Electronic Supplementary Material (ESI) for Green Chemistry.

This journal is © The Royal Society of Chemistry 2017

Supporting Information

Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion

Lin Tao,^{a,b} Mingmei Zhong,^{a,b} Jian Chen,^{a,b} Sanjeevi Jayakumar,^{a,b} Lina Liu,^{a,b} He Li^a and Qihua Yang^{*a}

a. State Key Laboratory of Catalysis, *i*ChEM, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road,
Dalian 116023, China.

b. University of Chinese Academy of Sciences, Beijing 100049, China

Characterization of water contact angles of solid materials

The sample tablets were prepared according to the method mentioned in literature ^{S1}. After drying at 100 °C in oven overnight, the silica nanospheres were pressed into tablets using a cylindrical stainless steel die of 1 cm in diameter under 10 MPa for 2 min. Water contact angle measurements were performed on KRÜSS DSA100 using water as testing liquid.

Fig. S1 TEM images of (a) DMSN-C18N-0.5, (b) DMSN-C18N-1.2 and (c) MCM-C18N-1.8.

Fig. S2 Nitrogen adsorption-desorption isotherms of DMSN-C18N-X (X=0.5, 1.2).

Fig. S3 CLSM images of emulsion formed with (a) DMSN-C18N-0.5 and (b) DMSN-C18N-1.2 by dying [BMIM][BF₄] with rhodamine 6G (scale bar, 100 μm).

Fig. S4 Photographs and microscopic images of emulsion systems with DMSN-C18N-X and MCM-C18N-1.8. Emulsion formation: 60 mg silica nanospheres, 1 mL of H₂O (including Rh 3.0 ×10⁻³ mmol, P/Rh=15) and 1 mL of 1-dodecene. The emulsions were kept under static conditions for different time intervals (scale bar, 200 μ m). (a) newly formed, (b) after 1 day, (c) after 3 days, (d) after 10 day.

Fig. S5 The photographs of IL-in-oil emulsion with DMSN-C18N-0.8 including different amount of tridecyl aldehyde (scale bar 200 μ m). Emulsion formation: 60 mg of silica nanospheres, 1 mL of [BMIM][BF₄] (including Rh 4.5 ×10⁻³ mmol, P/Rh=15) and 1 mL of oil phase including desired amount of 1-dodecene and tridecyl aldehyde with molar ratio of (a) 1:0 (conversion of 0%), (b) 4:1 (conversion of 20%), (c) 3:2 (conversion of 40%), (d) 2:3 (conversion of 60%), (e) 1:4 (conversion of 80%). The emulsions were kept under static conditions for 10 minutes.

Fig. S6 Photographs and microscopic images of the Pickering emulsion formed with reused DMSN-C18N-0.8 at the beginning of each reaction cycle (scale bar, 200 μ m).

Table S1 Comparison of the activity of hydroformylation of long chain alkenes with

System	Substrate	S/C	T (h)	Temp. (°C)	Conv. (%)	Sel. (%)	n/b	TOF (h ⁻¹)	Ref.
Oil-[BMIM[PF ₆] biphase	1-octene	1000	24	120	86	85	90:10	36	S2
Water-oil biphase	1-octene	3820	24	120	/	97	99:1	5	S3
Water-oil biphase	1-hexene	3000	48	120	13	100	97:3	24	S4
Water-oil microemulsion	1-dodecene	/	3	110	34	95	98:2	642	S5
Water-oil Pickering emulsion (cyclodextrin as emulsifier)	1-octene	508	24	120	90	99	95:5	/	S6

Rh-Sulfoxantphos as catalyst in biphase and emulsion systems

References

- S1 L. Forny, K. Saleh, R. Denoyel and I. Pezron, Langmuir, 2010, 26, 2333.
- S2 J. Dupont, S. M. Silva and R. F. de Souza, Catal. Lett., 2001, 77, 131.
- S3 M. S. Goedheijt, B. E. Hanson, J. N. H. Reek, P. C. J. Kamer and P. W. N. M.van Leeuwen, J. Am. Chem. Soc., 2000, 122, 1650.
- S4 M. S. Goedheijt, P. C. J. Kamer and P. W. N. M. van Leeuwen, *J. Mol. Catal.A-Chem.*, 1998, **134**, 243.
- S5 T. Hamerla, A. Rost, Y. Kasaka and R. Schomacker, *ChemCatChem*, 2013, **5**, 1854.
- S6 L. Leclercq, F. Hapiot, S. Tilloy, K. Ramkisoensing, J. N. H.Reek, P. W. N. M. van Leeuwen and E. Monflier, *Organometallics*, 2005, **24**, 2070.