Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Fig. S1 NH₃-TPD profiles of In_2O_3 -Beta composites. (a) In_2O_3 , (b) In_2O_3 -10%Beta, (c) In_2O_3 -20%Beta, (d) In_2O_3 -30%Beta, (e) In_2O_3 -40%Beta, (f) In_2O_3 -50%Beta, (g) In_2O_3 -60%Beta, (h) In_2O_3 -70%Beta, (i) Beta.

Fig. S2 CO₂-TPD profiles of In_2O_3 -Beta composites. (a) In_2O_3 , (b) In_2O_3 -10%Beta, (c) In_2O_3 -20%Beta, (d) In_2O_3 -30%Beta, (e) In_2O_3 -40%Beta, (f) In_2O_3 -50%Beta, (g) In_2O_3 -60%Beta, (h) In_2O_3 -70%Beta, (i) Beta.

Fig. S3 Product distribution over In_2O_3 and In_2O_3 -50%Al₂O₃ catalysts for ethanol conversion. Reaction conditions: reaction temperature, 460 °C; WHSV of ethanol, 0.2 h^{-1} ; time-on-stream, 3 h.

Fig. S4 Raman spectrum of spent In_2O_3 -50% Beta composite after the stability test.