Supporting Information

H-Bonding-Promoted Radical Addition of Simple Alcohols to

Unactivated Alkenes

Yunfei Tian[†] and Zhong-Quan Liu* ^{†‡}

[†] State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,

China

[‡] State Key Laboratory Cultivation Base for TCM Quality and Efficacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

E-mail: liuzhq@lzu.edu.cn and liuzq@njucm.edu.cn

General Information	2
Typical procedure	2
The modification of the reaction condition	3-6
Competing Kinetic Isotope Effect (KIE) Experiment	6-7
Versatile transformations of alcohols	7-13
Reactions of ethers with alkenes	13-14
Physical data and references for the following products	14-30
Copies of the ¹ H NMR, ¹³ C NMR spectra	31-96

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer in CDCl₃ with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 eV. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II. All products were identified by ¹H and ¹³C NMR, ³¹P NMR, MS, and HRMS. The starting materials were purchased from Energy Chemicals, Alfa Aesar, Acros Organics, J&K Chemicals, Adamas, or Aldrich and used without further purification.

Typical procedure

Reaction of alcohols with alkenes: A mixture of alkenes (1 equiv., 0.10 mmol), alcohols (10 mL), KF (50 mol%, 0.05 mmol), and TBPA (5 equiv., 0.50 mmol) was heated at 140 °C (the measured temperature of the oil bath) for 18 h in a sealed tube (35 mL). After the reaction completed (detected by TLC), the mixture was evaporated under vacuum and purified by column chromatography to afford the desired product.

Modification of the typical conditions

(1) Optimization of the reaction conditions. ^a

entry	EtOH	additive (mol %)	peroxide (equiv)	T (°C)	t (h)	yield
ontry	(mL)		poroxido (oquit)	1 (0)	· (11)	(%) ^b
1	10	KF(20)	TBPA(5)	140	2	65
2	10	KF(20)	TBPA(5)	140	4	68
3	10	KF(20)	TBPA(5)	140	6	69
4	10	KF(20)	TBPA(5)	140	8	75
5	10	KF(20)	TBPA(5)	140	10	76
6	10	KF(20)	TBPA(5)	140	12	78
7	10	KF(20)	TBPA(5)	140	15	76
8	10	KF(20)	TBPA(5)	140	18	82
9	10	KF(20)	TBPA(5)	140	24	82
10	10	KF(20)	TBPA(5)	100	18	31
11	10	KF(20)	TBPA(5)	110	18	47
12	10	KF(20)	TBPA(5)	120	18	54
13	10	KF(20)	TBPA(5)	130	18	70
14	10	KF(20)	TBPA(2)	140	18	67
15	10	KF(20)	TBPA(3)	140	18	70
16	10	KF(20)	TBPA(4)	140	18	72
17	10	KF(20)	TBPA(6)	140	18	79
18	10	KF(20)	TBPA(7)	140	18	76
19	10	KF(0)	TBPA(5)	140	18	25
20	10	KF(5)	TBPA(5)	140	18	39
21	10	KF(10)	TBPA(5)	140	18	56
22	10	KF(30)	TBPA(5)	140	18	81
23	10	KF(40)	TBPA(5)	140	18	85
24	10	KF(50)	TBPA(5)	140	18	87
25	10	KF(60)	TBPA(5)	140	18	85
26	10	KF(80)	TBPA(5)	140	18	76
27	10	KF(100)	TBPA(5)	140	18	81
28	1	KF (50)	TBPA(5)	140	18	34
29	3	KF (50)	TBPA(5)	140	18	47
30	5	KF (50)	TBPA(5)	140	18	73
31	7	KF (50)	TBPA(5)	140	18	77
32	12	KF (50)	TBPA(5)	140	18	86
33	15	KF (50)	TBPA(5)	140	18	81
34	10	KF (50)	TBHP (in	140	18	24

			decane, 5)			
25	10		TBHP (in water,	1 1 0	4.0	00
30	10	KF (50)	5)	140	10	20
36	10	KF (50)	TBPB(5)	140	18	49
37	10	KF (50)	BPO(5)	140	18	N.R
38	10	KF (50)	AIBN (5)	140	18	N.R
39	10	CuF ₂ (50)	TBPA(5)	140	18	N.R
40	10	AgF (50)	TBPA(5)	140	18	28
41	10	NaF (50)	TBPA(5)	140	18	71
42	10	CsF (50)	TBPA(5)	140	18	59
43	10	KCI (50)	TBPA(5)	140	18	19
44	10	KBr (50)	TBPA(5)	140	18	20
45	10	KI (50)	TBPA(5)	140	18	23
46	10	TBAB (50)	TBPA(5)	140	18	17
47	10	TBAI (50)	TBPA(5)	140	18	10
48	10	TBAF (50)	TBPA(5)	140	18	58
49	10	TBAF (50)	DCP (5)	140	18	81
50	10	K ₂ CO ₃ (50)	TBPA(5)	140	18	37
51	10	$ZnF_{2}.4H_{2}O(50)$	TBPA(5)	140	18	71
52	10	MnF ₂ (50)	TBPA(5)	140	18	18
53	10	CoF ₂ (50)	TBPA(5)	140	18	N.R
54	10	FeF ₃ (50)	TBPA(5)	140	18	N.R
55	10	-	TBPB(5)	140	18	N.R
56	10	KF(50)	DCP(5)	140	18	85

^{*a*} Reaction conditions: Alkenes (1 equiv, 0.10 mmol), peroxide (5 equiv, 0.50 mmol), ethanol as solvent, 140 °C (measured temperature of the oil bath), sealed tube, unless otherwise noted. ^{*b*} Isolated yield. TBPA = *tert*-butyl peroxyacetate; DCP = dicumyl peroxide; TBHP = *tert*-butyl hydroperoxide.

(2) Optimization of the H-Bond Acceptors.^a

entry	additive (50 mol%)	peroxide	yield (%) ^b
1	-	TBPA	25
2	FeF ₃	TBPA	NR
3	CoF ₂	TBPA	NR
4	CuF ₂	TBPA	NR
5	MnF ₂	TBPA	18

6	$ZnF_2.4H_2O$	TBPA	71
7	CsF	TBPA	59
8	CsF	DCP	75
9	NaF	TBPA	71
10	NaF	DCP	85
11	KF	TBPA	87
12	KF	DCP	85
13	TBAF	TBPA	58
14	TBAF	DCP	81
15	KBF ₄	TBPA	80
16	KBF ₄	DCP	79
17	KPF ₆	TBPA	81
18	KPF ₆	DCP	77
19	KH ₂ PO ₄	TBPA	64
20	K ₂ HPO ₄	TBPA	74
21	K ₂ CO ₃	TBPA	37
22	KCI	TBPA	19
23	KBr	TBPA	20
24	KI	TBPA	23
25	TBAB	TBPA	17
26	TBAI	TBPA	10

^a Reaction conditions: Alkenes (1 equiv, 0.10 mmol), additive (50 mol%, 0.05mmol), peroxide (5 equiv, 0.50 mmol), 10 mL of ethanol as solvent, 140 °C (measured temperature of the oil bath), sealed tube, 18 hrs, unless otherwise noted. ^b Isolated yield. TBPA = *tert*-butyl peroxyacetate; DCP = dicumyl peroxide.

(3) Optimization of the amounts of KF.^a

9	KF (80 mol%)	TBPA	76
10	KF (100 mol%)	TBPA	81

^a Reaction conditions: Alkenes (1 equiv, 0.10 mmol), peroxide (5 equiv, 0.50 mmol), 10 mL of ethanol as solvent, 140 °C (measured temperature of the oil bath), sealed tube, 18 hrs, unless otherwise noted. ^b Isolated yield. TBPA = *tert*-butyl peroxyacetate.

Competing Kinetic Isotope Effect (KIE) Experiment:

Note: The value of k_H/k_D was calculated from the ¹H NMR spectra above which should be the mixture of compound **a** and **b** (the KIE scheme). The sum of the integral of **a** and **b** at chemical shift 4.30 - 4.33 was integrated as 2.00 (both **a** and **b** keep the same double bond hydrogen). Compound **a** has one hydrogen atoms at chemical shift 3.78 - 3.83, while **b** has no H atoms here. The amount of **a** could be defined as 0.80, on the other hand, the sum of **a** and **b** is 1.00, so the amount of **b** is 0.2 (1.00 - 0.80 = 0.2). As a result, $k_H/k_D = 0.80/0.2 = 4$.

Versatile transformations of alcohols:

Transformation of product.

To a stirred solution of alcohol (0.20 mmol, 62.8 mg) and PPh₃ (0.40 mmol, 104.8 mg) in dry CH_2CI_2 (0.5 mL) was added CI_3CCONH_2 (0.40 mmol, 64.8 mg) at room temperature under an N₂ atmosphere. After reaction completion (TLC), the reaction was quenched with cold water and extracted with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous MgSO₄ and filtered. The filtrate was concentrated in vacuum. Purification by silica-gel chromatography (hexane/AcOEt = 60/1) gave the corresponding product (48.0 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 4.31 (t, *J* = 6.4 Hz, 2H), 4.07 – 3.99 (m, 1H), 1.63 – 1.55 (m, 1H), 1.82 – 1.71 (m, 4H), 1.61 – 1.54 (m, 1H), 1.51 (d, *J* = 6.8 Hz, 3H), 1.51 – 1.43 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.3, 127.9, 65.2, 58.6, 40.2, 28.6, 26.3, 25.6, 25.4.

HRMS (ESI, m/z): Calculated for C₁₄H₁₈BrClNaO₂ (M+Na)⁺ 355.0071, found 355.0078.

(2).

To a mixture of alcohol (0.20 mmol, 62.8 mg) and KBr (0.30 mmol, 35.7mg) in acetonitrile (1 mL), P_2O_5 (0.40 mmol, 56.8 mg) was added and the reaction was stirred at room temperature. After reaction completion (TLC), the reaction mixture was filtered and the residue washed with ethyl acetate (3 × 10 mL). The combined organic layers were washed with water (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford the corresponding product. Further purification by silicagel chromatography (hexane/AcOEt = 60/1) gave the corresponding product (59.7 mg, 79% yield).

¹H NMR (400 MHz, CDCI₃): δ 7.90 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 4.32 (t, J = 6.4 Hz, 2H), 4.18 – 4.09 (m, 1H), 1.89 – 1.75 (m, 4H), 1.71 (d, J = 6.4 Hz, 3H), 1.64 – 1.56 (m, 1H), 1.53 – 1.41 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.3, 128.0, 65.2, 51.6, 41.0, 28.5, 27.5, 26.5, 25.5.

HRMS (ESI, m/z): Calculated for C₁₄H₁₉Br₂O₂ (M+H)⁺ 378.9726, found 378.9721.

(3).

To a solution of alcohol (0.20 mmol, 62.8 mg) in dry DCM (2 ml) was added Sodium bicarbonate (33.6 mg, 0.40 mmol) at 0 °C. After addition of Dess-Martin periodinane (169.6 mg, 0.40 mmol), the solution was stiired at 0 °C. After reaction completion (TLC), the mixture was purified by silica gel chromatography (hexane/ EtOAc = 20/1) to afford the corresponding product (49.0 mg, 78% yield).

¹H NMR (400 MHz, CDCI₃): δ 7.88 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 4.29 (t, *J* = 6.4 Hz, 2H), 2.45 (t, *J* = 7.2 Hz, 2H), 2.13 (s, 3H), 1.80 – 1.73 (m, 2H), 1.67 – 1.60 (m, 2H), 1.46 – 1.38 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 208.7, 165.8, 131.6, 131.0, 129.2, 127.9, 65.0, 43.4, 29.9, 28.5, 25.6, 23.3.

HRMS (ESI, m/z): Calculated for C₁₄H₂₁BrNO₃ (M+NH₄)⁺ 330.0699, found 330.0698.

(4).

To a solution of PPh₃ (0.40 mmol, 104.8 mg) and O-Phthalimide (0.40 mmol, 58.8 mg) in THF (0.3 M), alcohol (0.20 mmol, 62.8 mg) was added slowly under N₂ atmosphere. The reaction mixture was cooled to 0 °C and DEAD (0.40 mmol, 69.6 mg) in THF (0.5 M) was added slowly. The reaction mixture was allowed to warm to room temperature and was stirred for 6 h. After completion of reaction, the solvent was removed in a rotary evaporator and the crude product was directly subjected to column chromatography using ethyl acetate and hexane as eluents to give corresponding product (62 mg, 70% yield).

¹**H NMR (400 MHz, CDCI₃):** δ 7.86 (d, J = 8.8 Hz, 2H), 7.80 (dd, J = 5.6, 3.2 Hz, 2H), 7.69 (dd, J = 5.6, 3.2 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 4.40 – 4.31 (m, 1H), 4.26 (t, J = 6.4 Hz,

2H), 2.16 – 2.07 (m, 1H), 1.79 – 1.68 (m, 3H), 1.47 (d, *J* = 7.2 Hz, 3H), 1.52 – 1.25 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 168.5, 165.8, 133.8, 131.9, 131.6, 131.0, 129.3, 127.9, 123.0, 65.2, 47.3, 33.6, 28.5, 26.5, 25.7, 18.7.

HRMS (ESI, m/z): Calculated for C₂₂H₂₂BrNNaO₄ (M+Na)⁺ 466.0624, found 466.0623. (5).

To a solution of PPh₃ (0.40 mmol, 104.8 mg) in THF (2 mL), DEAD (0.44 mmol, 76.6 mg) was added dropwise at -20 $^{\circ}$ C. After stirring for 15 min, a solution of alcohol (0.20 mmol, 41.6 mg) in THF (1 mL) and DPPA (0.4 mmol, 110 mg) was added. Reaction mixture was allowed to warm up to room temperature and was stirred for 24 h. After completion of reaction, the solvent was removed in a rotary evaporator and the crude product was directly subjected to column chromatography using ethyl acetate and hexane as eluents to give the corresponding product (31.6 mg, 68% yield).

¹**H NMR (400 MHz, CDCI₃):** ¹H NMR (400 MHz, CDCI₃) δ 8.04 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 4.34 (t, J = 6.4 Hz, 2H), 3.55 – 3.50 (m, 1H), 1.94 – 1.79 (m, 2H), 1.66 – 1.61 (m, 2H), 1.30 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.5, 132.9, 130.2, 129.5, 128.3, 64.4, 57.5, 32.7, 25.4, 19.4.

HRMS (ESI, m/z): Calculated for C₁₂H₁₅ N₃NaO₂(M+Na)⁺ 256.1056, found 256.1058.

(6).

Et₃N (0.4 mmol, 56 μ L) and TMSCI (0.24 mmol, 21 μ L) were added sequentially to a solution of alcohol (0.20 mmol, 62.8 mg) in dry CH₂Cl₂ (5 mL) at 0 °C. After being stirred for 5 min at the same temperature, DMAP (0.02 mmol, 2.4 mg) was added and stirring was continued for 10 min with slowly warming to room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with DCM. The

combined organic extracts were dried (Na_2SO_4), filtered and concentrated in vacuum. Purification of the residue by column chromatography provided corresponding product (63.5 mg, 82 % yield)

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 4.30 (t, *J* = 6.4 Hz, 2H), 3.80 – 3.73 (m, 1H), 1.80 – 1.73 (m, 2H), 1.50 – 1.28 (m, 6H), 1.13 (d, *J* = 6.4 Hz, 3H), 0.10 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.4, 127.9, 68.4, 65.3, 39.5, 28.7, 26.1, 25.6, 23.9, 0.3.

HRMS (ESI, m/z): Calculated for C₁₇H₂₈BrO₃Si (M+H)⁺ 387.0986, found 387.0981.

(7).

Et₃N (0.4mmol, 56 μ L) and TsCl (0.24 mmol, 45.8mg) were added sequentially to a solution of alcohol (0.20 mmol, 62.8mg) in dry CH₂Cl₂ (5 mL) at 0 °C. After being stirred for 5 min at the same temperature, DMAP (0.02 mmol, 2.4mg) was added and stirring was continued for 10 min with slow warming to room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with DCM. The combined organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuum. Purification of the residue by column chromatography provided pure product (71.1 mg, 76 % yield).

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.65 – 4.58 (m, 1H), 4.24 (t, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.70 – 1.58 (m, 3H), 1.56 – 1.48 (m, 1H), 1.36 – 1.28 (m, 4H), 1.24 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.8, 144.4, 134.5, 131.7, 131.0, 129.7, 129.2, 127.9, 127.7, 80.2, 65.0, 36.4, 28.4, 25.6, 24.5, 21.6, 20.8.

HRMS (ESI, m/z): Calculated for C₂₁H₂₉BrNO₅S (M+NH₄)⁺ 486.0944, found 486.0947.

(8).

A solution of alcohol (0.20 mmol, 41.6 mg) in toluene (5 mL) was treated with triphenylphosphine (0.40 mmol, 104.8 mg), imidazole (0.60 mmol, 40.8 mg), and iodine (0.30 mmol, 76 mg). The mixture was heated at 100 °C for 1 h under blanket of argon. After reaching room temperature, the mixture was poured into a saturated solution of NaHCO₃. Excess triphenylphosphine was destroyed by the addition of iodine until the iodine coloration persisted in the organic layer. The organic layer was washed twice with 5% (wt.) Na₂S₂O₃ and brine, dried over (MgSO₄), filtered, and concentrated in vacuo. The residue was purified on silica gel (hexanes/ethyl acetate, 8/1) to give corresponding product (48 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 4.30 (t, *J* = 6.4 Hz, 2H), 3.80 – 3.73 (m, 1H), 1.80 – 1.73 (m, 2H), 1.50 – 1.28 (m, 6H), 1.13 (d, *J* = 6.4 Hz, 3H), 0.10 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.4, 127.9, 68.4, 65.3, 39.5, 28.7, 26.1, 25.6, 23.9, 0.3.

HRMS (ESI, m/z): Calculated for C₁₂H₁₉INO₂ (M+NH₄)⁺ 336.0455, found 336.0459.

The alkyl iodides (1eq, 0.25 mmol), Zn (4eq, 65 mg), and AgOAc (0.03 mmol, 5 mg) were mixed together in HOAc (0.5 mL), under vigorous stirring. 0.05mL of concentrated HCl (37%) was added dropise over a 1 min period. The mixture was further stirred for 5 min. and then filtered. The reaction mixture was then diluted with DCM, filtered through silica gel with copious washings (DCM), concentrated, and purified by column chromatography (hexane/AcOEt = 20/1) gave the corresponding product (32 mg, 65% yield).

¹**H NMR (400 MHz, CDCI₃):** δ 8.06 – 8.04 (m, 2H), 7.55 – 7.50 (m, 1H), 7.41 (t, *J* = 7.2 Hz, 2H), 4.31 (t, *J* = 6.8 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.46 – 1.33 (m, 4H), 0.93 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.5, 132.6, 130.4, 129.4, 128.2, 64.9, 28.3, 28.1, 22.2, 13.8.

HRMS (ESI, m/z): Calculated for $C_{12}H_{17}O_2(M+H)^+$ 193.1223, found 193.1218.

(9).

To a 50-mL round-bottomed flask equipped with a reflux condenser were added alcohol (0.20 mmol, 34.8 mg), benzene (14 mL) and *p*-toluenesulfonic acid monohydrate (4 mg, 0.022 mmol), The reaction mixture was refluxed at around 85 °C for 4 h, and then cooled to room temperature. The solvent was removed under reduced pressure, and the residue was directly subjected to the flash column chromatography on silica gel eluting with cyclohexane/AcOEt (80:16) to afford the corresponding product (14mg, 70% yield).

¹H NMR (400 MHz, CDCl₃): δ 4.67 – 4.59 (m, 1H), 2.56 – 2.52 (m, 2H), 2.39 – 2.31 (m, 1H), 1.87 – 1.77 (m, 1H), 1.41 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 177.1, 77.2, 29.7, 29.1, 21.0.

MS(EI): *m/z*(%): 100(12.0), 85(73.0), 56(100), 43(23.9), 41(29.7), 39(7.9).

(10).

To a 50-mL round-bottomed flask equipped with a reflux condenser were added alcohol (0.20 mmol, 37.6 mg), benzene (14 mL) and *p*-toluenesulfonic acid monohydrate (4 mg, 0.022 mmol), The reaction mixture was refluxed at around 85 °C for 4 h, and then cooled to room temperature. The solvent was removed under reduced pressure, and the residue was directly subjected to the flash column chromatography on silica gel eluting with cyclohexane/AcOEt (80:16) to afford the corresponding product (15mg, 66% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 4.47 – 4.39 (m, 1H), 2.60 – 2.52 (m, 1H), 2.47 – 2.38 (m, 1H), 1.94 – 1.79 (m, 3H), 1.56 – 1.46 (m, 1H), 1.36 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.8, 76.9, 29.5, 29.2, 21.6, 18.5.

MS(EI): *m/z*(%): 114(10.6), 99(10.9), 70(88.1), 55(31.9), 42(100), 39(11.8).

Reactions of ethers with alkenes:

Typical procedure for reaction of ethers with alkenes: A mixture of alkenes (1 equiv., 0.10 mmol), ethers (10 mL), and DCP (5 equiv., 0.50 mmol) was heated at 140 °C (the measured temperature of the oil bath) for 18 h in a sealed tube (35 mL). After the reaction

completed (detected by TLC), the mixture was evaporated under vacuum and purified by column chromatography to afford the desired product.

All known compounds are determined by ¹H NMR, ¹³C NMR and ³¹P NMR, MS analysis and compared with which were cited in the following references, and the new compounds were further confirmed by HRMS analysis.

References:

- 1. W. Pluempanupat and W. Chavasiri, Tetrahedron Lett. 2006, 47, 6821–6823.
- L. Khazdooz, A. Zarei, H. Aghaei. G. Azizi, M. M. Gheisari, *Tetrahedron Lett.* 2016, 57, 168–171.
- 3. Z.-Q. Liu and D. Liu, J. Org. Chem. 2017, 82, 1649–1656.
- 4. K. Hirano, S. Sakaguchi and Y. Ishii, Tetrahedron Lett. 2002, 43, 3617.
- P. Niedziejko, M. Szewczyk, P. Kalicki, Z. Kałuza, *Tetrahedron: Asymm.* 2015, 26, 1083–1094.
- 6. T. K. Chakraborty, R. Samanta, P. K. Kumar, Tetrahedron 2009, 65, 6925–6931.
- Y. Choi, C. George, M. J. Comin, J. J. Barchi, Jr., H. S. Kim, K. A. Jacobson, J. Balzarini, H. Mitsuya, P. L. Boyer, S. H. Hughes, and V. E. Marquez, *J. Med. Chem.* 2003, 46, 3292-3299.
- A. Gansauer, C.-A. Fan, F. Keller, and J. Keil, *J. Am. Chem. Soc.* 2007, 129, 3484-3485.

Physical data for the following products:

1. 6-hydroxyheptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.90 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 4.31 (t, J = 6.4 Hz, 2H), 3.85 - 3.76 (m, 1H), 1.81 - 1.74 (m, 2H), 1.51 - 1.40 (m, 6H), 1.19 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.3, 127.9, 68.0, 65.2, 39.1, 28.7, 26.0, 25.4, 23.6.

HRMS (ESI, m/z): Calculated for C₁₄H₁₉Br₁NaO₃ (M+Na)⁺ 337.0410, found 377.0413.

2. 4-hydroxypentyl benzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 8.02 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 4.32 (t, J = 6.8 Hz, 2H), 3.89 – 3.81 (m, 1H), 2.07 (s, 1H), 1.90 – 1.75 (m, 2H), 1.58 (dd, J = 14.8, 7.6 Hz, 2H), 1.21 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.6, 132.8, 130.3, 129.5, 128.3, 67.5, 64.9, 35.5, 25.1, 23.5.

HRMS (ESI, m/z): Calculated for C₁₂H₁₇O₃ (M+ H)⁺ 209.1172, found 209.1171.

3. 6-hydroxyheptyl benzo[d][1,3]dioxole-5-carboxylate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1)

¹**H NMR (400 MHz, CDCI₃):** δ 7.63 (dd, J = 8.0, 1.6 Hz, 1H), 7.45 (d, J = 1.6 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.02 (s, 2H), 4.26 (t, J = 6.4 Hz, 2H), 3.82 – 3.75 (m, 1H), 1.78 – 1.71 (m, 2H), 1.52 – 1.33 (m, 6H), 1.18 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.0, 151.4, 147.6, 125.2, 124.4, 109.4, 107.9, 101.7, 67.9, 64.9, 39.1, 28.7, 26.0, 25.4, 23.5.

HRMS (ESI, m/z): Calculated for C₁₅H₂₀NaO₅ (M+ Na)⁺ 303.1203, found 303.1200.

4. 6-hydroxyheptyl 4-(N,N-dipropylsulfamoyl)benzoate

A light yellow liquid after purification by flash column chromatography (petroleum

ether/ethyl acetate = 5/1)

¹**H NMR (400 MHz, CDCI₃):** δ 8.15 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 4.35 (t, J = 6.8 Hz, 2H), 3.86 - 3.77 (m, 1H), 3.12 - 3.08 (m, 4H), 1.83 - 1.76 (m, 2H), 1.59 - 1.39 (m, 10 H), 1.20 (d, J = 6.0 Hz, 3H), 0.87 (t, J = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 165.3, 144.2, 133.7, 130.2, 127.0, 68.0, 65.6, 49.9, 39.1, 28.6, 26.0, 25.4, 23.6, 21.9, 11.2.

HRMS (ESI, m/z): Calculated for C₂₀H₃₃NNaO₅S (M+Na)⁺ 422.1972, found 422.1978.

5. 4-hydroxypentyl 3-phenylpropanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.33 – 7.29 (m, 2H), 7.23 – 7.21 (m, 3H), 4.11 (t, *J* = 6.4 Hz, 2H), 3.84 – 3.76 (m, 1H), 2.97 (t, *J* = 8.0 Hz, 2H), 2.65 (t, *J* = 8.0 Hz, 2H), 1.94 (s, 1H), 1.81 – 1.61 (m, 2H), 1.46 (dd, *J* = 14.4, 7.6 Hz, 2H), 1.20 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.9, 140.4, 128.4, 128.2, 126.1, 67.4, 64.4, 35.8, 35.3, 30.9, 24.9, 23.4.

HRMS (ESI, m/z): Calculated for C₁₄H₂₀NaO₃ (M+ Na)⁺ 259.1305, found 259.1303.

6. 6-hydroxyheptyl nicotinate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1).

¹H NMR (400 MHz, CDCl₃): δ 9.21 (s, 1H), 8.76 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 7.40 – 7.37 (m, 1H), 4.34 (t, J = 6.4 Hz, 2H), 3.85 – 3.74 (m, 1H), 1.83 – 1.71 (m, 2H), 1.55 – 1.33 (m, 6H), 1.18 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.3, 153.2, 150.8, 137.0, 126.3, 123.3, 67.8, 65.4, 39.1, 28.6, 26.0, 25.4, 23.6.

HRMS (ESI, m/z): Calculated for C₁₃H₂₀NO₃ (M+H)⁺ 238.1438, found 238.1437.

7. 2-(5-hydroxyhexyl)isoindoline-1,3-dione

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1)

¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 5.2, 2.8 Hz, 2H), 7.70 (dd, J = 5.2, 2.8 Hz, 2H), 3.82 – 3.74 (m, 1H), 3.69 (t, J = 7.2 Hz, 2H), 1.73 – 1.66 (m, 2H), 1.54 – 1.34 (m, 4H), 1.17 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.5, 133.7, 132.1, 123.2, 67.8, 38.6, 37.8, 28.5, 23.5, 22.9.

HRMS (ESI, m/z): Calculated for C₁₄H₁₇NNaO₃ (M+Na)⁺ 270.1101, found 270.1104.

8. naphthalen-2-yl 6-hydroxyheptanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.8 Hz, 2H), 7.80 (d, J = 7.2 Hz, 2H), 7.55 (s, 1H), 7.51 – 7.44 (m, 2H), 7.26 – 7.21 (m, 1H), 3.90 – 3.80 (m, 1H), 2.64 (t, J = 7.2 Hz, 2H), 1.88 – 1.75 (m, 2H), 1.63 – 1.42 (m, 4H), 1.22 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.3, 148.3, 133.7, 131.4, 129.4, 127.7, 127.6, 126.5, 125.6, 121.1, 118.5, 67.8, 38.8, 34.4, 25.3, 24.9, 23.6.

HRMS (ESI, m/z): Calculated for $C_{17}H_{24}NO_3(M+NH_4)^+$ 290.1751, found 290.1750.

9. 8-(naphthalen-2-yloxy)octan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1)

¹**H NMR (400 MHz, CDCI₃):** δ 7.78 – 7.72 (m, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.15 (dd, J = 11.2, 2.0 Hz, 2H), 4.08 (t, J = 6.4 Hz, 2H), 3.85 – 3.77 (m, 1H), 1.90 – 1.83 (m, 2H), 1.57 – 1.37 (m, 8H), 1.20 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 157.0, 134.6, 129.3, 128.8, 127.6, 126.6, 126.3, 123.4, 119.0, 106.5, 68.1, 67.9, 39.2, 29.4, 29.2, 26.1, 25.7, 23.5.

HRMS (ESI, m/z): Calculated for C₁₈H₂₄NaO₂ (M+ Na)⁺ 295.1669, found 295.1665.

10. 6-phenylhexan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1)

¹**H NMR (400 MHz, CDCl₃):** δ 7.31 (t, J = 7.2 Hz, 2H), 7.21 (d, J = 6.8 Hz, 3H), 3.85 – 3.75 (m, 1H), 2.66 (t, J = 7.6 Hz, 2H), 2.03 (s, 1H), 1.75 – 1.63 (m, 2H), 1.59 – 1.34 (m, 4H), 1.21 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 142.5, 128.3, 128.2, 125.5, 67.9, 39.0, 35.8, 31.4, 25.4, 23.4.

HRMS (ESI, m/z): Calculated for C₁₂H₂₂NO (M+NH₄)⁺ 196.1696, found 196.1695.

11. octane-1,7-diol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1).

¹H NMR (400 MHz, CDCl₃): δ 3.81 - 3.71 (m, 1H), 3.60 (t, J = 6.4 Hz, 2H), 2.04 (s, 2H), 1.59 - 1.50 (m, 2H), 1.48 - 1.26 (m, 8H), 1.16 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 68.0, 62.7, 39.1, 32.6, 29.3, 25.6, 25.6, 23.4.

HRMS (ESI, m/z): Calculated for C₈H₁₈NaO₂ (M+ Na)⁺ 169.1199, found 169.1202.

12. 8-(oxiran-2-yl)octan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1)

¹**H NMR (400 MHz, CDCl₃):** δ 3.83 – 3.73 (m, 1H), 2.92 – 2.85 (m, 1H), 2.73 (t, *J* = 4.4 Hz, 1H), 2.45 (dd, *J* = 5.2, 2.8 Hz, 1H), 1.55 – 1.27 (m, 12H), 1.17 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 68.1, 52.4, 47.1, 39.3, 32.5, 29.5, 29.4, 25.9, 25.7, 23.5.

HRMS (ESI, m/z): Calculated for C₁₀H₂₀NaO₂ (M+ Na)⁺ 195.1356, found 195.1359.

13. 8-bromooctan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1)

¹**H NMR (400 MHz, CDCI₃):** δ 3.81 – 3.77 (m, 1H), 3.40 (t, *J* = 6.8 Hz, 2H), 1.89 – 1.82 (m, 2H), 1.46 – 1.32 (m, 8H), 1.18 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 68.1, 39.2, 33.9, 32.7, 28.7, 28.1, 25.6, 23.5.

HRMS (ESI, m/z): Calculated for C₈H₁₇BrNaO (M+Na)⁺ 231.0355, found 231.0359.

14. 1-cyclooctylethanol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1)

¹**H NMR (400 MHz, CDCl₃):** δ 3.66 – 3.60 (m, 1H), 1.74 – 1.43 (m, 17H), 1.34 – 1.27 (m, 3H), 1.13 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 73.0, 44.3, 28.8, 28.4, 26.9, 26.7, 26.7, 26.3, 26.1, 19.9.

MS(EI): *m/z*(%): 155(0.1), 141(0.8), 111(41.1), 110(40.1), 95(10.7), 82(35.2), 81(23.7), 69(100).

15. decan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹H NMR (400 MHz, CDCl₃): δ 3.78 – 3.71 (m, 1H), 1.89 (s, 1H), 1.43 – 1.36 (m, 2H), 1.31 – 1.20 (m, 12H), 1.15 (d, *J* = 6.4 Hz, 3H), 0.85 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 68.0, 39.3, 31.8, 29.6, 29.5, 29.2, 25.7, 23.4, 22.6, 14.0.

MS(EI): *m/z*(%): 158(0.1),157(1.0),143(9.3), 112(21.7), 97(17.6), 83(29.6), 69(44.5), 55(27.3), 45(100).

16. butyl 4-hydroxypentanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 4.06 (t, J = 6.4 Hz, 2H), 3.85 – 3.77 (m, 1H), 2.42 (t, J = 7.2 Hz, 2H), 2.08 (s, 1H), 1.82 – 1.66 (m, 2H), 1.62 – 1.55 (m, 2H), 1.40 – 1.31 (m, 2H), 1.19 (d, J = 6.4 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃): δ 174.2, 67.3, 64.4, 33.8, 30.7, 30.6, 23.4, 19.1, 13.6.

HRMS (ESI, m/z): Calculated for C₉H₁₉O₃ (M+H)⁺ 175.1329, found 175.1326.

17. tert-butyl 4-hydroxypentanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ3.86 – 3.79 (m, 1H), 2.35 (t, J = 7.2 Hz, 2H), 2.01 – 1.88 (m, 1H), 1.80 – 1.64 (m, 3H), 1.44 (s, 9H), 1.20 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃): δ 173.6, 80.5, 67.5, 34.0, 32.1, 28.1, 23.5.

HRMS (ESI, m/z): Calculated for C₉H₁₈NaO₃ (M+Na)⁺ 197.1148, found 197.1150.

18. tert-butyl 5-hydroxyhexanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ 3.77– 3.71 (m, 1H), 2.32 (s, 1H), 2.19 (t, *J* = 7.2 Hz, 2H), 1.70 – 1.55 (m, 2H), 1.46 – 1.33 (m, 2H), 1.39 (s, 9H), 1.14 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 173.2, 80.1, 67.3, 38.4, 35.2, 28.0, 23.3, 21.0.

HRMS (ESI, m/z): Calculated for C₁₀H₂₀KO₃ (M+K)⁺ 227.0469, found 227.0468.

19.6-hydroxyheptanoic acid

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 6.89 (s, 1H), 3.84 - 3.76 (m, 1H), 2.33 (t, J = 7.2 Hz, 2H), 1.68 - 1.57 (m, 2H), 1.51 - 1.30 (m, 4H), 1.17 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 178.9, 67.9, 38.6, 33.9, 25.1, 24.6, 23.2.

HRMS (ESI, m/z): Calculated for C₇H₁₅O₃ (M+H)⁺ 147.1380, found 147.1378.

20.13-hydroxytetradecanoic acid

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 6.55 (s, 1H), 3.82 - 3.76 (m, 1H), 2.32 (t, J = 7.2 Hz, 2H), 1.65 - 1.58 (m, 2H), 1.45 - 1.25 (m, 18H), 1.17 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 179.4, 68.3, 39.2, 34.0, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 25.7, 24.7, 23.3.

HRMS (ESI, m/z): Calculated for C₁₄H₂₈O₃ (M+Na)⁺ 267.1931, found 267.1930.

21. 15-hydroxyhexadecanoic acid

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 6.07 (s, 1H), 3.85 - 3.75 (m, 1H), 2.33 (t, J = 7.2 Hz, 2H), 1.67 - 1.57 (m, 2H), 1.51 - 1.22 (m, 22H), 1.18 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 179.4, 68.3, 39.3, 34.0, 29.6, 29.6, 29.5, 29.5, 29.5, 29.5, 29.4, 29.2, 29.0, 25.7, 24.7, 23.3.

HRMS (ESI, m/z): Calculated for C₁₆H₃₂NaO₃ (M+Na)⁺ 295.2244, found 295.2243.

22. dimethyl (3-hydroxybutyl)phosphonate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1)

¹**H NMR (400 MHz, CDCl₃):** δ 3.72 – 3.69 (m, 1H), 3.64 (s, 3H), 3.61 (s, 3H), 3.47 (s, 1H), 1.93 – 1.52 (m, 4H), 1.08 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 66.9, 52.2, 31.2, 22.9, 21.3, 19.9.

³¹P NMR (162 MHz, CDCl₃): δ 37.78 – 33.85 (m, 1P).

HRMS (ESI, m/z): Calculated for C₆H₁₆O₄P (M+H)⁺ 183.0781, found 183.0779.

23. 5-(dimethyl(phenyl)silyl)pentan-2-ol

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.54 (d, *J* = 2.0 Hz, 2H), 7.38 (t, *J* = 2.0 Hz, 3H), 3.81 – 3.75 (m, 1H), 1.58 – 1.36 (m, 4H), 1.17 (d, *J* = 6.4 Hz, 3H), 0.85 – 0.73 (m, 2H), 0.30 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 139.3, 133.5, 128.8, 127.7, 67.7, 43.1, 23.4, 20.1, 15.7, -3.1.

HRMS (ESI, m/z): Calculated for C₁₃H₂₂KOSi (M+K)⁺ 261.1072, found 261.1069.

24. (8R,9S,13S,14S)-3-((6-hydroxyheptyl)oxy)-13-methyl-7,8,9,11,12,13,15,16 -octahydro-6H-cyclopenta[a]phenanthren-17(14H)-one

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.18 (d, J = 8.8 Hz, 1H), 6.70 (dd, J = 8.4, 2.4 Hz, 1H), 6.64 (s, 1H), 3.93 (t, J = 6.4 Hz, 2H), 3.85 – 3.77 (m, 1H), 2.91 – 2.87 (m, 2H), 2.50 (dd, J = 18.8, 8.4 Hz, 1H), 2.41 – 2.37 (m, 1H), 2.27 – 2.18 (m, 1H), 2.18 – 1.93 (m, 5H), 1.81 – 1.74 (m, 3H), 1.67 – 1.36 (m, 10H), 1.19 (d, J = 6.4 Hz, 3H), 0.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 220.9, 157.1, 137.6, 131.8, 126.2, 114.5, 112.1, 68.0, 67.7, 50.4, 48.0, 43.9, 39.2, 38.4, 35.8, 31.6, 29.6, 29.3, 26.5, 26.1, 25.9, 25.5, 23.5, 21.5, 13.8.

HRMS (ESI, m/z): Calculated for $C_{25}H_{37}O_3 (M+H)^+ 385.2737$, found 385.2743.

25. 5-hydroxy-3-methylhexyl 4-methoxybenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 9.2 Hz, 2H), 4.33 – 4.20 (m, 2H), 3.88 - 3.80 (m, 1H), 3.74 (s, 3H), 2.60 (s, 1H), 1.83 - 1.66 (m, 2H), 1.57 - 1.46 (m, 1H), 1.40 - 1.31 (m, 1H), 1.19 - 1.10 (m, 4H), 0.91 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.3, 163.0, 131.3, 122.5, 113.3, 65.1, 62.8, 55.1, 46.3, 36.0, 26.5, 24.1, 19.1.

HRMS (ESI, m/z): Calculated for C₁₅H₂₆NO₄ (M+NH₄)⁺ 284.1048, found 284.1047.

25'. 3-methyl-5-oxohexyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.37 – 4.26 (m, 2H), 3.85 (s, 3H), 2.50 (dd, J = 16.4, 5.6 Hz, 1H), 2.33 (dd, J = 16.2, 7.8 Hz, 1H), 2.28 – 2.19 (m, 1H), 2.13 (s, 3H), 1.82 – 1.74 (m, 1H), 1.66 – 1.57 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 208.2, 166.3, 163.3, 131.5, 122.7, 113.6, 62.6, 55.4, 50.8, 35.4, 30.4, 26.3, 19.7.

HRMS (ESI, m/z): Calculated for C₁₅H₂₀KO₄ (M+K)⁺ 303.0993, found 303.0994.

26. (4R)-6-hydroxyheptyl 4-((3R,5S,7R,8R,9S,10S,12S,13R,14S)-3,7,12-trihydroxy -10,13- dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 1/3).

¹**H NMR (400 MHz, CDCl₃):** δ 4.03 (t, J = 6.4 Hz, 2H), 3.92 (s, 1H), 3.80 (s, 1H), 3.78 – 3.74 (m, 1H), 3.70 – 3.55 (m, 1H), 3.40 (d, J = 6.0 Hz, 3H), 3.16 (s, 2H), 2.37 – 2.31 (m, 1H), 2.24 – 2.13 (m, 3H), 1.90 – 1.11 (m, 27H), 0.96 (d, J = 5.2 Hz, 3H), 0.90 (d, J = 12 Hz, 3H), 0.85 (s, 3H), 0.64 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.5, 73.0, 71.8, 68.5, 67.8, 64.2, 46.9, 46.3, 41.4, 40.4, 39.4, 39.1, 35.2, 34.7, 31.3, 30.9, 30.2, 29.5, 28.6, 28.1, 27.4, 26.5, 26.3, 25.9, 25.8, 25.3, 23.4, 23.2, 22.4, 17.2, 12.4.

HRMS (ESI, m/z): Calculated for C₃₁H₅₄NaO₆ (M+ Na)⁺ 545.3813, found 545.3818.

27. (3-(1-hydroxyethyl)cyclopentyl)methyl 4-chlorobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (400 MHz, CDCI₃): δ 7.96 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 7.6 Hz, 2H), 4.23 – 4.18 (m, 2H), 3.63 – 3.58 (m, 1H), 2.45 – 2.40 (m, 1H), 1.98 – 1.91 (m, 2H), 1.86 – 1.62 (m, 2H), 1.56 – 1.27 (m, 3H), 1.19 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.8, 139.3, 130.9, 128.8, 128.6, 71.9, 68.9, 46.8, 38.1, 31.4, 29.7, 28.7, 22.3.

HRMS (ESI, m/z): Calculated for C₁₅H₁₉ClNaO₃ (M+Na)⁺ 305.0915, found 305.0914.

28. 3-hydroxy-2-isopropylbutyl 4-methoxybenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.97 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.60 (dd, J = 11.6, 4.4 Hz, 1H), 4.47 (dd, J = 11.6, 4.4 Hz, 1H), 4.03 – 3.97 (m, 1H), 3.85 (s, 3H), 2.03 – 1.94 (m, 1H), 1.83 (s, 1H), 1.54 – 1.49 (m, 1H), 1.30 (d, J = 6.4 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.6, 163.4, 131.6, 122.5, 113.7, 67.3, 62.7, 55.4, 50.6, 27.5, 22.1, 21.5, 19.2.

HRMS (ESI, m/z): Calculated for C₁₅H₂₂NaO₄ (M+Na)⁺ 289.1410, found 289.1411.

29. 6-hydroxyhexyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4Hz, 2H), 4.31 (t, J = 6.8 Hz, 2H), 3.65 (t, J = 6.4 Hz, 2H), 1.81 – 1.74 (m, 2H), 1.63 – 1.56 (m, 2H), 1.50 – 1.42 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.0, 129.3, 127.9, 65.2, 62.8, 32.5, 28.6, 25.8, 25.4.

HRMS (ESI, m/z): Calculated for C₁₃H₂₁BrNO₃ (M+NH₄)⁺ 318.0699, found 318.0698.

30. 6-hydroxyoctyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 4.31 (t, *J* = 6.4 Hz, 2H), 3.57 – 3.48 (m, 1H), 1.80 – 1.72 (m, 2H), 1.54 – 1.39 (m, 8H), 0.93 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.0, 129.3, 127.9, 73.1, 65.2, 36.7, 30.2, 28.6, 26.1, 25.3, 9.9.

HRMS (ESI, m/z): Calculated for C₁₅H₂₅BrNO₃ (M+NH₄)⁺ 346.1012, found 346.1013.

31. 6-hydroxy-6-methylheptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1)

¹**H NMR (400 MHz, CDCl₃):** δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 4.30 (t, *J* = 6.8 Hz, 2H), 1.82 – 1.74 (m, 2H), 1.52 – 1.37 (m, 6H), 1.20 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9 131.6, 131.0, 129.3, 127.9 70.8, 65.3 43.7, 29.2, 28.7, 26.5, 24.0.

HRMS (ESI, m/z): Calculated for C₁₅H₂₁BrNaO₃ (M+Na)⁺ 351.0566, found 351.0574.

32. 4-hydroxyheptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, J = 8.4Hz, 2H), 7.57 (d, J = 8.4Hz, 2H), 4.34 (t, J = 6.8 Hz, 2H), 3.71 – 3.62 (m, 1H), 1.99 – 1.71 (m, 2H), 1.66 – 1.30 (m, 6H), 0.93 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.0, 129.3, 127.9, 71.2, 65.3, 39.8, 33.7, 25.0, 18.8, 14.0.

HRMS (ESI, m/z): Calculated for C₁₄H₁₉BrNaO₃ (M+Na)⁺ 337.0410, found 337.0417.

33. 6-hydroxydecyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 4.31 (t, *J* = 6.4 Hz, 2H), 3.64 – 3.55 (m, 1H), 1.81 – 1.74 (m, 2H), 1.51 – 1.29 (m, 12H), 0.90 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.1, 129.3, 127.9, 71.8, 65.3, 37.3, 37.2, 28.7, 27.8, 26.1, 25.3, 22.7, 14.1.

HRMS (ESI, m/z): Calculated for $C_{17}H_{29}BrNO_3$ (M+NH₄)⁺ 374.1325, found 374.1327.

34. 4-hydroxyoctyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 4.34 (t, *J* = 6.4 Hz, 2H), 3.69 – 3.63 (m, 1H), 1.99 – 1.77 (m, 2H), 1.63 – 1.28 (m, 8H), 0.90 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.2, 128.0, 71.5, 65.3, 37.3, 33.7, 27.8, 25.0, 22.7, 14.0.

HRMS (ESI, m/z): Calculated for C₁₅H₂₁BrNaO₃ (M+Na)⁺ 351.0566, found 351.0572.

35. 4-hydroxy-4-methylheptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.8 Hz, 2H), 1.87 – 1.80 (m, 2H), 1.59 – 1.55 (m, 2H), 1.50 – 1.46 (m, 2H), 1.33 – 1.30 (m, 4H), 1.19 (s, 3H), 0.91 (t, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.3, 128.0, 72.4, 65.7, 41.7, 37.9, 26.9, 26.1, 23.4, 23.2, 14.1.

HRMS (ESI, m/z): Calculated for C₁₆H₂₃BrNaO₃ (M+Na)⁺ 365.0723, found 365.0726.

36. 4-ethyl-4-hydroxyhexyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1)

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 4.32 (t, *J* = 6.8 Hz, 2H), 1.83 – 1.78 (m, 2H), 1.56 – 1.47 (m, 6H), 1.16 (s, 1H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.0, 129.3, 127.9, 74.3, 65.7, 34.4, 31.0, 23.0, 7.8.

HRMS (ESI, m/z): Calculated for C₁₅H₂₁BrNaO₃ (M+Na)⁺ 351.0566, found 351.0572.

37. 3-(1-hydroxycyclopentyl)propyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 4.34 (t, *J* = 6.4 Hz, 2H), 1.95 – 1.88 (m, 2H), 1.85 – 1.77 (m, 2H), 1.70 – 1.54 (m, 8H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.0, 129.3, 127.9, 82.1, 65.7, 39.8, 37.6, 24.3, 23.7.

HRMS (ESI, m/z): Calculated for C₁₅H₁₉BrNaO₃ (M+Na)⁺ 349.0410, found 349.0415.

38. 3-(1-hydroxycyclohexyl)propyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.88 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 4.32 (t, *J* = 6.8 Hz, 2H), 1.89 – 1.81 (m, 2H), 1.62 – 1.36 (m, 12H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.0, 129.3, 127.9, 71.0, 65.8, 38.5, 37.4, 25.7, 22.5, 22.2.

HRMS (ESI, m/z): Calculated for C₁₆H₂₁BrNaO₃ (M+ Na)⁺ 363.0566, found 363.0567.

39. 4,5-dihydroxypentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 4.34 (t, J = 6.4 Hz, 2H), 3.78 – 3.74 (m, 1H), 3.67 (d, J = 10.8 Hz, 1H), 3.48 – 3.44 (m, 1H), 2.74 (s, 1H), 2.48 (s, 1H), 2.01 – 1.78 (m, 2H), 1.60 – 1.54 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 166.0, 131.7, 131.1, 129.1, 128.1, 71.7, 66.7, 65.1, 29.4, 25.0.

HRMS (ESI, m/z): Calculated for C₁₂H₁₆BrO₄ (M+H)⁺ 303.0226, found 303.0224.

40. 4,5-dihydroxy-4-methylpentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1)

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.8 Hz, 2H), 3.47 (q, J = 10.8 Hz, 2H), 2.21 (s, 2H), 1.90 – 1.80 (m, 2H), 1.67 – 1.54 (m, 2H), 1.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.2, 128.0, 72.5, 69.8, 65.6, 34.7, 23.3, 23.2.

HRMS (ESI, m/z): Calculated for C₁₃H₁₈BrO₄ (M+H)⁺ 317.0383, found 317.0384.

41. 6,8-dihydroxyoctyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1)

¹**H NMR (400 MHz, CDCI₃):** δ 7.87 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.4 Hz, 2H), 3.98 – 3.85 (m, 2H), 3.85 – 3.77 (m, 1H), 3.07 (s, 1H), 2.72 (s, 1H), 1.98 – 1.77 (m, 2H), 1.80 – 1.74 (m, 2H), 1.73 – 1.68 (m, 2H), 1.64 – 1.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.0, 129.2, 128.0, 71.4, 65.2, 61.6, 38.3, 34.0, 24.9.

HRMS (ESI, m/z): Calculated for C₁₃H₁₇BrNaO₄ (M+Na)⁺ 339.0202, found 339.0199.

42¹. 4-hydroxy-5-methoxypentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.35 (t, J = 6.4 Hz, 2H), 3.87 – 3.81 (m, 1H), 3.42 (dd, J = 9.6, 3.2 Hz, 1H), 3.39 (s, 3H), 3.26 (dd, J = 9.6, 7.6 Hz, 1H), 2.03 – 1.92 (m, 1H), 1.90 – 1.79 (m, 1H), 1.60 – 1.55 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.2, 128.0, 76.8, 70.0, 65.1, 59.0, 29.5, 24.9.

HRMS (ESI, m/z): Calculated for C₁₃H₁₈BrO₄ (M+H)⁺ 317.0383, found 317.0384.

42². 5-hydroxy-4-methoxypentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.88 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.4 Hz, 2H), 3.72 (dd, J = 11.2, 2.8 Hz, 1H), 3.55 – 3.52 (m, 1H), 3.41 (s, 3H), 3.35 – 3.29 (m, 1H), 1.89 – 1.79 (m, 2H), 1.77 – 1.57 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 165.8, 131.7, 131.0, 129.2, 128.0, 80.9, 65.1, 63.5, 57.2, 27.0, 24.6.

HRMS (ESI, m/z): Calculated for C₁₃H₁₈BrO₄ (M+H)⁺ 317.0383, found 317.0383.

43. 7,7,7-trifluoro-6-hydroxyheptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 4.33 (t, J = 6.4 Hz, 2H), 3.98 – 3.87 (m, 1H), 2.20 (s, 1H), 1.83 – 1.76 (m, 2H), 1.74 – 1.61 (m, 4H), 1.54 – 1.47 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 166.0, 131.7, 131.1, 129.2, 128.0, 125.1 (q, *J* = 282.8 Hz), 70.4 (q, *J* = 30.9 Hz), 65.0, 29.4, 28.5, 25.7, 24.6.

¹⁹**F NMR (376 MHz, CDCI₃):** δ -80.02 (d, *J* = 6.7 Hz, 3F).

HRMS (ESI, m/z): Calculated for $C_{14}H_{20}BrF_3NO_3 (M+NH_4)^+ 386.0573$, found 386.0574.

44. 6,6,6-trifluoro-4-hydroxyhexyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 4.36 (t, J = 6.4 Hz, 2H), 4.15 – 4.05 (m, 1H), 2.38 – 2.23 (m, 2H), 2.03 (d, J = 3.6 Hz, 1H), 2.00 – 1.81(m, 2H), 1.70 – 1.65(m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.1, 128.1, 126.3 (q, *J* = 278.2 Hz), 65.8 (q, *J* = 3.0 Hz), 64.8, 41.34 (q, *J* = 26.6 Hz), 33.5, 24.7.

¹⁹F NMR (376 MHz, CDCl₃): δ -63.51 (t, J = 10.9 Hz, 3F).

HRMS (ESI, m/z): Calculated for C₁₃H₁₅BrF₃O₃ (M+H)⁺ 355.0151, found 355.0152.

45. 7,7,7-trifluoro-6-hydroxy-6-(trifluoromethyl)heptyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 4.32 (t, J =

6.8 Hz, 2H), 3.38 (s, 1H), 1.97 – 1.93 (m, 2H), 1.84 – 1.77 (m, 2H), 1.67 – 1.59 (m, 2H), 1.52 – 1.44 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 166.1, 131.7, 131.1, 129.1, 128.1, 123.16 (q, *J* = 285.7 Hz), 76.7 – 75.6 (m), 65.0, 30.3, 28.3, 26.4, 21.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -76.6 (s, 6F).

HRMS (ESI, m/z): Calculated for C₁₅H₁₆BrF₆O₃ (M+H)⁺ 437.0182, found 437.0168.

46. (E)-7-hydroxyoct-4-en-1-yl 4-chlorobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 5.62 – 5.43 (m, 2H), 4.33 (td, J = 6.4, 1.2 Hz, 2H), 3.85 – 3.76 (m, 1H), 2.26 – 2.07 (m, 4H), 1.89 – 1.82 (m, 2H), 1.61 (s, 1H), 1.19 (d, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.7, 139.3, 132.6, 130.9, 128.8, 128.7, 127.3, 67.2, 64.5, 42.5, 29.0, 28.4, 22.7.

HRMS (ESI, m/z): Calculated for C₁₅H₁₉ClNaO₃ (M+Na)⁺ 305.0915, found 305.0918.

47. 5-(tetrahydrofuran-2-yl)pentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.30 (t, J = 6.4 Hz, 2H), 3.85 (dd, J = 14.8, 7.2 Hz, 1H), 3.81 – 3.75 (m, 1H), 3.70 (dd, J = 14.8, 7.6 Hz, 1H), 2.00 – 1.92 (m, 1H), 1.90 – 1.82 (m, 2H), 1.80 – 1.73 (m, 2H), 1.62 – 1.56 (m, 1H), 1.52 – 1.38 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.4, 127.9, 79.2, 67.6, 65.3, 35.6, 31.4, 28.7, 26.2, 26.1, 25.7.

HRMS (ESI, m/z): Calculated for C₁₆H₂₁BrNaO₃ (M+Na)⁺ 363.0566, found 363.0572.

48. 2-(4-(tetrahydrofuran-2-yl)butyl)isoindoline-1,3-dione

A colorless solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹**H NMR (400 MHz, CDCl₃):** δ7.80 – 7.76 (m, 2H), 7.67 – 7.65 (m, 2H), 3.81 – 3.71 (m, 2H), 3.65 – 3.62 (m, 3H), 1.92 – 1.78 (m, 3H), 1.68 – 1.65 (m, 2H), 1.54 – 1.31 (m, 5H).

¹³C NMR (101 MHz, CDCl₃): δ 168.2, 133.7, 132.0, 123.0, 78.9, 67.5, 37.8, 35.1, 31.2, 28.5, 25.6, 23.6.

HRMS (ESI, m/z): Calculated for C₁₆H₁₉NNaO₃ (M+Na)⁺ 296.1257, found 296.1262.

49. 4,5-dimethoxypentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.4 Hz, 2H), 3.44 – 3.42 (m, 1H), 3.42 (s, 3H), 3.40 – 3.33 (m, 5H), 1.95 – 1.76 (m, 2H), 1.71 – 1.60 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.3, 127.9, 79.5, 74.3, 65.3, 59.2, 57.5, 27.9, 24.7.

HRMS (ESI, m/z): Calculated for C₁₄H₂₃BrNO₄ (M+NH₄)⁺ 348.0805, found 348.0808.

50. 5-(5-methyltetrahydrofuran-2-yl)pentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 4.30 (t, J = 6.4 Hz, 2H), 3.95 – 3.72 (m, 2H), 1.97 – 1.85 (m, 2H), 1.81 – 1.60 (m, 4H), 1.53 – 1.39 (m, 5H), 1.23 (d, J = 6.0 Hz, 3H), 0.92 – 0.85 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.7, 131.1, 129.4, 127.9, 79.4, 75.2, 65.3, 36.1, 32.8, 31.3, 28.6, 26.2, 25.9, 21.4.

HRMS (ESI, m/z): Calculated for C₁₇H₂₄BrO₃ (M+H)⁺ 355.0903, found 355.0906.

50'. 5-(2-methyltetrahydrofuran-2-yl)pentyl 4-bromobenzoate

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

¹**H NMR (400 MHz, CDCI₃):** δ 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 4.30 (t, J = 6.4 Hz, 2H), 3.85 – 3.75 (m, 2H), 1.98 – 1.84 (m, 2H), 1.77 – 1.59 (m, 4H), 1.54 – 1.39 (m, 5H), 1.24 – 1.19 (m, 1H), 1.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 165.9, 131.6, 131.0, 129.3, 127.9, 82.4, 67.1, 65.3, 41.1, 36.7, 28.7, 26.6, 26.1, 25.6, 24.4.

HRMS (ESI, m/z): Calculated for C₁₇H₂₄BrO₃ (M+H)⁺ 355.0903, found 355.0905.

Copies of the ¹H NMR, ¹³C NMR, ¹³⁵DEPT spectra

$1-^{13}$ C NMR

$7-^{1}H$ NMR

$9-^{1}H$ NMR

tyf-2091-q3-31m

tyf-2089-20m

$13-^{1}H$ NMR

 $14-^{1}H$ NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

-2000 -1000 -0

0 -10

 17^{-1} H NMR

18-¹H NMR

20- 1 H NMR

22-³¹PNMR NMR

$31-^{1}H$ NMR

36^{-1} H NMR

tyf-2192-2-25m g-1-hc 3,508 3,481 3,455 3,455 イ1.893 イ1.872 イ1.558 イ1.558 4.347 40000 ъон Br J **У**н 35000 -30000 -25000 -20000 -15000 -10000 5000 -0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 2.0 1.5 -80 8 00 3.5 1.0 0.5 0.0 N 6.5 6.0 5.5 5.0 fl (ppm) 4.0 4.5 3.0 2.5

42¹-¹³C NMR

$42^{2}-H$ NMR

$44-^{1}H$ NMR

46^{-1} H NMR

210

200 190 180

81

90 80 70 60 50 40 30 20

110 100 f1 (ppm)

130

120

170 160

150 140

-0

-10

0

10

-18000 -14000 -12000 -12000 -12000 -10000 -10000 -10000 -2000 -2000

210 200 190 110 100 f1 (ppm) 180 160 150 140 130 120 70 10 -10 170 90 60 50 20 80 40 30 0

 52^{-1} H NMR

 56^{-1} H NMR

58-¹H NMR

60-¹H NMR

60-¹³C NMR

 $61-^{1}H$ NMR

