Supporting Information

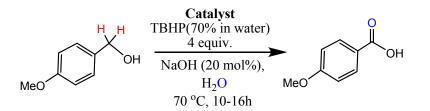
Iodine Catalyzed Oxidation of Alcohols and Aldehydes to Carboxylic Acids in Water: A Metal-Free Route to Synthesis of Furandicarboxylic Acid and Terephthalic Acid

Susanta Hazra, Mayukh Deb, and Anil. J. Elias*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016.

Email: eliasanil@gmail.com

Contents


1. General information	S3
2. Effect of catalysts on the C-H oxidation (Table S1).	S4
3. Effect of amount of catalyst loading for the oxidation reaction (Table -S2)	S5
4. Effect of oxidant used for the reaction (Table-S3)	
5. Effect of amount of oxidant used for oxidation reaction (Table-S4)	S6
6. Optimization of reaction conditions for oxidation of aldehyde (Table-S5)	S6
7. Effect of base, solvent and temperature used for the reaction (Table- S5)	S7
8. General procedure for oxidation of alcohols and aldehydes	S8
9. Gram scale/ one pot synthesis of FDCA and Terephthalic acid	
10. References	S10
11. Identification of products, ¹ H and ¹³ C{ ¹ H} NMR data	S11-S17
12. ¹ H and ¹³ C{ ¹ H} NMR spectra of prepared compounds	S18-S58

General Information

Unless otherwise stated, all reactions were performed under open atmosphere. ¹H and ¹³C NMR spectra were recorded on a Bruker Spectrospin DPX-300 NMR spectrometer at 300 and 75.47 MHz, respectively. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are related to residual solvent peaks [CDCl₃: 7.26 (¹H), 77.16 (¹³C); DMSO-d₆: 2.50 (¹H), 39.52 (¹³C)]. All alcohols and aldehydes were purchased from commercial sources and hydroxymethylfurfural (HMF) was prepared according to literature procedure.^[1] Deionised water, TBHP (70% in water), iodine and NaOH were used as received.

Experimental Section:

Table S1: Effect of catalysts on the C-H oxidation.

Entry No.	Catalyst	% of yield (isolated)
1	-	-
2	I ₂	90
3	KI	48
4	NaI	46
5	TBAI	15
6	TBAB	0

MeO	Н Н ОН	I ₂ (X mol%) TBHP (70% in water) <u>4 equiv.</u> NaOH (20 mol%), H ₂ O 70 °C, 10-16h	МеО
	Entry No.	Amount of I ₂ (X mol%)	% of yield (isolated)
	1	-	-
	2	2	23
	3	4	35
	4	5	46
	5	6	58
	6	8	63
	7	10	90
	8	12	90
	9	15	90
	10	20	90

 Table S2: Effect of amount of catalyst loading for the oxidation reaction.

 Table S3: Effect of oxidant used for the reaction.

MeO	Н Н ОН	I ₂ (10 mol%) Oxidant NaOH (20 mol%), H ₂ O 70 °C, 10-16h	МеО
	Entry No.	Oxidant	% of yield (isolated)
	1	-	-
	2	aq. TBHP	90
	3	O ₂	0
	4	H_2O_2	5
	5	DTBP	0
	6	$K_2S_2O_8$	0
	7	NMO	0

МеО	Н Н ОН	I ₂ (10 mol%) aq. TBHP(x equiv.) NaOH (20 mol%), H ₂ O 70 °C, 10-16h	он
	Entry No.	aq. TBHP (x equiv.)	% of yield (isolated)
	1	-	-
	2	1	15
	3	2	32
	4	3	47
	5 ^a	4	90
	6	5	90
	7	10	90

Table S4: Effect of amount of oxidant used for oxidation reaction

a. Since the TBHP used was 70% in water, it is equivalent to 2.8 equivalent of pure TBHP.

Table S5: Opt	imization of rea	action conditions	for oxidation	of aldehyde
---------------	------------------	-------------------	---------------	-------------

_	Р	I ₂ / Na aq. T H ₂ O, 7 10	BHP 70 °C		`ОН
Entry No	Iodine (X mol%)	aq. TBHP (Y equiv.)	NaOH (Z mol%)	Reaction temperature/ ^o C	Yield (isolated)
1	-	-	-	70	-
2	5	1	10	70	58
3	5	1.5	10	70	68
4	5	2	10	70	73
5	10	1.5	20	70	77
6	10	2	20	70	84
7	10	4	20	70	95

Entry No.	Base (20mol%)	Solvent	Tempereture /ºC	% of yield (isolated)
1	NaOH	H ₂ O	RT	0
2	NaOH	H ₂ O	50	42
3	NaOH	H_2O	60	65
4 ^a	NaOH	H ₂ O	70	90
5	КОН	H_2O	70	81
6	Na ₂ CO ₃	H ₂ O	70	37
7	K ₂ CO ₃	H ₂ O	70	31
8	-	H ₂ O	70	0
9	NaOAc	H ₂ O	70	30
10	KOAc	H ₂ O	70	26
11	NaOH	DMSO	70	0
12	NaOH	DCM	70	0
13	NaOH	1,4 dioxane	e 70	0
14	NaOH	CH ₃ CN	70	31
15	NaOH	tert-Butance	ol 70	38

Table S6: Effect of base, solvent and temperature used for the reaction

a. Reaction was also carried out with 1 equiv. of NaOH at 100 °C with yield of 90%.

General procedure for oxidation of alcohols

A 15 ml screw capped vial was charged with a magnetic bead, 5 mmol of alcohol, 0.5 mmol (10 mol%) of I₂ and 20 mmol (4 equiv.) of aq. TBHP (70% in H₂O). Afterwards, 1 mmol (20 mol%) of NaOH with additional 2 mL of deionized water (pH = 10) were added to the reaction mixture and it was heated at 70 °C for 10-16 h. Afterwards, the reaction mixture was neutralized by aq. HCl and extracted with EtOAc and aq. Na₂S₂O₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and after evaporation of the solvent analytically pure carboxylic acids were obtained.^[2,3]

General procedure for oxidation of aldehydes

A 15 ml screw capped vial was charged with a magnetic bead, 5 mmol of aldehyde, 0.5 mmol (10 mol%) of I₂ and 20 mmol (4 equiv.) of aq. TBHP. Afterwards, 1 mmol (20 mol%) of NaOH with additional 2 mL of deionized water (pH =10) were added to the reaction mixture and it was heated at 70 °C for 10-16 h. Afterwards, the reaction mixture was neutralized by aq. HCl and extracted with EtOAc and aq. Na₂S₂O₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and after evaporation of the solvent analytically pure carboxylic acids were obtained.^[2,3]

Gram scale synthesis of FDCA from HMF

A 1000 ml of round bottom flask was charged with a magnetic bead, 79.36 mmol (10 gm) of HMF, 15.87 mmol (20 mol%) of I₂ and 634 mmol (8 equiv.) of aq. TBHP. Afterwards, 39.70 mmol (50 mol%) of NaOH with additional 100 mL of H₂O were added to the reaction mixture and it was heated at 70 °C for 36 h. Afterwards, the reaction mixture was neutralized by aq. HCl and extracted with EtOAc and aq. Na₂S₂O₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and after evaporation of the solvent analytically pure FDCA was obtained in 53% yield (6.55 gm).^[2,4]

One pot synthesis of FDCA from D-fructose

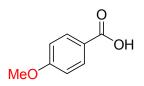
To a 150 mL flask equipped with stirrer bars, D-fructose (4.5 g, 25 mmol), isopropyl alcohol (50 mL), and hydrochloric acid (12.5m aqueous solution, 0.1 mL) were added. The reaction flask was heated on an oil bath to 120 °C with stirring. The reaction was stopped after 4 h and the mixture was filtrated to remove insoluble humin by-product. Solvent in the reaction mixture was then evaporated and dried to give the crude HMF product (3.15 gm). Afterwards, I₂ (5 mmol), aq. TBHP (200 mmol, 8 equiv.), NaOH (12.5 mmol) and H₂O (50 mL) were added and the reaction mixture was stirred at 70 °C for 36h. Afterwards, the reaction mixture was neutralized by aq. HCl and extracted with EtOAc and aq. Na₂S₂O₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and after evaporation of the solvent FDCA was obtained in 41% yield (1.61 gm).

Gram scale synthesis of Terephthalic acid

A 100 ml of round bottom flask was charged with a magnetic bead, 14.48 mmol (2 gm) of 1, 4-benzenedimethanol, 2.89 mmol (20 mol%) of I₂ and 115.84 mmol (8 equiv.) of aq. TBHP. Afterwards, 7.24 mmol (50 mol%) of NaOH with additional 10 mL of H₂O were added to the reaction mixture and it was heated at 70 °C for 36 h. Afterwards, the reaction mixture was neutralized by aq. HCl and extracted with EtOAc and aq. Na₂S₂O₃ solution. The organic layer was dried over anhydrous Na₂SO₄ and after evaporation of the solvent analytically pure terephthalic was obtained.^[3]

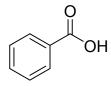
References:

[1] L. Lai, Y. Zhang, ChemSusChem 2011, 4, 1745-1748.

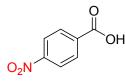

[2] M. S. Ahmed, D.S. mannel, T. W. Root, S. S. Stahl, Org. Process Res. Dev. 2017, DOI: 10.1021/acs.oprd.7b00223.

[3] A. Sarbajna, I. Dutta, P. Daw, S. Dinda, S. M. W. Rahaman, A. Sarkar, J. K. Bera, ACS Catal. 2017, 7, 2786-2790.

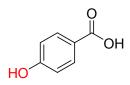
[4] N. Jiang, B. You, R. Boonstra, I. M. T. Rodriguez, Y. Sun, ACS Energy Lett. 2016, 1, 386-390.


Identification of products:

Compound 1

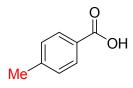

¹H-NMR (CDCl₃, 300 MHz, ppm): 11.62 (br, 1H), 8.05-8.08 (d, J= 9Hz, 2H), 6.93-6.96 (d, J= 9Hz, 2H), 3.88 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 171.51, 164.06, 132.36, 121.61, 113.76, 55.48

Compound 2



¹H-NMR (CDCl₃, 300 MHz, ppm): 11.13 (br, 1H), 8.16 (m, J= 9Hz, 2H), 7.55 (t, 1H), 7.50 (t, 2H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 172.33, 133.82, 130.24, 129.35, 128.50.

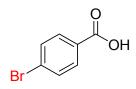
Compound 3



¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.62 (br, 1H), 8.30-8.32 (d, J= 6Hz, 2H), 8.16-8.19 (d, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 166.16, 150.36, 136.81, 131.04, 123.79.

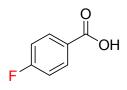
¹H-NMR (DMSO-d₆, 300 MHz, ppm): 12.43 (br, 1H), 10.24(s, 1H), 7.82-7.85 (d, J= 9Hz, 2H), 6.84-6.87 (d, J= 9Hz, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 167.65, 162.06, 132.00, 121.82, 115.57.

Compound 5

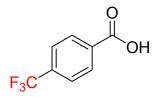


¹H-NMR (CDCl₃, 300 MHz, ppm): 11.57 (br, 1H), 7.91 (d, J= 9Hz, 2H), 7.17-7.20 (d, J= 9Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 172.55, 144.67, 130.28, 129.22, 126.62, 21.77.

Compound 6


OH

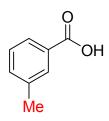
¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.20 (br, 1H), 7.85-7.88 (d, J= 9Hz, 2H), 7.68-7.72 (d, J= 12Hz, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 167.05, 132.14, 131.74, 130.48, 127.32.


¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.19 (br, 1H), 7.84-7.87 (d, J= 9Hz, 2H), 7.67-7.71 (d, J= 12Hz, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 167.05, 132.14, 131.74, 130.48, 127.32.

Compound 8

¹H-NMR (CDCl₃, 300 MHz): 8.13-8.16 (m, 2H), 7.15 (m, 2H); ¹³C-NMR (CDCl₃, 75 MHz): 171.5, 166.7, 133.2, 125.8 (d, J = 2.6 Hz), 116.1; ¹⁹F-NMR (CDCl₃): -104.1 (s, 1F).

Compound 9

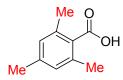

¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.46 (br, 1H), 8.12-8.15 (d, J= 9Hz, 2H), 7.86-7.89 (d, J= Hz, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 167.05, 132.14, 131.74, 130.48, 127.32.

Compound 10

OH

¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.42 (br, 1H), 8.11-8.14 (d, J= 9Hz, 2H), 7.83-7.86 (d, J= 9Hz, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 167.15, 137.24, 132.14, 131.74, 118.48, 115.32.

Compound 11

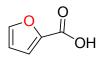

¹H-NMR (CDCl₃, 300 MHz, ppm): 12.76 (br, 1H), 7.80 (s, 1H), 7.17-7.25 (m, 3H), 2.27 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 172.96, 138.31, 134.65, 130.75, 129.33, 127.44, 21.25.

Compound 12

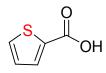
¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.87 (br, 1H), 7.73-8.30 (m, 4H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 166.16, 150.36, 136.81, 131.04, 123.79.

Compound 13

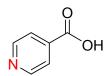
¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.06 (br, 1H), 6.90 (s, 2H), 1.98-2.34 (m, 9H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 171.28, 138.43, 134.33, 128.70, 21.45, 19.50.


¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.82 (br, 1H), 7.64(t, 1H), 7.17-7.25 (m, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 162.56, 161.40, 158.06, 133.54, 112.76.

Compound 15

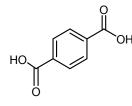

¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.92 (br, 1H), 7.63(t, 1H), 7.17-7.23 (m, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 162.66, 161.30, 158.06, 133.44, 112.86.

Compound 16

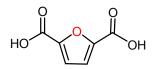


¹H-NMR (CDCl₃, 300 MHz, ppm): 11.95 (br, 1H), 7.57 (s, 1H), 7.27 (s, 1H), 6.48 (s, 1H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 163.87, 147.49, 143.80, 120.23, 112.30.

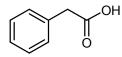
Compound 17



¹H-NMR (CDCl₃, 300 MHz, ppm): 12.16 (br, 1H), 7.82 (d, 1H), 7.56 (d, 1H), 7.06 (s, 1H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 168.12, 135.11, 134.13, 132.89, 128.12.


¹H-NMR (DMSO-d₆, 300 MHz, ppm): 13.68 (br, 1H), 8.76-8.68 (d, J= 9Hz, 2H), 7.80-7.82 (d, 2H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 166.60, 151.30, 138.54, 123.20.

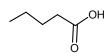
Compound 19


¹H-NMR (DMSO–d₆, 300 MHz, ppm): 8.04 (s, 4H), 13.30 (br, s, 2H); ¹³C-NMR (DMSO–d₆, 75 MHz, ppm): 129.91, 134.90, 167.12.

Compound 20

¹H-NMR (DMSO-d₆, 300 MHz, ppm): 7.30 (s, 2H), ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 159.40, 147.53, 118.77.

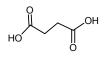
Compound 21



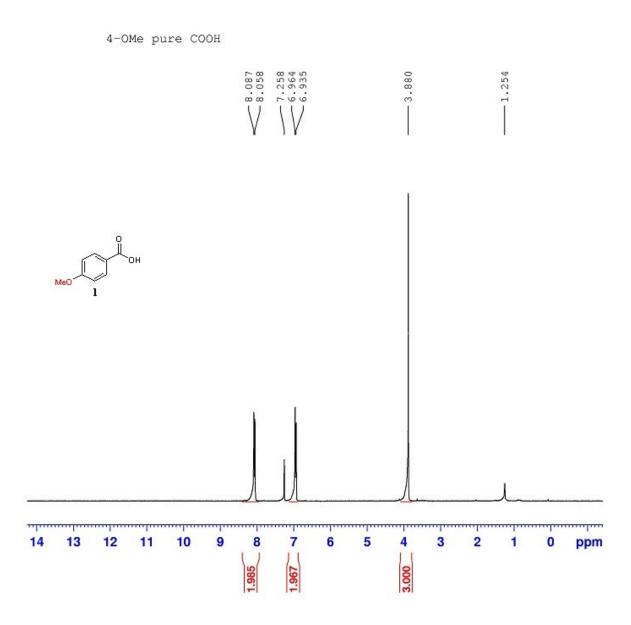
¹H-NMR (CDCl₃, 300 MHz, ppm): 7.38-7.27 (m, 5H), 3.66 (s, 2H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 178.01, 133.20, 129.30, 128.6, 127.32, 41.05.

¹H-NMR (CDCl₃, 300 MHz, ppm): 11.70 (s, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.68 (m, 2H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 180.00, 36.00, 18.72, 13.35.

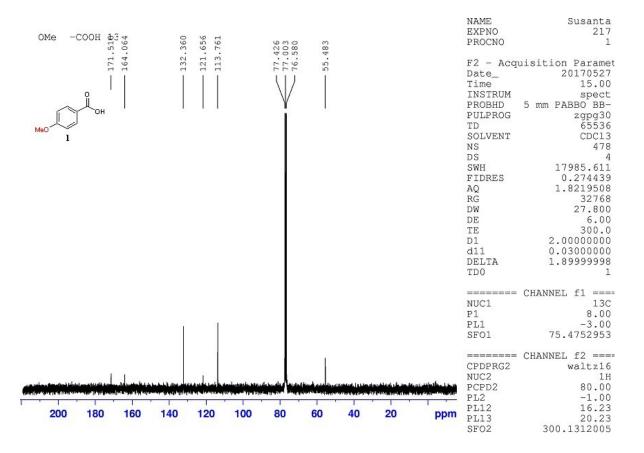
Compound 23

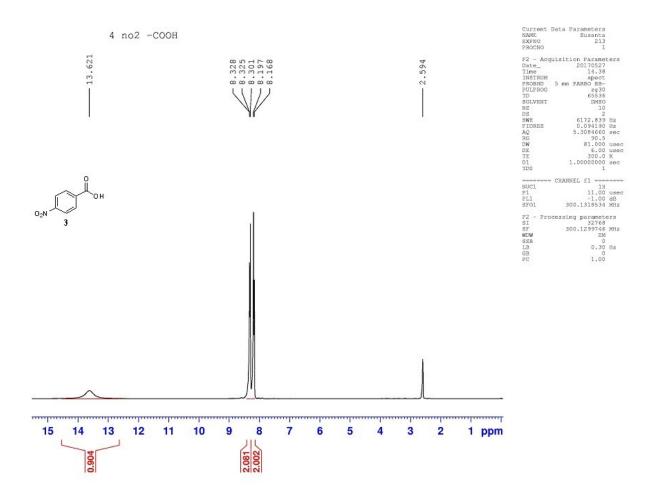

¹H-NMR (CDCl₃, 300 MHz, ppm): 11.73 (s, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.68 (m, 2H), 1.00 (m, J = 7.5 Hz, 2H), 0.98 (t, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 180.05, 26.00, 23.78, 18.75, 13.15

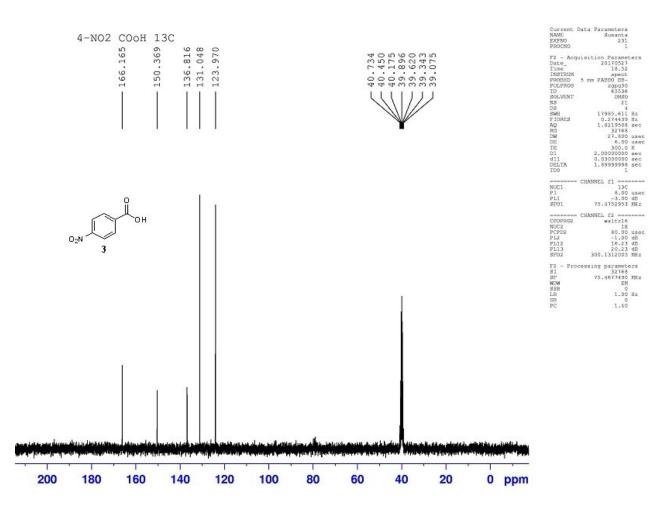
Compound 24

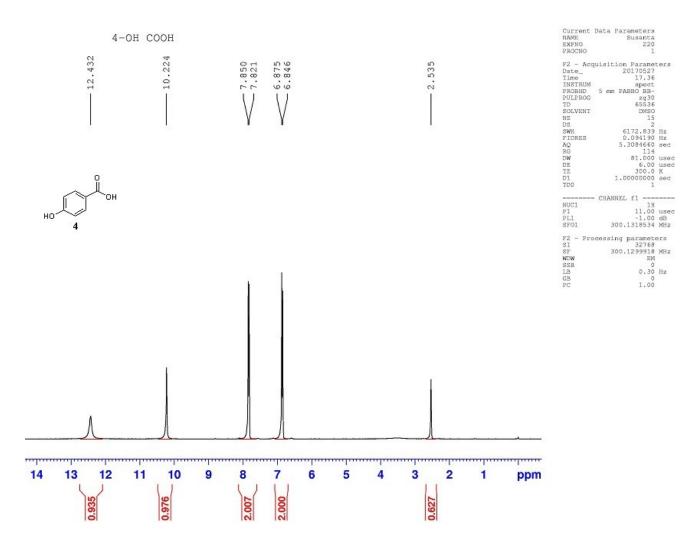


¹H-NMR (CDCl₃, 300 MHz, ppm): 11.80 (br, s, 1H), 2.34 (t, J = 7.7 Hz, 2H), 1.61 (m, 2H), 1.29 (m, 8H), 0.88 (m, 3H); ¹³C-NMR (CDCl₃, 75 MHz, ppm): 176.87, 34.3, 31.9, 29.2, 29.1, 25.9, 22.30, 13.45.

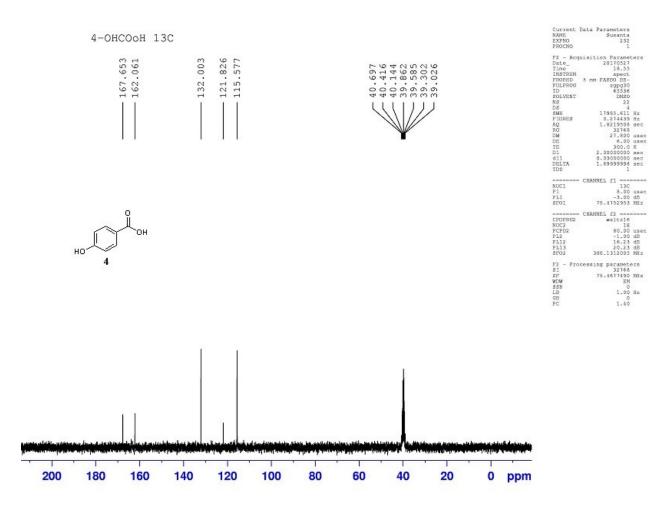

Compound 25

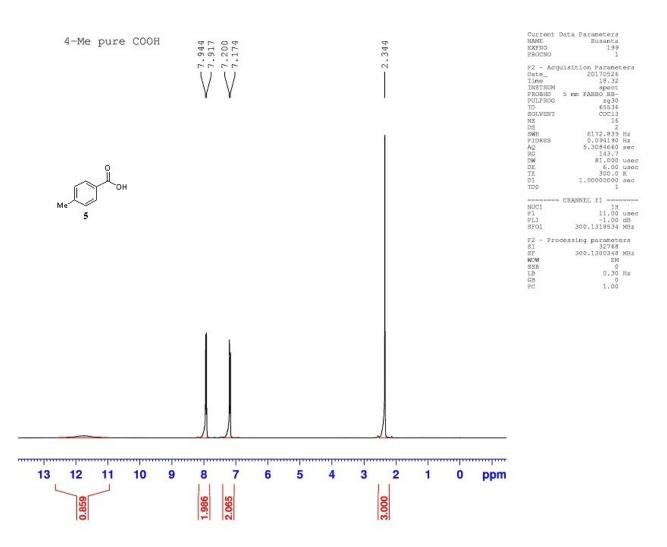



¹H-NMR (DMSO-d₆, 300 MHz, ppm): 11.30 (b, 2H), 2.43 (m, 4H); ¹³C-NMR (DMSO-d₆, 75 MHz, ppm): 174.09, 29.18

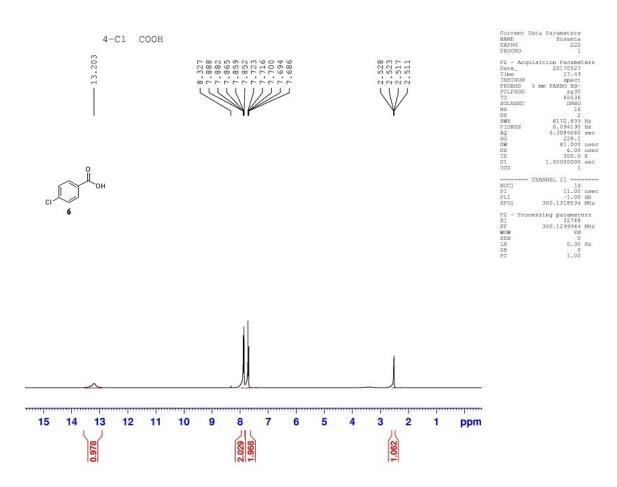


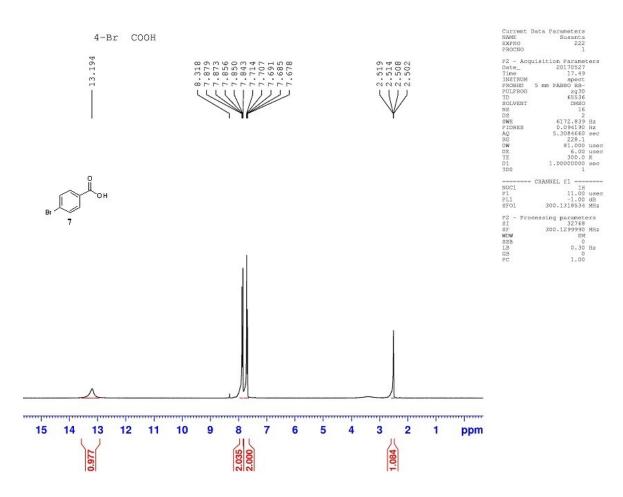
 $^{13}C{H^1}$ - NMR (in CDCl₃) spectra of compound 1

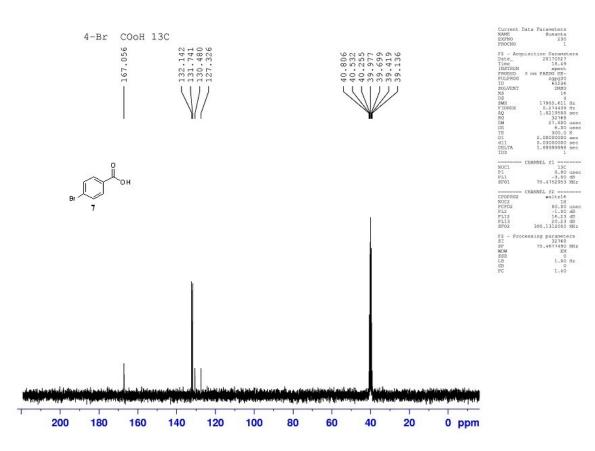


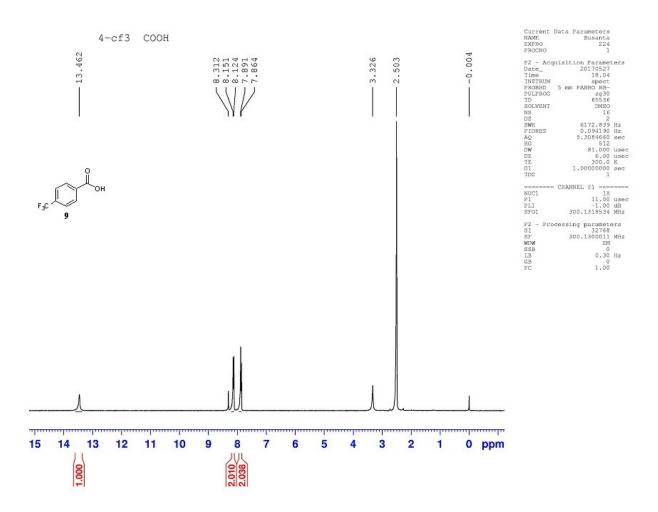


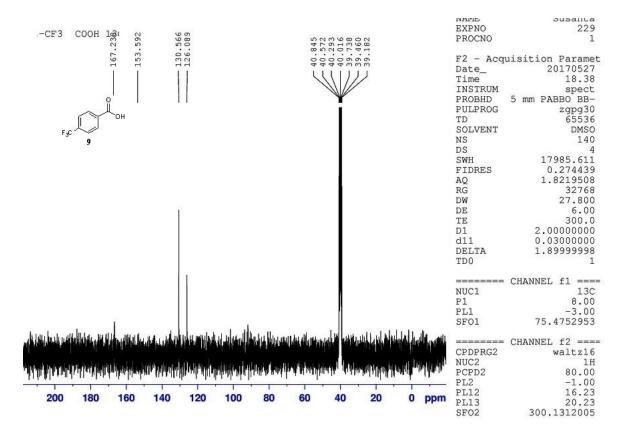


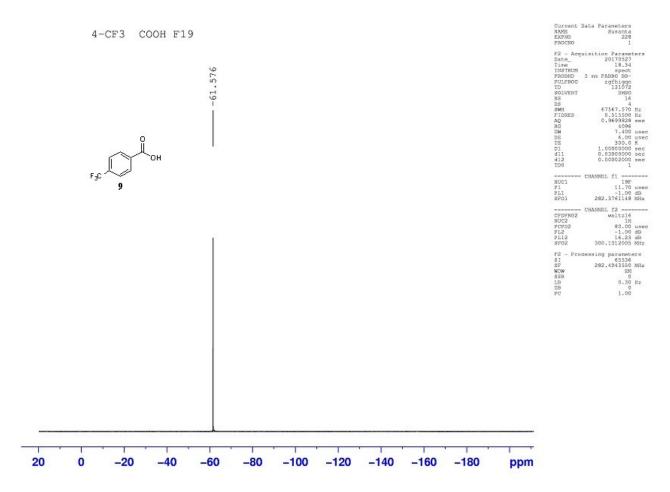


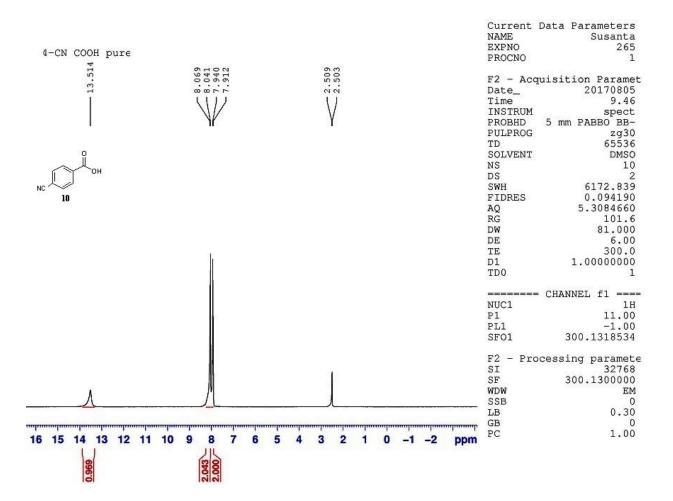

$^{13}C\{H^1\}$ - NMR (in DMSO-d₆) spectra of compound 4

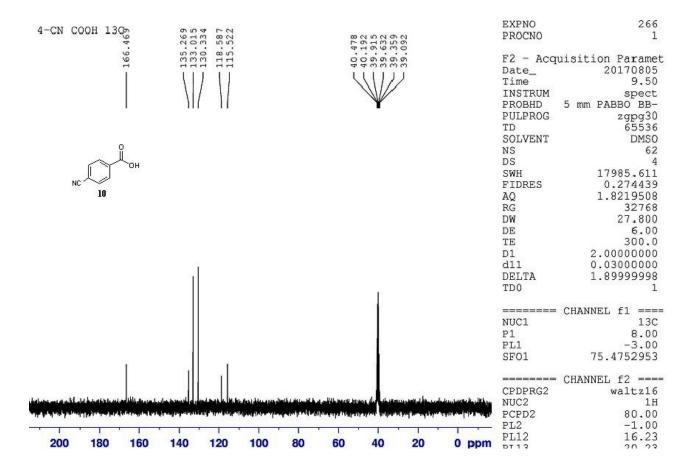


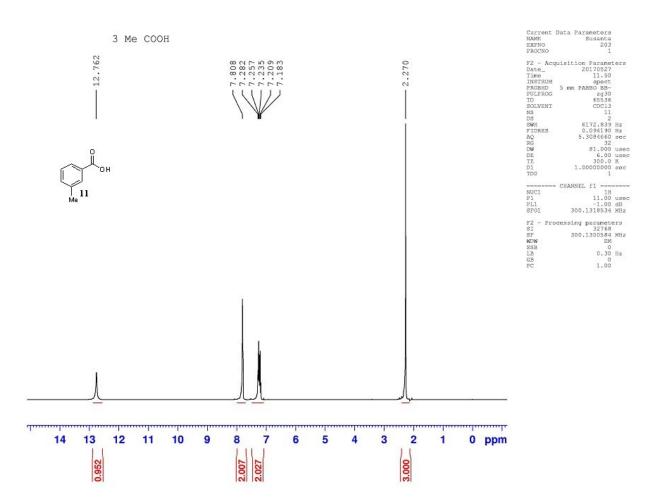


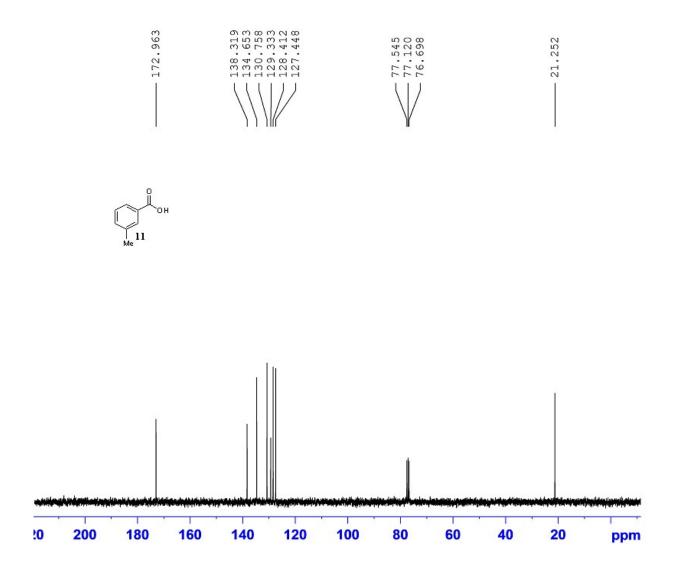



$^{13}C\{H^1\}$ - NMR (in DMSO-d₆) spectra of compound 7



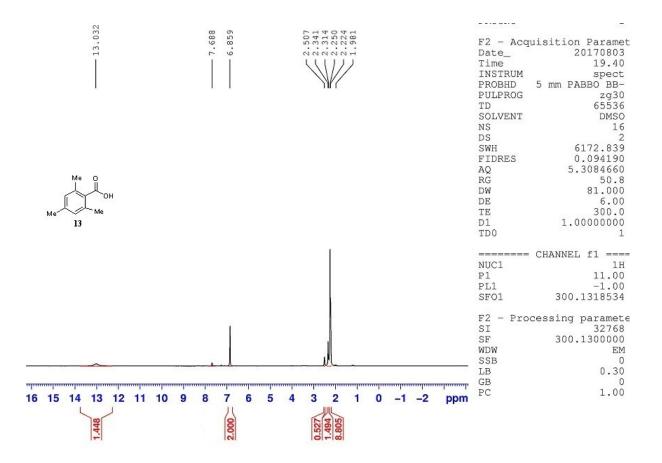

 $^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound 9

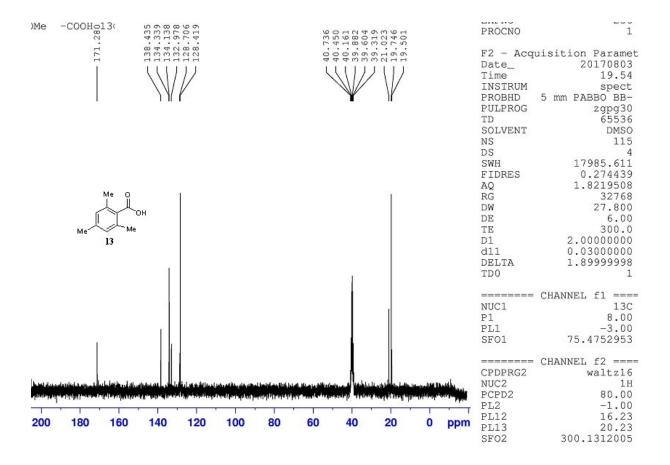


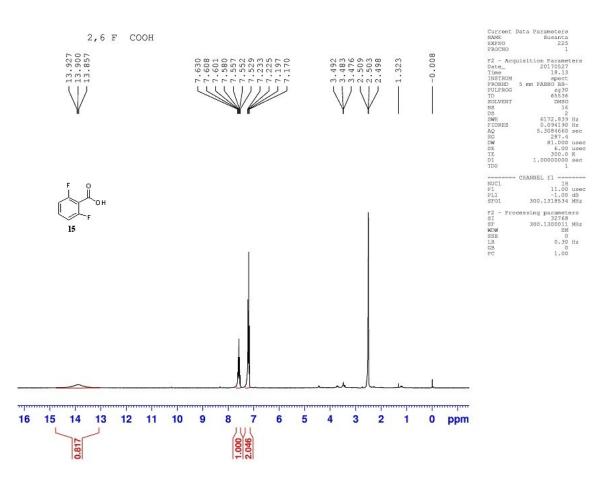


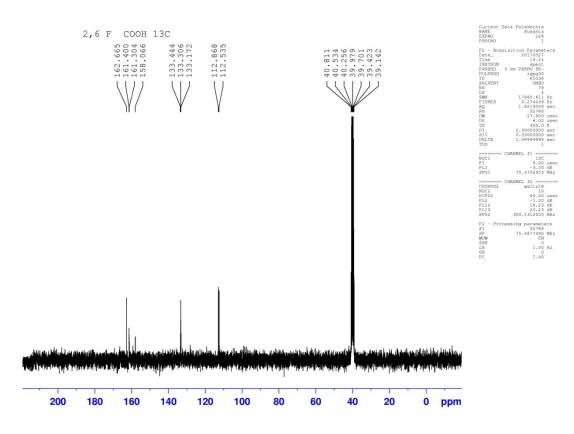


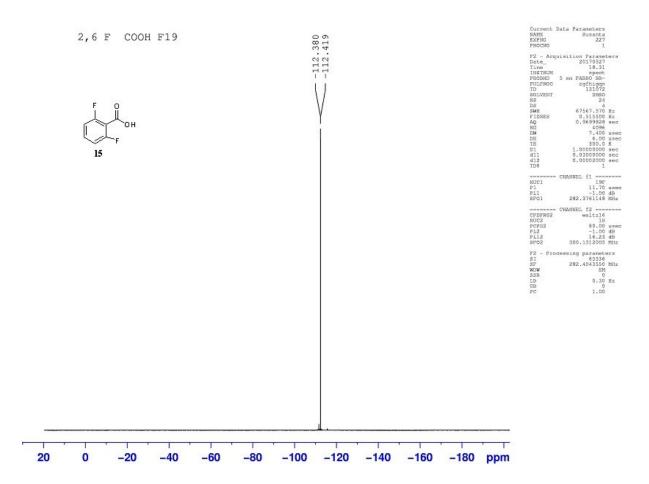
 $^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound 10

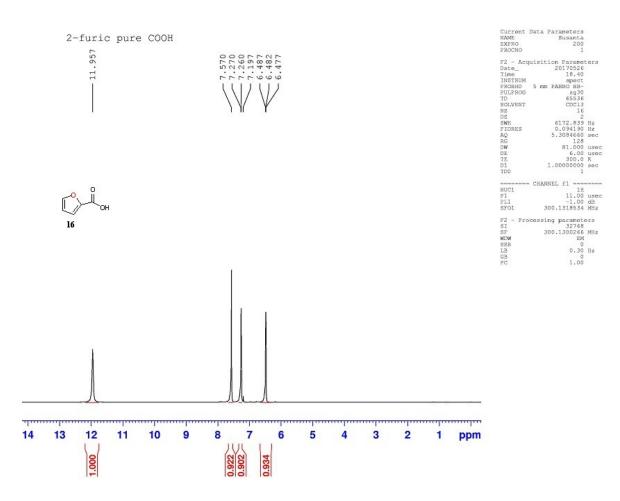


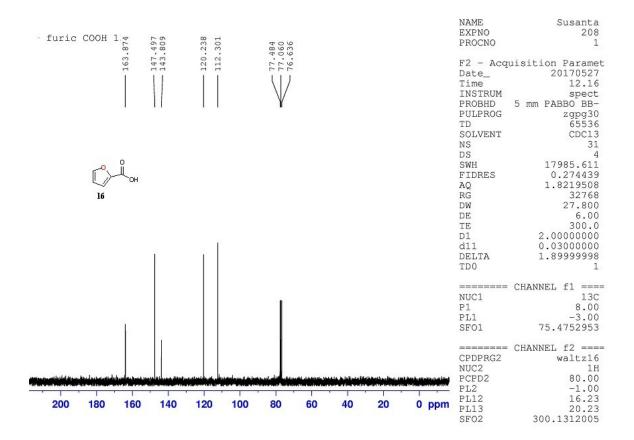


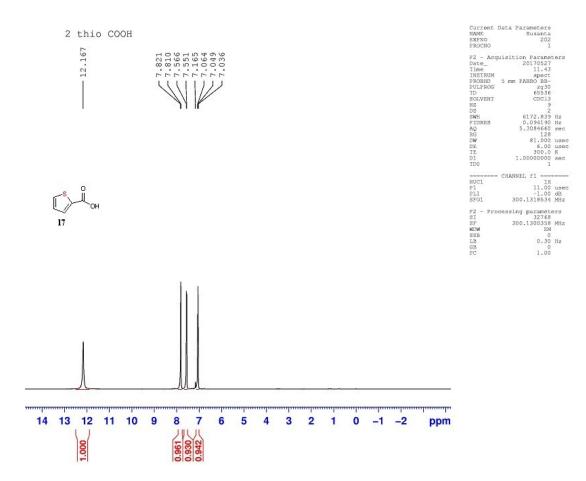


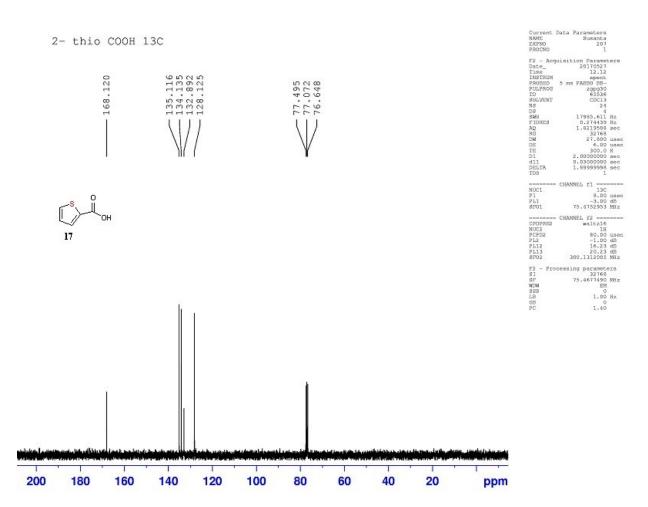

¹H- NMR (in DMSO-d₆) spectra of compound **13**

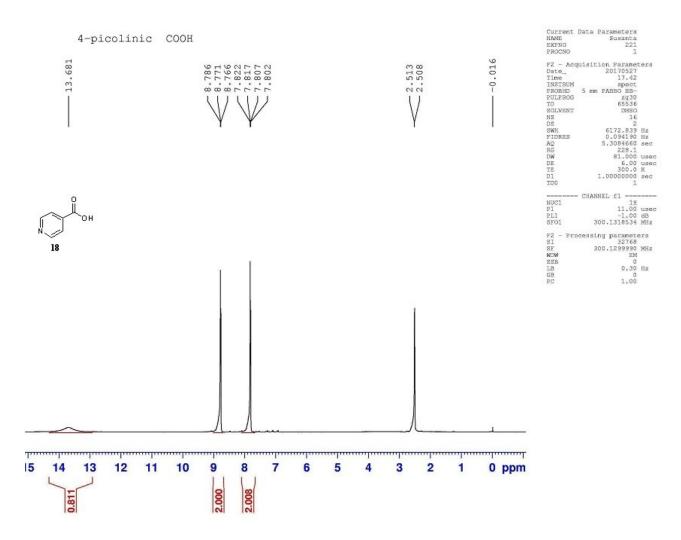


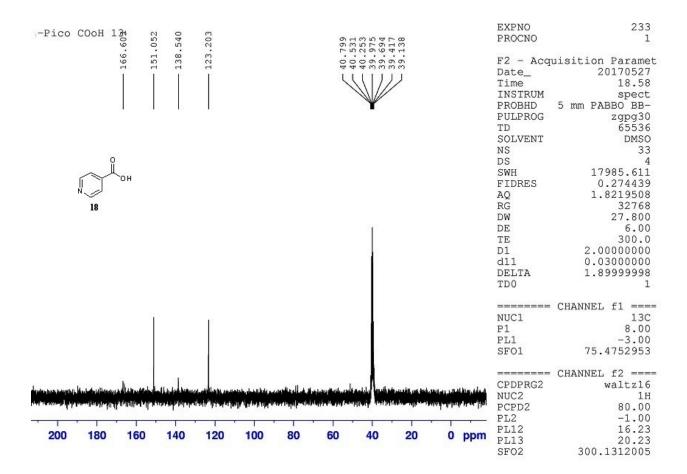

 $^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound 13

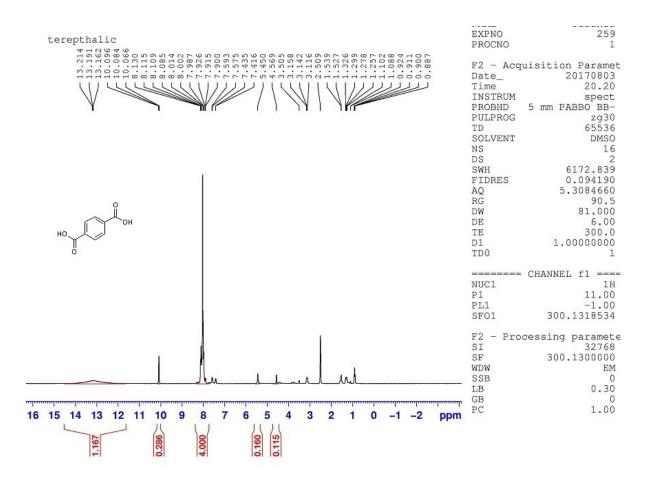


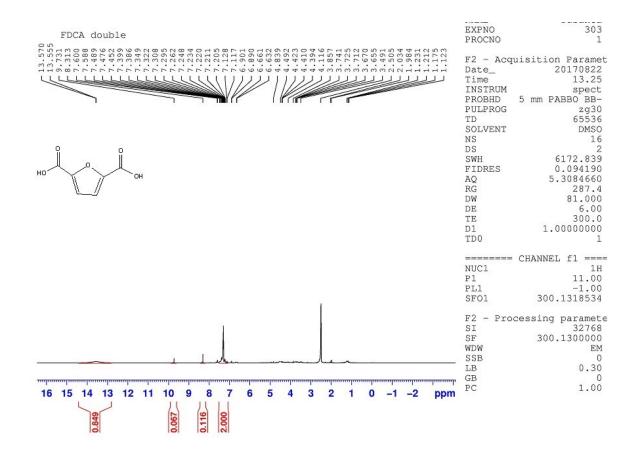


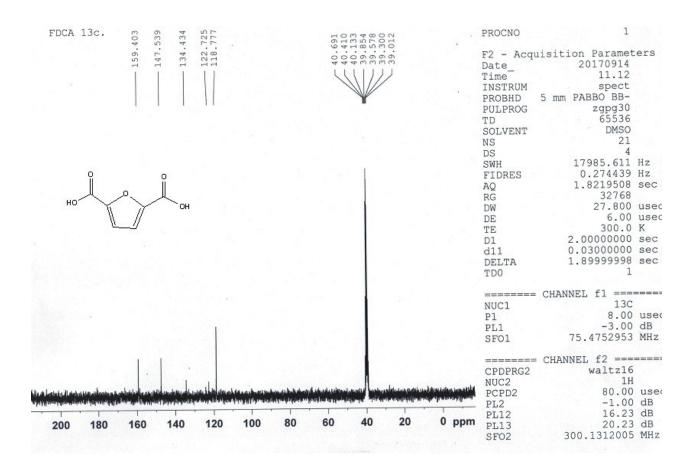


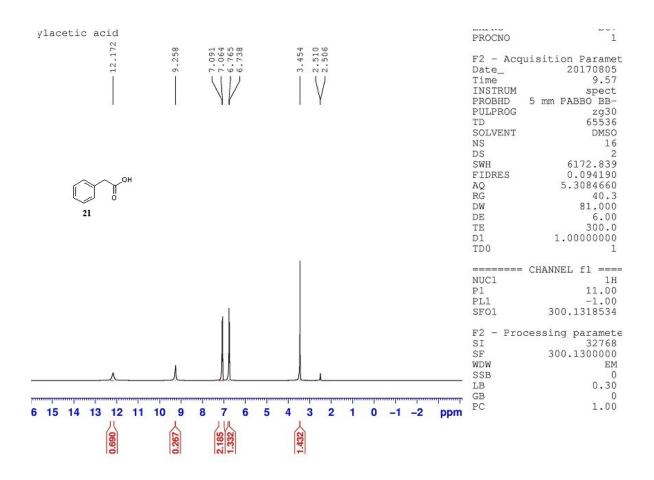


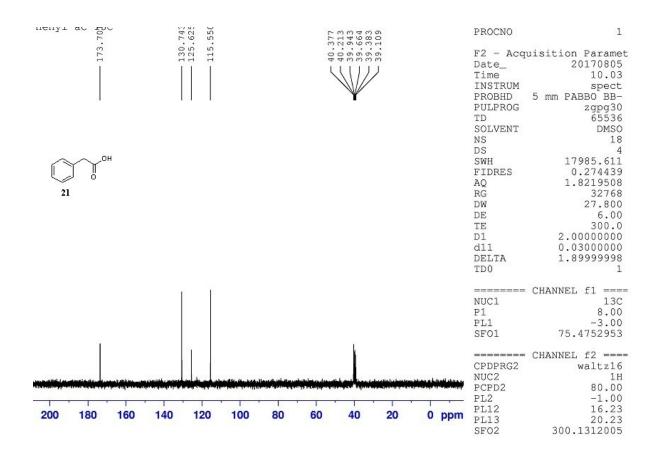


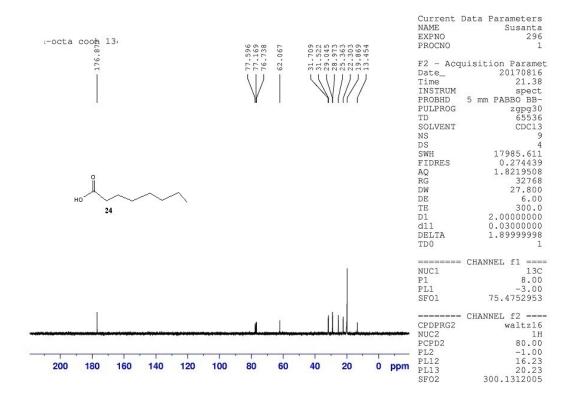


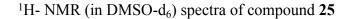


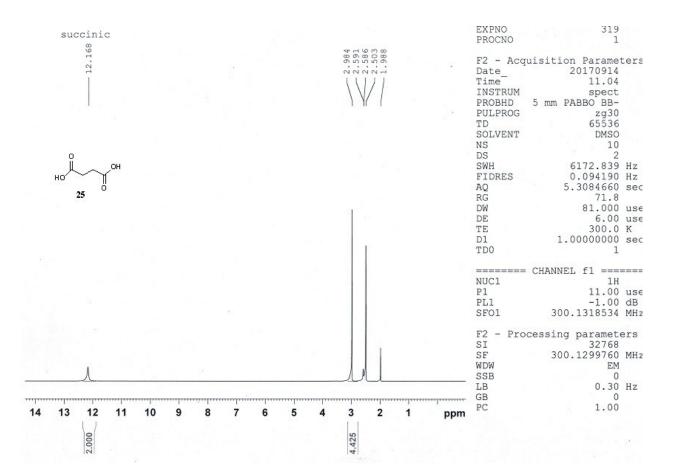

$^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound **18**

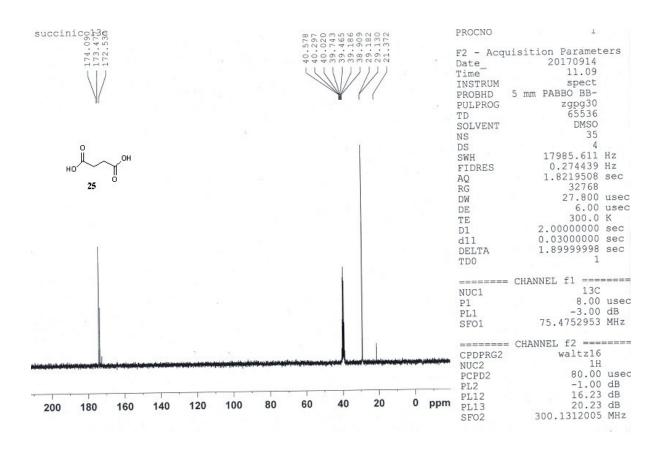


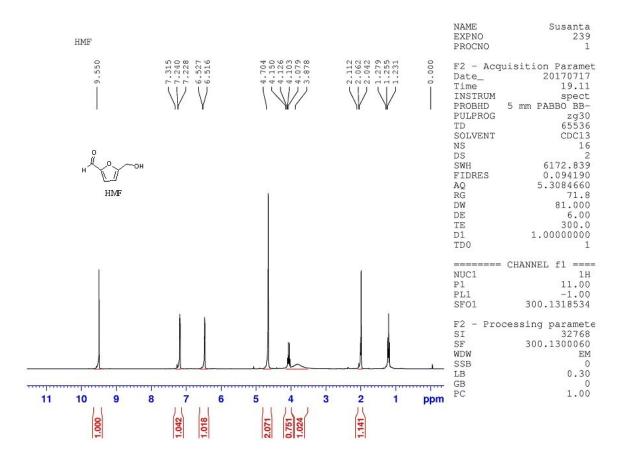


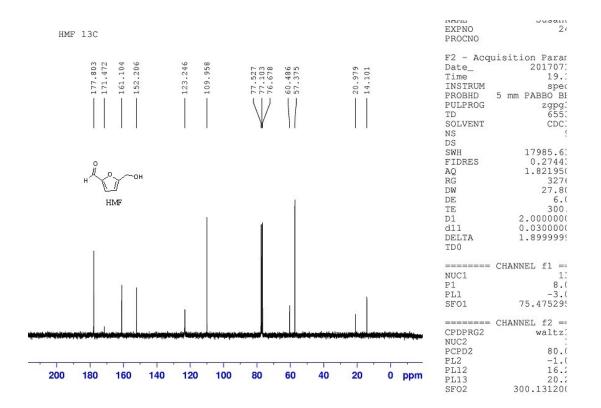

$^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound **20**






$^{13}C{H^1}$ - NMR (in DMSO-d₆) spectra of compound 21





¹³C{H¹}- NMR (in CDCl3) spectra of compound 25

¹H- NMR (in CDCl₃) spectra of HMF

$^{13}C{H^1}$ - NMR (in CDCl3) spectra of HMF