#### **Supporting Information for**

# Direct Synthesis of Carbamate from CO<sub>2</sub> Using a Task-Specific Ionic Liquid Catalyst

Qiao Zhang,<sup>a</sup> Hao-Yu Yuan,<sup>b</sup> Norihisa Fukaya,<sup>a</sup> Hiroyuki Yasuda<sup>a</sup> and Jun-Chul Choi\*<sup>ab</sup>

<sup>a</sup> National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

<sup>b</sup> Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

\*Corresponding author. Email: junchul.choi@aist.go.jp. Tel: (+81) 029-861-9283.

## Contents

### Page S3:

I. GC-MS determination of the hydrolysis products of silicate esters (Scheme S1 and Figure S1).

### Page S4:

II. Supplementary GC-MS spectra for Figure 6 (Figure S2).

### Page S5:

III. Supplementary HR-MS spectra for Figure 9 (Figure S3).

### Page S6:

IV. Supplementary <sup>1</sup>H NMR spectra for Figure 6 (Figure S4 and S5).

### Page S7:

V. <sup>1</sup>H NMR chemical shifts of the *NH*<sub>2</sub> group of aniline with the addition of [DBNH][OAc] and [TBDH][OAc] (Figures S6 and S7).

#### Page S8:

VI. An example of HPLC graph (Figure S8).

## Pages S9-S12:

VII. <sup>1</sup>H NMR, <sup>13</sup>C{<sup>1</sup>H} NMR, and MS data for isolated products 1a-1n.

## Pages S13-S26:

VIII. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for isolated products **1a–1n** (Figures S9–S36).

I. GC-MS determination of the hydrolysis products of silicate esters.



Scheme S1. Hydrolysis of silicate esters.



**Figure S1**. Supplementary GC-MS spectra for Figure 2: characterization of hydrolysis products from silicate esters. Spectra are consistent with database from Wiley Subscription Services.

II. Supplementary GC-MS spectra for Figure 6.



# Figure S2.

- (A) Supplementary GC-MS spectra for Figure 6A (extended m/z range);
- (B) Supplementary GC-MS spectra for Figure 6B (extended *m/z* range);
- (C) Standard GC-MS spectra of 1.

III. Supplementary HR-MS spectra for Figure 9.





### Figure S3.

- (A) Supplementary HR-MS spectrum (MH<sup>+</sup>) for Figure 9B (with <sup>17</sup>O labeled H<sub>2</sub>O).
- (B) Supplementary HR-MS spectrum (MH<sup>+</sup>) for Figure 9C (with <sup>18</sup>O labeled H<sub>2</sub>O).

IV. Supplementary <sup>1</sup>H NMR spectra for Figure 6.



**Figure S4**. Supplementary <sup>1</sup>H NMR spectrum (400 MHz, DMSO- $d_6$ ) for Figure 6A. Reaction conditions: 1 mmol aniline, 2 mmol TMOS, 1 mmol [DBUD][OAc], 5 MPa CO<sub>2</sub>, 24 h, 150°C. The comparison between "a" and "c" indicated that 33% H in "a" have been exchanged.



**Figure S5**. Supplementary <sup>1</sup>H NMR spectrum (400 MHz, DMSO- $d_6$ ) for Figure 6B. Reaction conditions: 1 mmol aniline- $d_2$ , 2 mmol TMOS, 1 mmol [DBUH][OAc], 5 MPa CO<sub>2</sub>, 24 h, 150°C. The comparison between "a" and "c" indicated that 52% D in "a" have been exchanged.

V. <sup>1</sup>H NMR chemical shifts of the  $NH_2$  group of aniline with the addition of [DBNH][OAc] and [TBDH][OAc].



**Figure S6**. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) analysis *NH*<sub>2</sub> group of (A) 1.0 M aniline; (B) 1.0 M aniline and 1.0 M [DBNH][OAc]; (C) 1.0 M aniline and 2.0 M [DBNH][OAc].



**Figure S7.** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) analysis *NH*<sub>2</sub> group of (A) 1.0 M aniline; (B) 1.0 M aniline and 1.0 M [TBDH][OAc]; (C) 1.0 M aniline and 2.0 M [TBDH][OAc].

VI. An example of HPLC graph.



Figure S8. An example of HPLC graph.

| compound                         | mass (mg) | retention time (min) | peak area |
|----------------------------------|-----------|----------------------|-----------|
| aniline                          | 25        | 6.038                | 8746349   |
| <i>N</i> -phenyl methylcarbamate | 20        | 6.732                | 3556951   |
| 1,3-diphenylurea                 | 20        | 8.389                | 32272237  |
| toluene                          | 25        | 13.216               | 1384971   |

VII. <sup>1</sup>H NMR, <sup>13</sup>C{<sup>1</sup>H} NMR, and MS data for isolated products.

Product **1a**. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>): δ 7.27 (d, 2H, *J* = 7.2 Hz), 6.84 (d, 2H, *J* = 8.8 Hz), 6.63 (s, 1H), 3.77 (s, 3H), 3.75 (s, 3H). <sup>13</sup>C NMR (100MHz, DMSO-*d*<sub>6</sub>): δ 154.7, 154.1, 132.1, 119.8, 113.9, 55.1, 51.4. GC-MS: 181.

Product **1b**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.25 (d, 2H, *J* = 7.2 Hz), 7.11 (d, 2H, *J* = 8.0 Hz), 6.50 (s, 1H), 3.77 (s, 3H), 2.30 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 153.9, 136.5, 131.1, 129.0, 118.2, 51.4, 20.2. GC-MS: 165.



Product **1c**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.68 (s, 1H), 7.43 (d, 2H, *J* = 8.8 Hz), 7.38 (d, 2H, *J* = 8.4 Hz), 6.65 (dd, 1H, *J* = 17.6 Hz, <sup>2</sup>*J* = 11.2 Hz), 5.69 (d, 1H, *J* = 17.6 Hz), 5.14 (dd, 1H, *J* = 10.8 Hz, <sup>2</sup>*J* = 0.8 Hz), 3.66 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.9, 138.9, 136.1, 131.4, 126.6, 118.1, 112.3, 51.6. GC-MS: 177.



Product **1d**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.44 (d, 2H, *J* = 8.4 Hz), 7.35 (d, 2H, *J* = 8.4 Hz), 6.62 (s, 1H), 3.79 (s, 3H), 3.03 (s, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 153.8, 139.8, 132.4, 130.5, 117.9, 115.2, 112.4, 83.6, 79.5, 51.8. GC-MS: 175.



Product **1e**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 9.78 (s, 1H), 7.41-7.47 (m, 4H), 3.66 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 153.9, 138.6, 131.5, 131.7, 120.0, 113.9, 51.7. GC-MS: 231.



Product **1f**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 10.16 (s, 1H), 7.74 (d, 2H, *J* = 8.8 Hz), 7.63 (d, 2H, *J* = 8.8 Hz), 3.70 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 153.7, 143.6, 133.3, 119.1, 118.0, 104.0, 52.0. GC-MS: 176.

NHCOOMe  $O_2N$ 

Product **1g**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  10.40 (s, 1H), 8.21 (dd, 2H, *J* = 7.2 Hz, <sup>2</sup>*J* = 2.0 Hz), 7.69 (dd, 2H, *J* = 7.2 Hz, <sup>2</sup>*J* = 2.0 Hz), 3.72 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.7, 145.7, 141.7, 125.1, 117.6, 52.2.

NHCOOMe

Product **1h**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  10.09 (s, 1H), 8.38 (dd, 2H, J = 5.2 Hz, <sup>2</sup>J = 1.6 Hz), 7.43 (dd, 2H, J = 4.8 Hz, <sup>2</sup>J = 1.6 Hz), 3.70 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.7, 150.2, 146.0, 112.2, 52.0. GC-MS: 152.

*n*-C<sub>6</sub>H<sub>13</sub> NHCOOMe

Product **1i**. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ): 7.03 (s, 1H), 3.51 (s, 3H), 2.95 (q, 2H, J = 6.4 Hz), 1.23-1.39 (m, 8H), 0.86 (t, 3H, J = 2.8 Hz). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ):  $\delta$  156.6, 51.1, 50.6, 31.0, 29.4, 25.9, 22.0, 13.9. GC-MS: 159.

NHCOOMe

Product **1j**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>): δ 6.99 (s, 1H), 3.49 (s, 3H), 3.23 (m, 1H), 1.63-1.74 (m, 4H), 1.53 (d, 2H, *J* = 12.8 Hz), 1.11-1.27 (m, 4H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>): δ 155.8, 50.9, 49.4, 33.7, 25.1, 24.6. GC-MS: 157.



Product **1k**. <sup>1</sup>H NMR (400MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.60 (s, 1H), 7.46 (d, 2H, *J* = 8.4 Hz), 7.26 (t, 2H, *J* = 7.6 Hz), 6.97 (t, 1H, *J* = 7.6 Hz), 4.11 (q, 2H, *J* = 6.8 Hz), 1.24 (t, 3H, *J* = 6.8 Hz). <sup>13</sup>C NMR (100MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.5, 139.2, 128.7, 122.3, 118.1, 60.1, 14.5. GC-MS: 165.

Product **1I**. <sup>1</sup>H NMR (400MHz, DMSO-*d*<sub>6</sub>): δ 9.60 (s, 1H), 7.46 (d, 2H, *J* = 7.6 Hz), 7.26 (t, 2H, *J* = 8.0 Hz), 6.97 (t, 1H, *J* = 7.6 Hz), 4.03 (t, 2H, *J* = 6.4 Hz), 1.63 (quint, 2H, *J* = 7.6 Hz), 0.93 (t, 3H, *J* = 7.6 Hz). <sup>13</sup>C NMR (100MHz, DMSO-*d*<sub>6</sub>): δ 153.6, 139.2, 128.7, 122.3, 118.1, 65.6, 21.9, 10.3. GC-MS: 179.

NHCOO<sup>n</sup>Bu

Product **1m**. <sup>1</sup>H NMR (400MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.58 (s, 1H), 7.46 (d, 2H, *J* = 7.6 Hz), 7.26 (t, 2H, *J* = 7.6 Hz), 6.97 (t, 1H, *J* = 7.6 Hz), 4.07 (t, 2H, *J* = 6.4 Hz), 1.60 (quint, 2H, *J* = 7.6 Hz), 1.38 (sext, 2H, *J* = 7.6 Hz), 0.91 (t, 3H, *J* = 7.6 Hz). <sup>13</sup>C NMR (100MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.6, 139.2, 128.7, 122.2, 118.1, 63.8, 30.6, 18.6, 13.6. GC-MS: 193.



Product **1n**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.75 (s, 1H), 7.25 (s, 1H), 7.08 (d, 1H, *J* = 8.0 Hz), 6.54 (br s, 1H), 6.37 (br s, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.18 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  154.7, 153.9, 137.2, 136.4, 130.2, 125.5, 115.0, 114.8, 51.6, 51.5, 17.1. GC-MS: 174 for corresponding isocyanate.

VIII.  ${}^{1}H$  and  ${}^{13}C{}^{1}H$  NMR spectra for isolated products.



Figure S9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 1a.



**Figure S10**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1a**.



**Figure S12**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1b**.



**Figure S13**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **1c**.



**Figure S14**. <sup>13</sup>C{<sup>1</sup>H} NMR of (100 MHz, DMSO-*d*<sub>6</sub>) **1c**.



Figure S15. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 1d.



Figure S16.  ${}^{13}C{}^{1}H$  (100 MHz, DMSO- $d_6$ ) NMR of 1d.



**Figure S17**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **1e**.



**Figure S18**. <sup>13</sup>C{<sup>1</sup>H} (100 MHz, DMSO-*d*<sub>6</sub>) NMR of **1e**.



**Figure S20**. <sup>13</sup>C{<sup>1</sup>H} (100 MHz, DMSO-*d*<sub>6</sub>) NMR of **1f**.



**Figure S22**. <sup>13</sup>C{<sup>1</sup>H} (100 MHz, DMSO-*d*<sub>6</sub>) NMR of **1g**.



**Figure S23**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **1h**.



**Figure S24**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1h**.



Figure S25. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of 1i.



**Figure S26**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1i**.



**Figure S28**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1**j.



**Figure S29**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **1**k.



**Figure S30**. <sup>13</sup>C NMR of (100 MHz, DMSO-*d*<sub>6</sub>) **1k**.



Figure S31. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 11.



**Figure S32**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **11**.



**Figure S33**. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) of **1m**.



**Figure S34**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1m**.



Figure S35. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 1n.



**Figure S36**. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) of **1n**.