Highly Selective *sp*³ C-N Bond Activation of Tertiary

Anilines Modulated by Steric and Thermodynamic Factors

Xiaodong Jia, *, a Pengfei Li, b Yu Shao, c Yu Yuan, a Honghe Ji, b Wentao Hou, b

Xiaofei Liu, ^b and Xuewen Zhang ^a

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China

^b College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu730070, China

^c School of Information Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China

jiaxd1975@163.com

Electronic Supplementary Information

Content	page
General	S2
General experimental procedure	S2
Measurement of KIE	S2
Analytical data for compounds	S2
Solvent effect on the selected examples	S8
References	S9
¹ H and ¹³ C spectra	S10

General:

All solvents are anhydrous. TBN and TEMPO were purchased from commercial source and used without further purification. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. ¹H NMR and ¹³C NMR (400 MHz, 600MHz and 100 MHz, 150MHzrespectively) spectra were recorded in CDCl₃. Chemical shifts (δ) are reported in ppm using TMS as internal standard and spin-spin coupling constants (J) are given in Hz. The high resolution mass spectra (HRMS) were measured on an electrospray ionization (ESI) apparatus using time of flight (TOF) mass spectrometry.

General Experimental Procedure

A solution of 1 (1 mmol) and TEMPO (10 mol %) in MeCN (10 mL) or 1,4-dioxane (10 mL) was mixed fully, then TBN (1.5 eq) was added dropwise under air atmosphere. The reaction solution was stirred under room temperature. After completion monitored by TLC (by UV visualization), the solvent was removed under reduced pressure. The products were separated by silica gel column chromatography eluted with petroleum ether/acetone (v/v 50:1) to afford the products.

Measurement of KIE

The deuterated substrate d_3 -1d was synthesized by the nucleophilic substitution between N,4dimethylaniline and CD₃I under basic condition. The reaction of d_3 -1d was performed under the standard reaction conditions, and the KIE value was obtained by ¹H NMR of the products mixture.

Analytical data for compounds

N-(4-Bromophenyl)-*N*-methylnitrous amide (2a) ¹

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 9.0 Hz, 2H), 7.44 (d, *J* = 9.0 Hz, 2H), 3.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 132.5, 120.6, 120.3, 31.1. HRMS (ESI): Calc'd for C₇H₇BrN₂O + H⁺, 214.9815; found, 214.9815.

N-(4-Chlorophenyl)-N-methylnitrous amide (2b)¹

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 9.1 Hz, 2H), 7.43 (d, *J* = 9.1 Hz, 2H), 3.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 132.9, 129.6, 120.1, 31.2. HRMS (ESI): Calc'd for C₇H₇ClN₂O + H⁺, 171.0320; found, 171.0321.

N-(4-Iodophenyl)-*N*-methylnitrous amide (2c)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 9.0 Hz, 2H), 7.44 (d, *J* = 9.0 Hz, 2H), 3.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 138.5, 120.5, 91.6, 31.0. HRMS (ESI): Calc'd for C₇H₇IN₂O + H⁺, 262.9676; found, 262.9665.

N-Methyl-N-(p-tolyl)nitrous amide (2d)¹

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 3.44 (s, 1H), 2.40 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 137.3, 129.9, 119.3, 31.7, 20.9. HRMS (ESI): Calc'd for C₈H₁₀N₂O + H⁺, 151.0866; found, 151.0871.

N-Methyl-*N*-(4-(trifluoromethyl)phenyl)nitrous amide (2e) ²

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.7 Hz, 2H), 3.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 128.9 (q, *J*_{*C-F*} = 33.0 Hz), 126.7 (q, *J*_{*C-F*} = 3.8 Hz), 123.8 (q, *J*_{*C-F*} = 271.9 Hz),118.4, 30.5. HRMS (ESI): Calc'd for C₈H₇F₃N₂O + H⁺, 205.0583; found, 205.0574.

N-(4-Formylphenyl)-N-methylnitrous amide (2f)

¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.96 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 3.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 146.7, 134.5, 131.1, 118.2, 30.3. HRMS (ESI): Calc'd for C₈H₈N₂O₂ + H⁺, 165.0659; found, 165.0659.

Methyl 4-(methyl(nitroso)amino)benzoate (2g)

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 6.7 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 2H), 3.89 (s, 3H), 3.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 145.6, 131.0, 128.4, 117.8, 52.2, 30.4. HRMS (ESI): Calc'd for C₉H₁₀N₂O₃ + H⁺, 195.0764; found, 195.0758.

O₂N

N-Methyl-N-(4-nitrophenyl)nitrous amide (2h)

¹H NMR (400 MHz, CDC₃) δ 8.31 (d, *J* = 9.2 Hz, 2H), 7.74 (d, *J* = 9.1 Hz, 2H), 3.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 147.1, 145.9, 125.2, 117.9, 30.1; HRMS (ESI): Calc'd for C₇H₇N₃O₃ + H⁺, 182.0560; found, 182.0557.

N-Methyl-*N*-phenylnitrous amide (2i)¹

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 7.9 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 3.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 129.4, 127.3, 119.2, 31.4. HRMS (ESI):Calc'd for C₇H₈N₂O + H⁺, 137.0709; found, 137.0717.

N-(2-Bromophenyl)-*N*-methylnitrous amide (2j)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 3.44 (s, 1H), 2.40 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 133.9, 130.8, 128.5, 128.3, 119.9, 35.4. HRMS (ESI): Calc'd for C₇H₇BrN₂O + H⁺, 214.9815; found, 214.9805.

N-(3-Chlorophenyl)-*N*-methylnitrous amide (2k)²

¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, *J* = 1.8 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.36 – 7.31 (m, 1H), 3.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 135.2, 130.5, 127.1, 119.0, 116.8, 31.0. HRMS (ESI):Calc'd for C₇H₇ClN₂O + H⁺, 171.0320; found, 171.0316.

N-Methyl-N-(m-tolyl)nitrous amide (21)¹

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 3H), 7.15 (d, *J* = 7.1 Hz, 1H), 3.42 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 139.5, 129.2, 128.1, 119.9, 116.3, 31.6, 21.5. HRMS (ESI):Calc'd for C₈H₁₀N₂O + H⁺, 151.0866; found, 151.0867.

N-(4-Bromo-2-methylphenyl)-*N*-methylnitrous amide (2m)

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 1.9 Hz, 1H), 7.44 (dd, J = 8.2, 2.0 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 3.35 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 136.0, 134.4, 130.1, 127.1, 122.8, 35.1, 18.1. HRMS (ESI): Calc'd for C₈H₉BrN₂O + H⁺, 228.9971; found, 228.9967.

N-(2-Chloro-4-methylphenyl)-*N*-methylnitrous amide (2n)

¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 3.37 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 137.5, 131.1, 129.7, 128.5, 127.6, 35.2, 20.9. HRMS (ESI):Calc'd for C₈H₉ClN₂O + H⁺, 185.0476; found, 185.0468.

N-Methyl-N-(pyridin-2-yl)nitrous amide (20)

¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.3 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.20 (dd, *J* = 7.2, 5.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 147.9, 138.3, 121.6, 112.67, 28.2; ESI-MS m/z (relative intensity): 137 (40.1%), 107 (90.0%), 78 (100%).

N-Ethyl-*N*-(*p*-tolyl)nitrous amide (2p)³

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.15 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.3, 130.0, 119.7, 39.4, 20.9, 11.7. HRMS (ESI): Calc'd for C₉H₁₂N₂O + H⁺, 165.1022; found, 165.1019.

N-Propyl-*N*-(*p*-tolyl)nitrous amide (2q)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 4.00 – 3.93 (m, 2H), 2.38 (s, 3H), 1.62 – 1.50 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 137.3, 130.0, 119.9, 45.5, 20.9, 19.9, 11.4. HRMS (ESI): Calc'd for C₁₀H₁₄N₂O + H⁺, 179.1179; found, 179.1181.

N-Butyl-N-(p-tolyl)nitrous amide (2r)

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.03 – 3.95 (m, 2H), 2.38 (s, 3H), 1.56 – 1.45 (m, 2H), 1.34 – 1.23 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 139.2, 137.3, 130.0, 119.8, 43.8, 28.5, 20.9, 20.3, 13.6. HRMS (ESI):Calc'd for C₁₁H₁₆N₂O + H⁺, 193.1335; found, 193.1335.

N-Pentyl-*N*-(*p*-tolyl)nitrous amide (2s)

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 4.05 – 3.91 (m, 2H), 2.38 (s, 3H), 1.57 – 1.47 (m, 2H), 1.31 – 1.21 (m, 4H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 137.2, 130.0, 119.8, 44.0, 29.1, 26.1, 22.2, 20.9, 13.8. HRMS (ESI):Calc'd for C₁₂H₁₈N₂O + H⁺, 207.1492; found, 207.1483.

N-Isobutyl-N-(p-tolyl)nitrous amide (2t)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 3.89 (d, J = 7.5 Hz, 2H), 2.38 (s, 3H), 2.05 – 1.90 (m, 1H), 0.82 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.3, 130.0, 120.1, 50.1, 26.6, 20.9, 20.2, 19.8.HRMS (ESI):Calc'd for C₁₁H₁₆N₂O + H⁺, 193.1335; found, 193.1328.

N-Isopropyl-*N*-(*p*-tolyl)nitrous amide (2u)

Mixture of two isomers: ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.16 (m, 6.6H), 6.83 (d, *J* = 7.8 Hz, 1.6H), 5.25 – 5.18 (m, 1.4H), 5.05 (m, 1H), 2.41 (s, 4H), 2.37 (s, 3H), 1.44 (d, *J* = 6.8 Hz, 6H), 1.16 (d, *J* = 6.9 Hz, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 138.9, 136.8, 133.6, 130.0, 129.7, 127.4, 126.0, 56.0, 46.1, 22.0, 21.2, 21.1, 19.7.HRMS (ESI):Calc'd for C₁₀H₁₄N₂O + Na⁺, 201.1004; found, 201.0996.

N-Phenyl-*N*-(*p*-tolyl)nitrous amide (2v)

mixture of two isomers: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.5 Hz, 1H), 7.48 – 7.38 (m, 4H), 7.32 (d, *J* = 8.1 Hz, 4H), 7.27 – 7.20 (m, 2H), 7.10 (d, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H), 2.40 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 140.2, 139.7, 137.1, 134.1, 130.5, 129.9, 129.7, 129.4, 129.3, 127.3, 127.2, 126.9, 120.0, 119.6, 21.3, 21.0.HRMS (ESI):Calc'd for C₁₃H₁₂N₂O + Na⁺, 235.0847; found, 235.0845.

N,*N*-Di-*p*-tolylnitrous amide (2w)

¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.6, 2.1 Hz, 4H), 7.20 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 8.3 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 139.5, 136.9, 134.4, 130.4, 129.9, 127.0, 119.8, 21.3, 21.0. HRMS (ESI): Calc'd for C₁₄H₁₄N₂O + Na⁺, 249.1004, found, 249.1001.

N-(4-(Dimethylamino)phenyl)-*N*-methylnitrous amide (5a)

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.9 Hz, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 3.42 (s, 3H), 2.99 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 132.1, 121.2, 112.6, 40.6, 32.6; HRMS (ESI): Calc'd for C₉H₁₃N₃O + H⁺, 180.1131; found, 180.1131.

N,*N*'-(1,4-Phenylene)bis(*N*-methylnitrous amide) (5b)

¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 4H), 3.46 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 119.81, 31.2; HRMS (ESI): Calc'd for C₈H₁₀N₄O₂ + Na⁺, 217.0702; found, 217.0693.

N-Allyl-N-(p-tolyl)nitrous amide (7a)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.79 – 5.66 (m, 1H), 5.16 (d, *J* = 10.4 Hz, 1H), 5.07 (d, *J* = 17.3 Hz, 1H), 4.60 (d, *J* = 5.1 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 137.3, 130.0, 129.6, 119.5, 118.0, 46.8, 21.0. HRMS (ESI): Calc'd for C₁₀H₁₂N₂O + H⁺, 177.1022; found, 177.1015.

N-Benzyl-N-(4-methoxyphenyl)nitrous amide (7b)

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 9.1 Hz, 2H), 7.31 – 7.19 (m, 3H), 7.08 (d, J = 6.6 Hz, 2H), 6.93 (d, J = 9.1 Hz, 2H), 5.21 (s, 2H), 3.80 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 159.0, 135.0, 134.4, 128.8, 127.6, 127.3, 121.7, 114.6, 55.5, 47.9.HRMS (ESI): Calc'd for C₁₄H₁₄N₂O₂ + H⁺, 243.1128; found, 243.1130.

N-Benzyl-*N*-(*p*-tolyl)nitrous amide (7c)

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 2H), 7.32 – 7.15 (m, 5H), 7.08 (d, J = 7.1 Hz, 2H), 5.23 (s, 2H), 2.37 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 139.4, 137.4, 134.4, 130.0, 128.8, 127.5, 127.1, 119.7, 47.4, 20.9.HRMS (ESI): Calc'd for C₁₄H₁₄N₂O + H⁺, 227.1179; found, 227.1175.

N-Benzyl-N-(4-bromophenyl)nitrous amide (7d)

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.9 Hz, 2H), 7.41 (d, J = 8.9 Hz, 2H), 7.34 – 7.20 (m, 3H), 7.05 (d, J = 6.7 Hz, 2H), 5.21 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 140.7, 133.9, 132.5, 128.9, 127.8, 126.9, 120.8, 120.7, 46.8.HRMS (ESI): Calc'd for C₁₃H₁₁BrN₂O + H⁺, 291.0128; found, 291.0123.

N-Benzyl-*N*-(4-cyanophenyl)nitrous amide (7e)

¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 4H), 7.34 – 7.20 (m, 3H), 7.02 (d, *J* = 6.6 Hz, 2H), 5.23 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 145.0, 133.6, 133.4, 129.1, 128.0, 126.6, 118.5, 118.1, 110.4, 45.9.HRMS (ESI): Calc'd for C₁₄H₁₁N₃O + Na⁺, 260.0800; found, 260.0795.

N-Methyl-N-(4-cyanophenyl)nitrous amide (7e')

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 9.0 Hz, 2H), 7.69 (d, *J* = 8.9 Hz, 2H), 3.42 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 145.5, 133.6, 118.3, 118.1, 110.3, 30.0.HRMS (ESI): Calc'd for C₈H₇N₃O + H⁺, 162.0662; found, 162.0658.

Solvent effect on the selected examples

1. Solvent effect on 1i and 11

For substrates **1i** and **1l**, when MeCN was employed as the solvent, *N*-nitrosoanilines were isolated in lower yields, and nitration on para-position occurred inevitably. While using 1,4-dioxane as the solvent, only trace amount of nitration products were detected.

2. Solvent effect on reaction selectivity

The selectivity was also affected by solvent effect. For unsymmetric substrate **1p**, when the reaction was performed in MeCN, a mixture of C-N cleavage products were isolated, in which demethylation was favored (ratio: 82:14). However, in 1,4-dioxane, only trace amount of the deethylation product was detected by GC-MS, and the desired product **2p** was obtained in 91% yield.

Similar results were also obtained for *N*-allylanilines. In MeCN, a mixture were afforded, and the C-N cleavage on *N*-allyl bond was preferred. In 1,4-dioxane, the N-Me cleavage was inhibited.

In the cases of N-benzyl-N-methylanilines, MeCN as the solvent gave higher site-selectivity, favoring N-Me cleavage. Furthermore, 1,4-dioxane as the solvent resulted in lower conversion of the substrates (about 80%) under air atmosphere (under O_2 balloon, full conversion could be realized). The exact reason of this solvent effect remains unknown at current stage.

References

1. Sakai, N.; Sasaki, M.; Ogiwara Y. Chem. Commun., 2015, 51, 11638.

2. Kupper, R.; Hilton, B. D.; Kroeger-Koepke, M. B.;Koepke, S. R.; Michejda, C. J. J. Org. Chem., 1984, 49, 3781.

3. Masayuki, T.; Shoko, S. Chem. Pharm. Bull. 1987, 35, 1353.

¹H and ¹³C spectra

—— S25

