 (s, 1H), 3.87 (dd, J = 9.3, 5.5 Hz, 1H), 3.63 – 3.56 (m, 2H), 3.38 – 3.32 (m, 1H), 3.05 (d, J = 16.2 Hz, 1H), 2.32 (s, 3H), 2.07 – 1.99 (m, 1H), 1.96 (dd, J = 15.1, 6.8 Hz, 2H), 1.68 – 1.61 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.81, 164.87, 155.24, 143.07, 137.26, 136.51, 128.19, 127.15, 124.90, 118.40, 117.66, 117.26, 115.39, 112.06, 63.78, 55.34, 47.49, 36.22, 28.05, 23.44, 21.65; HRMS (ESI): calcd. for C₂₁H₂₀NO₃ [M+H]⁺: 344.1443, found: 344.1447.

6a',6b',7',8',9',10',10a',11'-octahydro-5'H-spiro[chromane-3,6'-isoindolo[2,1-a]quinoline]-2,4 -dione (3k).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 32.8 mg yellow was funrished. The isolated yield was 88% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 8.04 – 7.96 (m, 1H), 7.71 – 7.66 (m, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.19 (dd, J = 18.5, 8.0 Hz, 2H), 6.98 (d, J = 7.3 Hz, 1H), 6.60 (dd, J = 12.4, 5.3 Hz, 2H), 3.98 – 3.95 (m, 1H), 3.73 – 3.65 (m, 1H), 3.40 (t, J = 11.9 Hz, 1H), 3.11 (dt, J = 16.2, 12.5 Hz, 1H), 2.91 (dt, J = 10.4, 8.2 Hz, 1H), 2.00 – 1.92 (m, 1H), 1.81 (dtd, J = 18.4, 7.1, 3.6 Hz, 1H), 1.77 – 1.67 (m, 2H), 1.63 (t, J = 16.1 Hz, 1H), 1.25 (ddt, J = 16.1, 6.7, 6.0 Hz, 3H), 1.13 (dtd, J = 24.1, 11.8, 3.0 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 193.21, 164.11, 155.28, 143.61, 137.32, 128.29, 128.13, 127.17, 125.01, 117.97, 117.71, 116.39, 115.25, 110.17, 67.55, 53.14, 52.08, 46.71, 43.21, 39.23, 29.15, 28.59, 25.54, 25.48; **HRMS (ESI):** calcd. for C₂₄H₂₄NO₃ [M+H]⁺:374.1756, found: 374.1761.

6-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 28.3 mg yellow was funrished. The isolated yield was 84% and the diastereoselectivity was 68:32.

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (dd, *J* = 7.7, 3.0 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.21 (dd, *J* = 9.0, 4.0 Hz, 1H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 8.1 Hz, 1H), 3.85 (dd, *J* = 9.2, 5.5 Hz, 1H), 3.58 (dd, *J* = 12.6, 9.0 Hz, 2H), 3.39 – 3.34 (m, 1H), 3.07 (d, *J* = 16.4 Hz, 1H), 2.03 (ddd, *J* = 9.2, 8.7, 3.2 Hz, 1H), 2.00 – 1.94 (m, 2H), 1.66 – 1.59 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.07, 164.40, 160.08, 158.12, 151.36, 143.09, 128.36, 127.66, 124.75, 123.97, 119.68, 118.16, 116.39, 111.40, 64.07, 54.90, 47.52, 36.32, 28.06, 23.39; **HRMS (ESI):** calcd. for C₂₀H₁₇FNO₃ [M+H]⁺:338.1192, found: 338.1190.

6-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3m).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 28.2 mg yellow was funrished. The isolated yield was 80% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (d, J = 2.1 Hz, 1H), 7.61 (dd, J = 8.7, 2.2 Hz, 1H), 7.17 (dd, J = 10.2, 6.1 Hz, 2H), 7.06 (d, J = 7.3 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 3.85 (dd, J = 9.1, 5.4 Hz, 1H), 3.58 (dd, J = 13.0, 8.5 Hz, 2H), 3.39 – 3.31 (m, 1H), 3.06 (d, J = 16.4 Hz, 1H), 2.02 (dd, J = 14.8, 5.8 Hz, 1H), 1.95 (dt, J = 14.6, 7.3 Hz, 2H), 1.64 – 1.57 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 191.73, 164.17, 153.59, 143.04, 137.06, 130.61, 128.35, 127.66, 126.51, 119.39, 119.23, 118.09, 116.39, 111.38, 64.03, 55.14, 47.50, 36.29, 28.05, 23.38; HRMS (ESI): calcd. for C₂₀H₁₇ClNO₃ [M+H]⁺:354.0897, found: 354.0895.

6-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (3n).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 30.9 mg yellow was funrished. The isolated yield was 78% and the diastereoselectivity was 68:32.

¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (d, J = 2.4 Hz, 1H), 7.75 (dd, J = 8.7, 2.4 Hz, 1H), 7.16 (dd, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.68 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 6.61 (d, J = 12.6, 4.8 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 7.10 (d,

= 8.1 Hz, 1H), 3.84 (dd, J = 9.2, 5.5 Hz, 1H), 3.62 – 3.55 (m, 2H), 3.35 (dd, J = 13.6, 6.4 Hz, 1H), 3.06 (d, J = 16.4 Hz, 1H), 2.03 (td, J = 9.3, 3.4 Hz, 1H), 2.00 – 1.95 (m, 2H), 1.65 – 1.57 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 191.59, 164.11, 154.07, 143.03, 139.88, 129.59, 128.34, 127.65, 119.65, 118.08, 116.38, 111.37, 64.02, 55.17, 47.49, 36.28, 28.05, 23.37; **HRMS (ESI):** calcd. for C₂₀H₁₇BrNO₃ [M+H]⁺:398.0392, found: 398.0394.

6-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione (30).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 26.9 mg yellow was funrished. The isolated yield was 81% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.54 – 7.50 (m, 1H), 7.24 – 7.14 (m, 2H), 7.11 (d, J = 7.4 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 3.90 (dd, J = 9.3, 5.6 Hz, 1H), 3.63 (dd, J = 15.6, 5.3 Hz, 2H), 3.43 – 3.40 (m, 1H), 3.10 (d, J = 16.4 Hz, 1H), 2.45 (s, 3H), 2.05 (dd, J = 13.5, 6.9 Hz, 1H), 2.02 – 1.97 (m, 2H), 1.69 (dd, J = 13.7, 6.4 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.84, 165.11, 153.30, 143.20, 138.21, 134.81, 128.32, 127.50, 126.74, 118.48, 117.44, 117.06, 116.20, 111.26, 63.84, 54.99, 47.49, 36.18, 28.05, 23.40, 20.61; **HRMS** (**ESI**): calcd. for C₂₁H₂₀NO₃ [M+H]⁺: 344.1443, found: 344.1438.

1,2,3,3a-tetrahydro-2'H,5H-spiro[pyrrolo[1,2-a]quinoline-4,3'-quinoline]-2',4'(1'H)-dione (5a).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.9 mg yellow was funrished. The isolated yield was 88% and the diastereoselectivity was 57:43.

¹**H NMR** (500 MHz, CDCl₃) δ 10.00 (s, 1H), 7.95 (dd, J = 7.9, 1.0 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.22 – 7.18 (m, 1H), 7.13 (d, J = 7.3 Hz, 1H), 7.03 (d, J = 7.3 Hz, 1H), 6.62 (dd, J = 8.6, 3.3 Hz, 3H), 3.97 (dd, J = 9.4, 5.4 Hz, 1H), 3.65 – 3.59 (m, 1H), 3.49 (d, J = 16.1 Hz, 1H), 3.27 (dd, J = 15.9, 8.7 Hz, 1H), 3.01 (d, J = 8.1 Hz, 1H), 1.97 (t, J = 6.5 Hz, 2H), 1.89 (td, J = 7.7, 3.7 Hz, 1H), 1.62 (dd, J = 14.7, 9.7 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 195.92, 171.11, 144.17, 141.22, 136.35, 128.18, 127.43, 127.18, 123.39, 119.25, 118.55, 116.30, 115.91, 110.85, 64.07, 54.36, 47.93, 37.32, 27.71, 23.71; **HRMS (ESI**): calcd for C₂₀H₁₉N₂O₂ [M+H]⁺:319.1447, found: 319.1442.

1'-methyl-1,2,3,3a-tetrahydro-2'H,5H-spiro[pyrrolo[1,2-a]quinoline-4,3'-quinoline]-2',4'(1'H)-dione (5b).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 29.5 mg yellow was funrished. The isolated yield was 89% and the diastereoselectivity was 52:48.

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (dd, J = 7.8, 1.6 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.18 (d, J = 4.8 Hz, 1H), 7.15 (d, J = 3.3 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 6.64 (t, J = 7.7 Hz, 1H), 6.60 (d, J = 8.3 Hz, 2H), 4.10 (dd, J = 9.3, 6.3 Hz, 1H), 3.58 (dd, J = 8.2, 3.5 Hz, 1H), 3.55 (s, 3H), 3.52 (s, 1H), 3.36 – 3.32 (m, 1H), 2.99 (d, J = 8.0 Hz, 1H), 1.94 (ddd, J = 11.5, 9.8, 6.1 Hz, 3H), 1.60 – 1.55 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.75, 168.66, 143.75, 142.47, 135.51, 127.99, 127.77, 127.15, 122.85, 119.97, 118.28, 115.64, 114.61, 110.84, 63.71, 54.16, 47.62, 36.91, 29.28, 27.37, 23.51; HRMS (ESI): calcd for C₂₁H₂₁N₂O₂ [M+H]⁺:333.1603, found: 333.1602.

1',2',3',3a'-tetrahydro-5'H-spiro[indene-2,4'-pyrrolo[1,2-a]quinoline]-1,3-dione (5c).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 26.6 mg white was funrished. The isolated yield was 88%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 – 7.98 (m, 1H), 7.89 – 7.79 (m, 3H), 7.18 (t, J = 7.7 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 6.65 – 6.57 (m, 2H), 3.88 (dd, J = 10.2, 5.6 Hz, 1H), 3.61 – 3.56 (m, 1H), 3.33 – 3.27 (m, 2H), 2.81 (d, J = 16.1 Hz, 1H), 2.00 – 1.89 (m, 2H), 1.88 – 1.81 (m, 1H), 1.34 – 1.24 (m, 1H); ¹³C **NMR** (125 MHz, CDCl₃) δ 202.70, 199.68, 143.86, 142.49, 141.34, 135.90, 135.39, 128.54, 127.75, 123.11, 123.00, 117.90, 115.59, 110.70, 61.12, 51.43, 47.41, 34.25, 28.08, 23.77; **HRMS (ESI**): calcd for C₂₀H₁₈NO₂[M+H]⁺:304.1338, found: 304.1339.

2',2'-dimethyl-1,2,3,3a-tetrahydro-5H-spiro[pyrrolo[1,2-a]quinoline-4,5'-[1,3]dioxane]-4',6'-dione (5d).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 28.0 mg white was funrished. The isolated yield was 93%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.17 (t, J = 7.7 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 6.66 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 3.96 (dd, J = 8.8, 6.3 Hz, 1H), 3.62 (td, J = 8.5, 2.6 Hz, 1H), 3.55 (d, J = 16.2 Hz, 1H), 3.30 (dd, J = 16.0, 8.7 Hz, 1H), 3.13 (d, J = 16.3 Hz, 1H), 2.19 (dtd, J = 9.3, 6.7, 2.8 Hz, 1H), 2.08 – 1.90 (m, 2H), 1.78 (s, 3H), 1.75 (s, 3H), 1.67 (dt, J = 19.7, 8.9 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.10, 164.11, 143.16, 128.25, 127.81, 116.97, 116.11, 111.52, 104.73, 64.68, 47.89, 47.30, 36.52, 30.01, 28.48, 28.15, 23.17 ; **HRMS** (**ESI**): calcd for C₁₇H₂₀NO₄[M+H]⁺:302.1392, found: 302.1387.

4,4-dimethyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione (5e).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 24.0 mg white

was funrished. The isolated yield was 81%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.10 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 7.3 Hz, 1H), 6.51 (t, J = 7.3 Hz, 1H), 6.47 (d, J = 8.1 Hz, 1H), 4.02 (dd, J = 10.3, 5.9 Hz, 1H), 3.53 (t, J = 8.2 Hz, 1H), 3.27 – 3.19 (m, 1H), 3.12 (q, J = 15.4 Hz, 2H), 2.89 (d, J = 15.1 Hz, 1H), 2.76 (d, J = 14.6 Hz, 1H), 2.48 (dd, J = 15.1, 2.6 Hz, 1H), 2.19 (dd, J = 14.6, 2.6 Hz, 1H), 2.10 – 2.04 (m, 2H), 2.03 – 1.93 (m, 1H), 1.73 (qd, J = 10.9, 7.3 Hz, 1H), 1.15 (s, 3H), 0.90 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 209.44, 205.07, 144.40, 128.45, 127.94, 115.84, 114.69, 110.70, 59.93, 59.85, 52.38, 52.16, 47.86, 40.78, 30.63, 30.35, 27.25, 26.70, 24.34; **HRMS (ESI)**: calcd for C₁₉H₂₄NO₄[M+H]⁺:298.1807, found: 298.1803.

1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione (5f).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 15.6 mg white was funrished. The isolated yield was 58%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.11 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 7.3 Hz, 1H), 6.53 (t, J = 7.4 Hz, 1H), 6.49 (d, J = 8.2 Hz, 1H), 3.97 (dd, J = 10.1, 6.0 Hz, 1H), 3.54 (dd, J = 10.2, 6.1 Hz, 1H), 3.24 (ddd, J = 15.3, 8.9, 6.8 Hz, 1H), 3.12 (s, 2H), 2.85 (ddd, J = 16.1, 10.4, 5.7 Hz, 1H), 2.72 (ddd, J = 16.2, 10.4, 6.1 Hz, 1H), 2.61 (ddd, J = 16.2, 8.2, 3.0 Hz, 1H), 2.39 (dt, J = 15.8, 5.4 Hz, 1H), 2.18 – 2.09 (m, 1H), 2.01 (qdd, J = 12.1, 9.6, 5.2 Hz, 3H), 1.91 – 1.81 (m, 1H), 1.75 – 1.63 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 209.97, 205.26, 144.36, 128.32, 128.04, 116.10, 114.82, 110.75, 60.86, 60.61, 47.88, 39.88, 38.98, 38.81, 27.37, 24.25, 17.45; **HRMS** (**ESI**): calcd for C₁₇H₂₀NO₂[M+H]⁺:270.1494, found: 270.1498.

1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1H,3H)-t rione (5g).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.1 mg white was funrished. The isolated yield was 95%.

¹**H NMR** (500 MHz, DMSO) δ 11.47 (s, 1H), 11.19 (s, 1H), 7.06 – 6.94 (m, 2H), 6.56 – 6.47 (m, 2H), 3.60 (dd, *J* = 8.6, 6.4 Hz, 1H), 3.50 – 3.43 (m, 1H), 3.24 (d, *J* = 16.6 Hz, 1H), 3.17 – 3.05 (m, 2H), 2.08 – 2.00 (m, 1H), 1.93 (dd, *J* = 15.5, 7.9 Hz, 2H), 1.55 (dt, *J* = 18.0, 9.0 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 172.64, 169.27, 150.73, 143.85, 128.27, 126.99, 120.04, 115.79, 111.45, 63.30, 48.49, 47.88, 34.97, 27.88, 23.20; **HRMS (ESI)**: calcd for C₁₅H₁₆N₃O₃[M+H]⁺:286.1192, found: 286.1197.

1,3-dimethyl-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2, 4,6(1H,3H)-trione (5h).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.5 mg white was funrished. The isolated yield was 88%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.16 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.66 (t, J = 7.4 Hz, 1H), 6.60 (d, J = 8.1 Hz, 1H), 3.91 (dd, J = 9.1, 6.0 Hz, 1H), 3.62 – 3.54 (m, 2H), 3.38 (s, 3H), 3.33 (dd, J = 16.6, 8.1 Hz, 1H), 3.22 (s, 3H), 3.01 (d, J = 16.3 Hz, 1H), 2.06 (dt, J = 17.3, 5.7 Hz, 1H), 2.01 – 1.94 (m, 2H), 1.52 – 1.42 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.83, 166.86, 151.23, 143.27, 128.10, 127.56, 118.21, 116.22, 111.18, 63.98, 49.04, 47.76, 37.20, 29.07, 28.35, 28.01, 23.26; **HRMS** (**ESI**): calcd for C₁₇H₂₀N₃O₃[M+H]⁺:314.1505, found:314.1506.

3-phenyl-1',2',3',3a'-tetrahydro-5H,5'H-spiro[isoxazole-4,4'-pyrrolo[1,2-a]quinolin]-5-one (5i).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 14.9 mg white was funrished. The isolated yield was 47% and the diastereoselectivity was 69:31.

¹**H NMR** (500 MHz, CDCl₃) δ 7.71 (dd, J = 5.3, 3.3 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.11 (d, J = 7.9 Hz, 1H), 7.08 (d, J = 0.7 Hz, 1H), 7.07 (s, 2H), 7.04 (d, J = 7.9 Hz, 1H), 6.69 (q, J = 8.0 Hz, 1H), 6.21 (d, J = 8.1 Hz, 1H), 3.72 (dd, J = 9.3, 6.3 Hz, 1H), 3.67 – 3.53 (m, 2H), 3.31 – 3.22 (m, 2H), 2.60 (dd, J = 16.7, 8.0 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.94 – 1.88 (m, 2H), 1.61 (dd, J = 10.8, 7.8 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 179.37, 169.58, 143.01, 130.66, 129.34, 128.25, 128.00, 127.64, 127.25, 116.83, 116.68, 111.32, 62.40, 50.62, 46.33, 34.76, 27.52, 22.89; **HRMS** (**ESI**): calcd for C₂₀H₁₉N₂O₂[M+H]⁺:319.1447, found:319.1443.

7'-nitro-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1 H,3H)-trione (9b).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 31.3 mg yellow was funrished. The isolated yield was 95%.

¹**H NMR** (500 MHz, DMSO) δ 11.63 (s, 1H), 11.36 (s, 1H), 7.98 (dd, J = 9.1, 2.6 Hz, 1H), 7.91 (s, 1H), 6.60 (d, J = 9.1 Hz, 1H), 3.85 (dd, J = 10.3, 5.8 Hz, 1H), 3.68 (t, J = 8.9 Hz, 1H), 3.39 (s, 1H), 3.29 – 3.16 (m, 2H), 2.13 – 1.92 (m, 3H), 1.53 (qd, J = 11.3, 7.5 Hz, 1H).¹³**C NMR** (125 MHz, DMSO) δ 171.98, 168.94, 150.48, 149.17, 135.77, 124.60, 124.30, 120.04, 110.09, 63.08, 48.22, 47.25, 35.14, 27.71, 23.06; **HRMS (ESI**): calcd for C₁₅H₁₅N₄O₅[M+H]⁺:331.1042, found: 331.1041.

1,3-dimethyl-7'-nitro-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]qui noline]-2,4,6(1H,3H)-trione (9c).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 32.2 mg yellow was funrished. The isolated yield was 90%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.13 – 8.08 (m, 1H), 7.96 (s, 1H), 6.54 (d, J = 9.1 Hz, 1H), 4.07 (dd, J = 10.2, 5.4 Hz, 1H), 3.72 (t, J = 8.8 Hz, 1H), 3.53 (d, J = 16.3 Hz, 1H), 3.41 (s, 3H), 3.37 (d, J = 9.4 Hz, 1H), 3.23 (s, 3H), 3.09 (d, J = 16.3 Hz, 1H), 2.11 (dd, J = 11.1, 5.9 Hz, 2H), 2.04 (dd, J = 21.9, 16.8 Hz, 1H), 1.52 – 1.43 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 170.00, 166.46, 150.68, 148.25, 136.93, 125.04, 124.59, 117.53, 109.70, 63.48, 47.99, 47.83, 37.43, 29.30, 28.47, 27.78, 23.19; **HRMS (ESI**): calcd for C₁₇H₁₉N₄O₅[M+H]⁺:359,1355, found: 359,1354.

7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[indene-2,4'-pyrrolo[1,2-a]quinoline]-1,3-dione (9d).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 31.3 mg yellow was funrished. The isolated yield was 90%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.11 (dd, J = 9.1, 2.4 Hz, 1H), 8.06 – 8.01 (m, 1H), 7.94 (s, 1H), 7.92 – 7.85 (m, 3H), 6.54 (d, J = 9.1 Hz, 1H), 3.97 (dd, J = 10.9, 5.5 Hz, 1H), 3.69 (t, J = 9.1 Hz, 1H), 3.38 (td, J = 10.1, 7.2 Hz, 1H), 3.28 (d, J = 16.2 Hz, 1H), 2.87 (d, J = 16.3 Hz, 1H), 2.07 (dt, J = 12.9, 6.6 Hz, 1H), 2.00 (ddd, J = 18.7, 7.8, 4.4 Hz, 1H), 1.89 (dd, J = 11.8, 5.9 Hz, 1H), 1.37 – 1.27 (m, 1H).¹³**C NMR** (125 MHz, CDCl₃) δ 201.12, 199.09, 148.79, 142.10, 141.10, 136.65, 136.44, 136.03, 125.21, 125.06, 123.55, 123.31, 117.69, 109.43, 61.32, 50.36, 47.74, 33.87, 27.85, 23.57; **HRMS (ESI**): calcd for C₂₀H₁₇N₂O₄[M+H]⁺:349.1188, found: 349.1186.

7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione (9e).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 27.3 mg yellow was funrished. The isolated yield was 87%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.04 (dd, J = 9.1, 2.5 Hz, 1H), 7.90 (s, 1H), 6.42 (d, J = 9.2 Hz, 1H), 4.04 (dd, J = 10.8, 5.8 Hz, 1H), 3.63 (t, J = 9.0 Hz, 1H), 3.41 – 3.30 (m, 1H), 3.21 (d, J = 15.7 Hz, 1H), 3.09 (d, J = 15.7 Hz, 1H), 2.90 (ddd, J = 16.4, 10.8, 5.7 Hz, 1H), 2.77 (ddd, J = 16.5, 10.8, 6.0 Hz, 1H), 2.71 – 2.64 (m, 1H), 2.45 (dt, J = 16.1, 5.2 Hz, 1H), 2.18 (ddt, J = 19.2, 13.5, 6.4 Hz, 2H), 2.03 (qdd, J = 12.2, 10.5, 6.8 Hz, 2H), 1.93 – 1.82 (m, 1H), 1.70 (qd, J = 11.1, 7.1 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 208.58, 205.08, 148.93, 135.92, 125.76, 124.85, 115.75, 109.48, 60.99, 60.19, 48.03, 39.04, 38.76, 38.73, 27.05, 23.88, 17.32; **HRMS (ESI)**: calcd for C₁₇H₁₉N₂O₄[M+H]⁺:315.1345, found: 315.1346.

4,4-dimethyl-7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoli ne]-2,6-dione (9f).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 29.8 mg yellow was funrished. The isolated yield was 87%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (dd, J = 9.1, 2.4 Hz, 1H), 7.90 (s, 1H), 6.40 (d, J = 9.2 Hz, 1H), 4.09 (dd, J = 10.7, 5.9 Hz, 1H), 3.62 (t, J = 9.1 Hz, 1H), 3.36 (td, J = 10.4, 6.9 Hz, 1H), 3.28 (d, J = 15.6 Hz, 1H), 3.04 (d, J = 15.5 Hz, 1H), 2.94 (d, J = 15.1 Hz, 1H), 2.83 (d, J = 14.8 Hz, 1H), 2.53 (dd, J = 15.1, 2.6 Hz, 1H), 2.24 (dd, J = 14.8, 2.5 Hz, 1H), 2.14 (ddd, J = 17.4, 12.6, 6.6 Hz, 2H), 2.09 – 1.97 (m, 1H), 1.76 (qd, J = 11.4, 7.3 Hz, 1H), 1.19 (s, 3H), 0.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.15, 204.99, 148.96, 135.78, 125.94, 124.81, 115.44, 109.44, 60.35, 59.36, 52.06, 51.89, 48.05, 39.87, 30.75, 30.37, 26.86, 26.51, 23.97; HRMS (ESI): calcd for C₁₉H₂₂N₂O₄[M+H]⁺:343.1658, found:343.1655.

7'-nitro-3-phenyl-1',2',3',3a'-tetrahydro-5H,5'H-spiro[isoxazole-4,4'-pyrrolo[1,2-a]quinolin]-5-one (9g).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 31.9 mg yellow was funrished. The isolated yield was 88% and the diastereoselectivity was 19:1.

¹**H NMR** (500 MHz, DMSO) δ 8.06 (dd, J = 9.1, 2.6 Hz, 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 6.71 (d, J = 9.2 Hz, 1H), 4.33 (dd, J = 10.5, 5.6 Hz, 1H), 3.74 (t, J = 9.1 Hz, 1H), 3.66 (d, J = 16.3 Hz, 1H), 3.53 – 3.46 (m, 1H), 3.28 (td, J = 10.1, 7.2 Hz, 1H), 2.12 – 2.03 (m, 2H), 1.97 (dt, J = 22.0, 9.5 Hz, 1H), 1.42 – 1.26 (m, 1H); ¹³C NMR (125 MHz, DMSO) δ 175.36, 167.40, 149.12, 136.32, 132.45, 129.97, 127.95, 127.02, 125.42, 125.19, 116.48, 110.49, 60.15, 48.61, 48.25, 32.57, 28.41, 22.91; HRMS (ESI): calcd for C₂₀H₁₈N₃O₄[M+H]⁺:364.1297, found: 364.1299.

8-nitro-2,3,4,4a-tetrahydro-1H,2'H,6H-spiro[pyrido[1,2-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione (9h).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 31.3 mg yellow was funrished. The isolated yield was 91%.

¹**H NMR** (500 MHz, DMSO) δ 7.99 – 7.76 (m, 2H), 6.99 (d, J = 9.4 Hz, 1H), 4.21 (d, J = 13.5 Hz, 1H), 3.76 (d, J = 11.5 Hz, 1H), 3.37 (d, J = 17.0 Hz, 1H), 3.06 (dd, J = 33.2, 14.9 Hz, 2H), 1.78 (d, J = 12.2 Hz, 1H), 1.66 – 1.54 (m, 2H), 1.51 (d, J = 12.5 Hz, 1H), 1.45 – 1.33 (m, 1H), 1.23 (tt, J = 12.3, 6.0 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 171.72, 169.76, 150.96, 150.12, 136.82, 124.59, 123.88, 122.13, 111.93, 60.95, 51.93, 48.93, 29.45, 27.25, 24.23, 23.74; **HRMS** (**ESI**): calcd for $C_{16}H_{17}N_4O_5[M+H]^+:345.1199$, found: 345.1198.

3-nitro-6a,7,8,9,10,11-hexahydro-2'H,5H-spiro[azepino[1,2-a]quinoline-6,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione (9i).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 32.6 mg yellow was funrished. The isolated yield was 91%.

¹**H NMR** (500 MHz, DMSO) δ 7.95 (s, 1H), 7.91 (dd, J = 9.2, 2.5 Hz, 1H), 6.73 (d, J = 9.3 Hz, 1H), 3.97 (dd, J = 10.9, 4.0 Hz, 1H), 3.88 (dd, J = 14.8, 4.8 Hz, 1H), 3.46 (d, J = 17.8 Hz, 1H), 3.32 – 3.23 (m, 1H), 2.93 (d, J = 17.8 Hz, 1H), 1.92 (dd, J = 10.2, 4.6 Hz, 1H), 1.66 – 1.57 (m, 2H), 1.57 – 1.48 (m, 2H), 1.44 – 1.36 (m, 1H), 1.36 – 1.28 (m, 1H), 1.24 (d, J = 4.8 Hz, 1H); ¹³C NMR (125 MHz, DMSO) δ 171.80, 170.71, 151.54, 149.23, 136.46, 124.76, 123.87, 120.97, 110.38, 63.62, 51.74, 50.80, 30.75, 26.93, 25.68, 25.33, 25.10; **HRMS (ESI**): calcd for C₁₇H₁₉N₄O₅[M+H]⁺:359.1355, found: 359.1357.

2,4-dimethyl-8-nitro-2,3,4,4a-tetrahydro-1H,2'H,6H-spiro[pyrido[1,2-a]quinoline-5,5'-pyrim idine]-2',4',6'(1'H,3'H)-trione (9j).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 32.7 mg yellow was funrished. The isolated yield was 88% and the diastereoselectivity was 90:8:2.

¹**H NMR** (500 MHz, DMSO) δ 11.77 (s, 1H), 11.50 (s, 1H), 7.96 (dd, J = 9.2, 2.7 Hz, 1H), 7.81 (d, J = 2.5 Hz, 1H), 6.91 (d, J = 9.3 Hz, 1H), 4.11 (d, J = 12.9 Hz, 1H), 3.82 (d, J = 10.1 Hz, 1H), 3.53 (d, J = 14.8 Hz, 1H), 3.37 (d, J = 2.7 Hz, 3H), 2.87 – 2.77 (m, 2H), 2.54 – 2.48 (m, 1H), 1.79 – 1.69 (m, 2H), 1.69 – 1.61 (m, 1H), 0.93 (d, J = 6.5 Hz, 3H), 0.69 (d, J = 6.4 Hz, 3H);¹³C NMR (125MHz, DMSO) δ 172.02, 168.57, 152.10, 150.11, 135.96, 125.38, 124.23, 120.58, 111.41, 65.14, 55.82, 53.64, 37.43, 33.09, 30.54, 19.26, 18.78; **HRMS (ESI**): calcd for C₁₈H₂₁N₄O₅[M+H]⁺:373.1512, found: 373.1512.

1',2'-dibenzyl-6'-nitro-1',4'-dihydro-2H,2'H-spiro[pyrimidine-5,3'-quinoline]-2,4,6(1H,3H)-tr ione (9k).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 42.4 mg yellow was funrished. The isolated yield was 93%.

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (s, 1H), 8.03 (dd, J = 9.2, 2.4 Hz, 1H), 7.98 (s, 1H), 7.87 (s, 1H), 7.36 (t, J = 7.3 Hz, 1H), 7.33 – 7.27 (m, 5H), 7.06 (t, J = 6.2 Hz, 4H), 6.74 (d, J = 9.2 Hz, 1H), 4.88 (s, 1H), 4.76 (d, J = 16.9 Hz, 1H), 4.22 (d, J = 17.0 Hz, 1H), 3.45 (d, J = 17.0 Hz, 1H), 3.32 (d, J = 17.0 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO) δ 171.72, 169.01, 150.72, 150.02, 137.75, 137.48, 137.32, 129.05, 128.95, 128.86, 127.92, 127.45, 126.57, 124.27, 123.88, 122.42, 110.86, 66.91, 54.09, 53.07, 26.02; **HRMS (ESI**): calcd for C₂₆H₂₃N₄O₅[M+H]⁺:457.1512, found: 457.1512.

2',4'-dimethyl-8'-nitro-1',2',4',4a'-tetrahydro-2H,6'H-spiro[pyrimidine-5,5'-[1,4]oxazino[4,3-a]quinoline]-2,4,6(1H,3H)-trione(11).

Via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 34.8 mg yellow was funrished. The isolated yield was 93%.

¹**H NMR** (500 MHz, DMSO) δ 11.89 (s, 1H), 11.58 (s, 1H), 7.98 (dd, J = 9.2, 2.6 Hz, 1H), 7.84 (d, J = 2.1 Hz, 1H), 7.04 (d, J = 9.4 Hz, 1H), 4.30 (d, J = 12.3 Hz, 1H), 3.93 (d, J = 9.0 Hz, 1H), 3.66 – 3.57 (m, 2H), 3.54 (dt, J = 12.8, 6.4 Hz, 1H), 2.99 (dd, J = 13.6, 10.8 Hz, 1H), 2.88 (d, J = 14.9 Hz, 1H), 1.17 (d, J = 6.1 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H); ¹³C **NMR** (125 MHz, DMSO) δ 171.60, 168.19, 150.94, 149.92, 136.21, 125.18, 124.52, 119.58, 111.19, 72.60, 71.57, 62.95, 55.37, 53.22, 51.55, 37.48, 18.96, 18.65; **HRMS (ESI**): calcd for C₁₇H₁₉N₄O₆[M+H]⁺:375.1305, found: 375.1306.

1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione-1',1',3a',5 '-d4(13)

The deuterated substrate was synthesized according to the reference 1. The deuterated substrate (0.05 mmol) was subjected to the optimal condition and the product was purified via flash chromatography with a gradient of petroleum ether/EtOAc from 50/1 to 10/1, 7.1 mg yellow was funrished. The isolated yield was 44% and the diastereoselectivity was 70:30.

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (dd, J = 7.8, 1.6 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.37 – 7.32 (m, 1H), 7.24 (d, J = 8.3 Hz, 1H), 7.23 – 7.17 (m, 1H), 7.10 (dd, J = 7.4, 0.8 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 3.61 (s, 0.5H), 3.09 (s, 0.5H), 2.08 – 2.02 (m, 1H), 2.01 – 1.96 (m, 2H), 1.69 – 1.66 (m, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.79, 164.90, 155.24, 143.29, 137.33, 128.40, 128.33, 127.62, 127.17, 124.95, 118.39, 117.70, 116.24, 111.31, 54.97(t, J_{C-D} =21.0Hz), 47.01(m), 35.92(t, J_{C-D} =21.0Hz), 27.95, 23.24. **HRMS (ESI):** calcd. for C₂₀H₁₈NO₃ [M+H]⁺: 324.1538, found: 324.1535.

¹H and ¹³C Spectra

6'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **3b**

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **3c**

8'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione 3d

9'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **3e**

 $\label{eq:stars} 8'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione~{\bf 3f}$

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-di one **3g**

 $\label{eq:constraint} 6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione~~\textbf{3h}$

6a',6b',7',8',9',10',10a',11'-octahydro-5'H-spiro[chromane-3,6'-isoindolo[2,1-a]quinoline]-2,4-dione **3k**

 $\label{eq:constraint} 6-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione~\columnwidth{\textbf{3l}}$

6-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **3m**

6-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **3n**

6-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione **30**

1,2,3,3a-tetrahydro-2'H,5H-spiro[pyrrolo[1,2-a]quinoline-4,3'-quinoline]-2',4'(1'H)-dione 5a

1'-methyl-1,2,3,3a-tetrahydro-2'H,5H-spiro[pyrrolo[1,2-a]quinoline-4,3'-quinoline]-2',4'(1'H)-dion e **5b**

4.0 3.5 f1 (ppm)

1.004

2.5

3.0

2.0

1.134

1.0

0.5

1.5

^{9,9}

6.0

5.5

5. **O**

4.5

14.00 F 16.00

°° 0.96 4 2.88 1

7.5

-0.5

0. 0

2',2'-dimethyl-1,2,3,3a-tetrahydro-5H-spiro[pyrrolo[1,2-a]quinoline-4,5'-[1,3]dioxane]-4',6'-dione **5d**

4,4-dimethyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione **5e**

 $1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione~{\bf 5f}$

1,3-dimethyl-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1 H,3H)-trione **5g**

1,3-dimethyl-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1 H,3H)-trione **5h**

 $\label{eq:2.1} 3-phenyl-1',2',3',3a'-tetrahydro-5H,5'H-spiro[isoxazole-4,4'-pyrrolo[1,2-a]quinolin]-5-one~{\bf 5i}$

7'-nitro-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1H,3H) -trione **9b**

1,3-dimethyl-7'-nitro-1',2',3',3a'-tetrahydro-2H,5'H-spiro[pyrimidine-5,4'-pyrrolo[1,2-a]quinoline]-2,4,6(1H,3H)-trione **9c**

7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[indene-2,4'-pyrrolo[1,2-a]quinoline]-1,3-dione **9d**

7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,6-dione 9e

4,4-dimethyl-7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2, 6-dione **9f**

7'-nitro-3-phenyl-1',2',3',3a'-tetrahydro-5H,5'H-spiro[isoxazole-4,4'-pyrrolo[1,2-a]quinolin]-5-one **9g**

8-nitro-2,3,4,4a-tetrahydro-1H,2'H,6H-spiro[pyrido[1,2-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3' H)-trione **9h**

3-nitro-6a,7,8,9,10,11-hexahydro-2'H,5H-spiro[azepino[1,2-a]quinoline-6,5'-pyrimidine]-2',4',6'(1' H,3'H)-trione **9i**

2,4-dimethyl-8-nitro-2,3,4,4a-tetrahydro-1H,2'H,6H-spiro[pyrido[1,2-a]quinoline-5,5'-pyrimidine] -2',4',6'(1'H,3'H)-trione **9j**

1',2'-dibenzyl-6'-nitro-1',4'-dihydro-2H,2'H-spiro[pyrimidine-5,3'-quinoline]-2,4,6(1H,3H)-trione **9k**

2',4'-dimethyl-8'-nitro-1',2',4',4a'-tetrahydro-2H,6'H-spiro[pyrimidine-5,5'-[1,4]oxazino[4,3-a]quin

 $1',2',3',3a'-tetrahydro-5'H-spiro[chromane-3,4'-pyrrolo[1,2-a]quinoline]-2,4-dione-1',1',3a',5'-d4\ 13$

Crystallographic data of compound 3f (CCDC No. 1545490)

Table 1. Crystal data and structure refinement for 3f.

Identification code	3f
Empirical formula	C20 H16 Br N O3
Formula weight	398.25
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 8.2200(12) A $alpha = 71.212(7)$ deg. $b = 8.7275(7)$ A $beta = 72.443(10)$ deg. $c = 13.0899(9)$ A $gamma = 79.120(10)$ deg.
Volume	843.24(15) A^3
Z, Calculated density	2, 1.568 Mg/m^3
Absorption coefficient	3.485 mm^-1
F(000)	404
Crystal size	0.12 x 0.11 x 0.11 mm
Theta range for data collection	3.69 to 67.25 deg.

Limiting indices	-9<=h<=9, -10<=k<=8, -15<=l<=13
Reflections collected / unique	4724 / 2991 [R(int) = 0.0233]
Completeness to theta = 67.25	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7004 and 0.6798
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2991 / 0 / 226
Goodness-of-fit on F^2	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0520, $wR2 = 0.1421$
R indices (all data)	R1 = 0.0576, $wR2 = 0.1484$
Largest diff. peak and hole	0.529 and -0.484 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 3f. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
Br(1)	2148(1)	-53(1)	13885(1)	89(1)
N(1)	5308(3)	2779(3)	9746(2)	47(1)
O(1)	9953(3)	1376(3)	7857(2)	59(1)
O(2)	9484(3)	5754(3)	8459(2)	61(1)
O(3)	8440(3)	294(3)	9533(2)	58(1)
C(1)	4069(5)	928(4)	12762(3)	58(1)
C(2)	3969(4)	1450(4)	11671(3)	50(1)
C(3)	5358(4)	2182(3)	10844(2)	42(1)
C(4)	6821(4)	2323(3)	11140(2)	43(1)
C(5)	6832(5)	1756(4)	12260(3)	57(1)
C(6)	5450(6)	1084(5)	13084(3)	66(1)

C(7)	8360(4)	3051(4)	10283(3)	46(1)
C(8)	8424(3)	3170(3)	9068(2)	39(1)
C(9)	6560(3)	3792(4)	8922(2)	41(1)
C(10)	6256(4)	3848(5)	7817(3)	60(1)
C(11)	4436(6)	3518(6)	8099(3)	74(1)
C(12)	4027(4)	2477(4)	9291(3)	50(1)
C(13)	9528(4)	4491(4)	8253(3)	44(1)
C(14)	10556(4)	4198(4)	7185(3)	47(1)
C(15)	10701(4)	2674(4)	7035(3)	53(1)
C(16)	8931(4)	1509(4)	8871(3)	43(1)
C(17)	11397(5)	5418(5)	6314(3)	65(1)
C(18)	12377(7)	5108(6)	5332(4)	86(1)
C(19)	12489(7)	3572(6)	5208(4)	97(2)
C(20)	11666(6)	2356(5)	6044(3)	77(1)

Table 3. Bond lengths [A] and angles [deg] for 3f.

Br(1)-C(1)	1.920(4)
N(1)-C(3)	1.374(4)
N(1)-C(9)	1.437(4)
N(1)-C(12)	1.455(4)
O(1)-C(16)	1.368(4)
O(1)-C(15)	1.378(4)
O(2)-C(13)	1.208(4)
O(3)-C(16)	1.182(4)
C(1)-C(6)	1.367(6)
C(1)-C(2)	1.376(5)
C(2)-C(3)	1.403(4)
C(3)-C(4)	1.407(4)
C(4)-C(5)	1.390(4)
C(4)-C(7)	1.501(5)
C(5)-C(6)	1.379(6)
C(7)-C(8)	1.547(4)
C(8)-C(16)	1.513(4)
C(8)-C(13)	1.520(4)
C(8)-C(9)	1.573(4)
C(9)-C(10)	1.525(4)
C(10)-C(11)	1.489(5)
C(11)-C(12)	1.503(5)
C(13)-C(14)	1.473(4)
C(14)-C(15)	1.385(5)
C(14)-C(17)	1.389(5)

C(15)-C(20)	1.385(5)
C(17)-C(18)	1.375(6)
C(18)-C(19)	1.384(7)
C(19)-C(20)	1.363(7)
C(3)-N(1)-C(9)	121.8(2)
C(3)-N(1)-C(12	2) 125.0(3)
C(9)-N(1)-C(12)	2) 113.2(2)
C(16)-O(1)-C(1)	.5) 122.6(2)
C(6)-C(1)-C(2)	123.5(3)
C(6)-C(1)-Br(1)) 118.8(3)
C(2)-C(1)-Br(1)) 117.7(3)
C(1)-C(2)-C(3)	118.2(3)
N(1)-C(3)-C(2)	120.9(3)
N(1)-C(3)-C(4)	119.3(3)
C(2)-C(3)-C(4)	119.8(3)
C(5)-C(4)-C(3)	118.6(3)
C(5)-C(4)-C(7)	119.5(3)
C(3)-C(4)-C(7)	121.9(3)
C(6)-C(5)-C(4)	122.1(3)
C(1)-C(6)-C(5)	117.7(3)
C(4)-C(7)-C(8)	114.4(2)
C(16)-C(8)-C(1	3) 115.2(2)
C(16)-C(8)-C(7	7) 110.2(2)
C(13)-C(8)-C(7	7) 110.2(2)
C(16)-C(8)-C(9	0) 109.0(2)
C(13)-C(8)-C(9	0) 105.0(2)
C(7)-C(8)-C(9)	106.8(2)
N(1)-C(9)-C(10)) 103.6(2)
N(1)-C(9)-C(8)	112.0(2)
C(10)-C(9)-C(8	3) 116.6(2)
C(11)-C(10)-C(9) 105.1(3)
C(10)-C(11)-C(12) 106.1(3)
N(1)-C(12)-C(1	1) 104.1(3)
O(2)-C(13)-C(1	.4) 122.1(3)
O(2)-C(13)-C(8	3) 120.7(3)
C(14)-C(13)-C((8) 117.0(2)
C(15)-C(14)-C	(17) 118.6(3)
C(15)-C(14)-C((13) 119.8(3)
C(17)-C(14)-C	(13) 121.7(3)
O(1)-C(15)-C(1	4) 122.9(3)
O(1)-C(15)-C(2	20) 115.9(3)
C(14)-C(15)-C	20) 121.2(4)
O(3)-C(16)-O(1) 116.6(3)

O(3)-C(16)-C(8)	123.9(3)
O(1)-C(16)-C(8)	119.5(3)
C(18)-C(17)-C(14)	120.6(4)
C(17)-C(18)-C(19)	119.3(4)
C(20)-C(19)-C(18)	121.4(4)
C(19)-C(20)-C(15)	118.9(4)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for 3f. The anisotropic displacement factor exponent takes the form: $-2 \text{ pi}^2 [h^2 a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]$

	U11	U22	U33	U	23	U13	U12
Br(1)	103(1)	94(1)	53(1)	-20(1)	18(1)	-34(1)	
N(1)	39(1)	63(2)	40(1)	-13(1)	-12(1)	-11(1)	
O(1)	66(1)	51(1)	57(1)	-26(1)	-1(1)	-2(1)	
O(2)	69(2)	58(1)	66(2)	-27(1)	-8(1)	-25(1)	
O(3)	56(1)	48(1)	67(2)	-20(1)	-5(1)	-13(1)	
C(1)	67(2)	54(2)	42(2)	-17(1)	4(2)	-7(2)	
C(2)	51(2)	49(2)	47(2)	-18(1)	-4(1)	-6(1)	
C(3)	44(2)	42(1)	41(2)	-17(1)	-10(1)	1(1)	
C(4)	49(2)	45(1)	41(2)	-19(1)	-14(1)	2(1)	
C(5)	69(2)	61(2)	45(2)	-17(1)	-23(2)	0(2)	
C(6)	86(3)	70(2)	38(2)	-15(2)	-14(2)	-3(2)	
C(7)	48(2)	54(2)	47(2)	-20(1)	-20(1)	-6(1)	
C(8)	33(1)	45(1)	43(2)	-19(1)	-10(1)	-4(1)	
C(9)	37(1)	47(1)	41(2)	-13(1)	-11(1)	-3(1)	
C(10)	50(2)	90(2)	42(2)	-12(2)	-17(1)	-12(2)	
C(11)	74(2)	97(3)	62(2)	-14(2)	-32(2)	-24(2)	
C(12)	43(2)	57(2)	57(2)	-20(1)	-16(1)	-8(1)	
C(13)	37(1)	51(2)	51(2)	-19(1)	-14(1)	-8(1)	
C(14)	41(2)	56(2)	44(2)	-14(1)	-11(1)	-3(1)	
C(15)	52(2)	56(2)	46(2)	-16(1)	-10(1)	4(1)	
C(16)	37(1)	48(2)	51(2)	-21(1)	-12(1)	-5(1)	
C(17)	69(2)	63(2)	55(2)	-10(2)	-11(2)	-10(2)	
C(18)	97(3)	88(3)	47(2)	-5(2)	3(2)	-9(2)	
C(19)	113(4)	96(3)	47(2)	-17(2)	9(2)	18(3)	
C(20)	95(3)	70(2)	52(2)	-23(2)	-5(2)	15(2)	

	х	У	Z	U(eq)
H(2)	3006	1321	11486	60
H(5) $H(6)$ $H(7A)$	7802 5457	749	12460 13833	68 79
H(7A) H(7B) H(9)	9380 8376 6273	4134	10465	55 79
H(10A)	6439	4908	7281	72
H(10B)	7022		7504	72
H(11A)	4291	2952	7610	89
H(11B)	3687	4528	8021	89
H(12A)	2878	2792	9694	60
H(12B)	4120	1337	9328	60
H(17)	11296	6454	6396	78
H(18)	12959	5921	4758	103
H(19)	13139	3366	4541	116
H(20)	11752	1330	5950	93

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for 3f.

Table 6. Torsion angles [deg] for 3f.

C(6)-C(1)-C(2)-C(3)	0.0(5)
Br(1)-C(1)-C(2)-C(3)	179.4(2)
C(9)-N(1)-C(3)-C(2)	168.3(3)
C(12)-N(1)-C(3)-C(2)	-11.6(4)
C(9)-N(1)-C(3)-C(4)	-11.2(4)
C(12)-N(1)-C(3)-C(4)	168.9(3)
C(1)-C(2)-C(3)-N(1)	-177.7(3)
C(1)-C(2)-C(3)-C(4)	1.8(4)
N(1)-C(3)-C(4)-C(5)	178.1(3)
C(2)-C(3)-C(4)-C(5)	-1.3(4)
N(1)-C(3)-C(4)-C(7)	-2.3(4)
C(2)-C(3)-C(4)-C(7)	178.2(3)
C(3)-C(4)-C(5)-C(6)	-0.9(5)
C(7)-C(4)-C(5)-C(6)	179.6(3)
C(2)-C(1)-C(6)-C(5)	-2.1(5)

Br(1)-C(1)-C(6)-C(5)	178.4(3)
C(4)-C(5)-C(6)-C(1)	2.6(5)
C(5)-C(4)-C(7)-C(8)	163.0(3)
C(3)-C(4)-C(7)-C(8)	-16.5(4)
C(4)-C(7)-C(8)-C(16)	-75.2(3)
C(4)-C(7)-C(8)-C(13)	156.5(2)
C(4)-C(7)-C(8)-C(9)	43.0(3)
C(3)-N(1)-C(9)-C(10)	168.0(3)
C(12)-N(1)-C(9)-C(10)	-12.2(3)
C(3)-N(1)-C(9)-C(8)	41.6(4)
C(12)-N(1)-C(9)-C(8)	-138.6(2)
C(16)-C(8)-C(9)-N(1)	63.9(3)
C(13)-C(8)-C(9)-N(1)	-172.1(2)
C(7)-C(8)-C(9)-N(1)	-55.1(3)
C(16)-C(8)-C(9)-C(10)	-55.1(3)
C(13)-C(8)-C(9)-C(10)	68.8(3)
C(7)-C(8)-C(9)-C(10)	-174.1(3)
N(1)-C(9)-C(10)-C(11)	24.8(4)
C(8)-C(9)-C(10)-C(11)	148.2(3)
C(9)-C(10)-C(11)-C(12)	-28.7(4)
C(3)-N(1)-C(12)-C(11)	174.6(3)
C(9)-N(1)-C(12)-C(11)	-5.3(4)
C(10)-C(11)-C(12)-N(1)	21.1(4)
C(16)-C(8)-C(13)-O(2)	-164.4(3)
C(7)-C(8)-C(13)-O(2)	-38.9(4)
C(9)-C(8)-C(13)-O(2)	75.7(3)
C(16)-C(8)-C(13)-C(14)	19.3(3)
C(7)-C(8)-C(13)-C(14)	144.8(2)
C(9)-C(8)-C(13)-C(14)	-100.6(3)
O(2)-C(13)-C(14)-C(15)	173.5(3)
C(8)-C(13)-C(14)-C(15)	-10.3(4)
O(2)-C(13)-C(14)-C(17)	-6.4(5)
C(8)-C(13)-C(14)-C(17)	169.8(3)
C(16)-O(1)-C(15)-C(14)	3.5(5)
C(16)-O(1)-C(15)-C(20)	-178.5(3)
C(17)-C(14)-C(15)-O(1)	178.3(3)
C(13)-C(14)-C(15)-O(1)	-1.6(5)
C(17)-C(14)-C(15)-C(20)	0.3(5)
C(13)-C(14)-C(15)-C(20)	-179.6(3)
C(15)-O(1)-C(16)-O(3)	-175.8(3)
C(15)-O(1)-C(16)-C(8)	7.1(4)
C(13)-C(8)-C(16)-O(3)	164.9(3)
C(7)-C(8)-C(16)-O(3)	39.5(4)
C(9)-C(8)-C(16)-O(3)	-77.4(4)

C(13)-C(8)-C(16)-O(1)	-18.2(4)
C(7)-C(8)-C(16)-O(1)	-143.6(3)
C(9)-C(8)-C(16)-O(1)	99.5(3)
C(15)-C(14)-C(17)-C(18)	-1.2(6)
C(13)-C(14)-C(17)-C(18)	178.7(4)
C(14)-C(17)-C(18)-C(19)	1.5(7)
C(17)-C(18)-C(19)-C(20)	-0.9(8)
C(18)-C(19)-C(20)-C(15)	0.0(8)
O(1)-C(15)-C(20)-C(19)	-177.8(4)
C(14)-C(15)-C(20)-C(19)	0.3(6)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 3f [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)