Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Solvent controlled highly regio-selective thieno[2,3-*b*]indole formation under metal-free conditions

Penghui Ni,^a Bin Li, ^a Huawen Huang, ^a Fuhong Xiao^a* and Guo-Jun Deng ^a*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China E-mail: fhxiao@xtu.edu.cn; gjdeng@xtu.edu.cn

Table of Contents

1. General information	2
2.General procedure for 8-methyl-3-phenyl-8 <i>H</i> -thieno[2,3- <i>b</i>]indole synthe	sis 2
3.General procedure for 8-methyl-2-phenyl-8 <i>H</i> -thieno[2,3- <i>b</i>]indole synthe	sis 2
4. Procedure for gram-scale reaction	3
5. Supporting tables S1-S8	3-8
6. Characterization of proudtcs	8-51
7. References	51
8. Crystal data of 3ah and 4aa	52-64
9. Copies of ¹ H and ¹³ C NMR spectra of all products	65-146

1. General information

All reactions were carried out under an atmosphere of air unless otherwise noted. Column chromatography was performed using aluminum oxide (neutral) (100-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at the Institute of Chemistry, Chinese Academy of Sciences. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. All reagents were obtained from commercial suppliers and used without further purification.

2. General procedure for 8-methyl-3-phenyl-8H-thieno[2,3-b]indole synthesis

1-Methyl-1*H*-indole (75.0 μ L, 0.6 mmol), acetophenone (58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol), and sulfur powder (32.0 mg, 1.0 mmol) were added to an oven-dried reaction vessel (20 mL). The reaction vessel was sealed and HI (50 mol %, 55% w/w aqueous. solution, stab with 1.5% hypophosphorous acid) and CF₃Ph/1,4-dioxane (1.0 mL, 2:3) were added by syringe. The reaction vessel was stirred at 130 °C for 4 h under air atmosphere. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3aa** as yellow oily liquid (106.5 mg, 81% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

3. General procedure for 8-methyl-2-phenyl-8H-thieno[2,3-b]indole synthesis

1-Methyl-1*H*-indole (25.0 μ L, 0.2 mmol), acetophenone (47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol) were added to an oven-dried reaction vessel (20 mL). The reaction vessel was sealed and HOAc (0.1 mL) and DMF (0.3 mL) were added by syringe. The reaction vessel was stirred at 150 °C for 16 h under air atmosphere. After cooling to room temperature, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated salt water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over sodium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 300:1) to yield the desired product **4aa** as white solid (41.1 mg, 78% yield), mp 137-139 $^{\circ}$ C. R_f = 0.75 (100:1 petroleum ether/EtOAc).

4. Procedure for gram-scale reaction

1-Methyl-1*H*-indole (2.5. mL, 0.02 mol), acetophenone (4.7 mL, 0.04 mol) and sulfur powder (3.2 g, 0.1 mol) were added to a round bottomed flask (50 mL). The reaction vessel was open and HOAc (10 mL) and DMF (10 mL) were added by measuring cylinder. The reaction mixture was stirred at 150 $^{\circ}$ C under air condition to reflux for 16 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (15 mL) and washed with saturated salt water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over sodium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4aa** as white solid (3.73 g, 71% yield).

5. Supporting tables S1-S8

Table S1. Catalyst screening of 3aa^a

	+ Ph + S_8 catalyst	+ Ph
1a	2a 3aa	4aa
entry	catalyst (50 mol %)	yield $(3aa/4aa) (\%)^{[b]}$
1	I_2	13 (>99 : 1))
2	HI	75 (>99 : 1)
3	NH ₄ I	trace
4	ICl	35 (>99 : 1)
5	NIS	27 (>99 : 1)
6	[Hydroxy(tosyloxy)iodo]benzene	trace
7	(Diacetoxyiodo)benzene	9 (>99 : 1)
8	[Bis(trifluoroacetoxy)iodo]benzene	17 (>99 : 1)

^{*a*} Conditions: **1a** (0.6 mmol), **2a** (0.5 mmol), S (1.0 mmol), *L*-phenylalanine (1 equiv), PhCF₃ : 1,4-dioxane = 2:3 (1.0 mL), 130 °C, 4 h, under air atmosphere.

^b GC yield based on 2a.

 Table S2. Solvent screening of 3aa^a

+ N +	Ph + $S_8 \frac{L-\text{Phenylalanine}}{\text{solvent, air, 130 °C, 4 h}}$	Ph S N	∽Ph -S
1a	2a	3aa 4aa	
entry	solvent (1.0 mL)	yield (3aa/4aa) (%	6) ^[b]
1	toluene	11 (60 : 1)	
2	chlorobenzene	19 (80 : 1)	
3	PhCF ₃	22 (85 : 1)	
4	o-xylene	27 (60 : 1)	
5	anisole	26 (60 : 1)	
6	1,4-dioxane	35 (>99 : 1)	
7	mesitylene	12 (65 : 1)	
8	$PhCF_3:1,4$ -dioxane = 2:3	73 (>99 : 1)	
9	$PhCF_3:1,4$ -dioxane = 3:2	52 (>99 : 1)	
10	DMF	9 (7 : 1)	
11	DMSO	trace	

^{*a*} Conditions: **1a** (0.6 mmol), **2a** (0.5 mmol), S (1.0 mmol), *L*-phenylalanine (1 equiv), HI (50 mol%), 130 $^{\circ}$ C, 4 h, under air atmosphere. ^{*b*} GC yield based on **2a**.

Table S3. Additive screening of $3aa^a$

	+ O Ph	+ S ₈ HI, additive air, 130 °C, 4 h	Ph + N S	ƴ Ph
1a	2a		3aa 4aa	
	entry	additive (1 equiv)	yield (3aa/4aa) (%) ^[b]	
	1	pyrrolidine	trace	
	2	piperidine	trace	
	3	piperazine	trace	
	4	cyclohexanamine	trace	
	5	ethane-1,2-diamine	7 (20:1)	
	6	dibutylamine	9 (15:1)	
	7	L-phenylalanine	75 (>99:1)	
	8	L-histidine	41 (>99:1)	
	9	L-cysteine	27 (>99:1)	
	10	L-methionine	6 (>99:1)	
	11	L -tryptophan	48 (>99:1)	
	12	L -proline	56 (>99:1)	
	13	L -asparagine	67 (>99:1)	

14	L-glutamine	64 (>99:1)
15	L -alanine	59 (>99:1)
16	L -leucine	63 (>99:1)
17	L -tyrosine	70 (>99:1)
18	L -valine	18 (>99:1)
19 ^[c]	L-phenylalanine	49 (>99:1)
20 ^[d]	L-phenylalanine	70 (>99:1)

^{*a*} Conditions: **1a** (0.6 mmol), **2** (0.5 mmol), S (1.0 mmol), PhCF₃ : 1,4-dioxane = 2:3 (1.0 mL), HI (50 mol%), 130 °C, 4 h, under air atmosphere. ^b GC yield based on 2a.

 c *L*-Phenylalanine 0.1 mmol.

^dL-Phenylalanine 0.3 mmol.

N N	+ $\frac{O}{Ph}$ + $S_8 \frac{H}{L-P}$	I (50 mol%) henylalanine	+
1a	2a	3aa	4aa
entry	temperature (°C)	atmosphere	yield (%) ^[b]
1	120	air (opened tube)	53 (60 : 1)
2	130	air (opened tube)	78 (>99: 1)
3	140	air (opened tube)	73 (>99: 1)
4 ^[c]	150	air (opened tube)	75 (>99: 1)
5	130	O ₂ (sealed tube)	75 (>99: 1)
6	130	Ar (sealed tube)	76 (>99: 1)

Table S4. Optimization on reaction temperature and atmosphere of $3aa^{a}$

^{*a*} Conditions: **1a** (0.6 mmol), **2** (0.5 mmol), S (1.0 mmol), *L*-phenylalanine (1 equiv), PhCF₃ : 1,4-dioxane = 2:3 (1.0 mL), HI (50 mol%). ^b GC yield based on 2a.

^c 2 h.

 Table S5. Acid screening of 4aa^a

entry	acid (5 equiv)	yield $(3aa/4aa) (\%)^{[b]}$
1	formic acid	52 (1:20)
2	TsOH	63 (1 : 2)
3	TfOH	67 (1:2)
4	isobutyric acid	73 (1 : 15)

5	pivalic acid	75 (1:20)
6	cyclopropanecarboxylic acid	75 (1 : 15)
7	cyclohexanecarboxylic acid	46 (1 : 10)
8	tetrafluoroboric acid	52 (1:5)
9	<i>p</i> -hydroxybenzoic acid	10 (1 : 1)
10	<i>p</i> -nitrobenzoic acid	74 (1 : 55)
11	acetic anhydride	41 (1:4)
12	nicotinic acid	73 (1:70)

^{*a*} Conditions: **1a** (0.2 mmol), **2** (0.4 mmol), S (1.0 mmol), acid (5 equiv), DMF (0.3 mL), 150 $^{\circ}$ C, 16 h, under air atmosphere.

^b GC yield based on 1a.

Table S6. Solvent screening of 4aa^a

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), S (1.0 mmol), HOAc (0.1 mL), 150 °C,16 h, under air atmosphere, DMAc = dimethylacetamide, DEF = N,N-Diethylformamide.

^b GC yield based on **1a**.

Table S7. Optimization on reaction temperature of $4aa^a$

1a	+ Ph	0 ↓ + 2a	S ₈ <u>HOAc (0.1 mL)</u> DMF (0.3 mL)	Ph Ph Saa	+ Ph Haa
		entry	temperature (°C)	vield (%) ^[b]	
		1	100	15 (1:15)	
		2	120	56 (1:25)	
		3	130	67 (1:40)	
		4	140	80 (1:70)	
		5	150	84 (1:80)	

^{*a*} *Conditions*: **1a** (0.2 mmol), **2a** (0.4 mmol), **S** (1.0 mmol), HOAc (0.1 mL), 16 h. ^{*b*} GC yield based on **1a**.

Table S8. Control experiments under various conditions.

6. Characterization data of products

8-Methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3aa)

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.85 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.40-7.33 (m, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.78 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, ppm) δ 145.0, 142.5, 136.7, 135.9, 128.6, 128.0, 127.4, 121.9, 120.8, 119.4, 119.0, 112.2, 109.0, 32.0; HRMS calcd. for C₁₇H₁₄NS [M+H]⁺ 264.08415, found 264.08423.

8-Methyl-3-(p-tolyl)-8H-thieno[2,3-b]indole (3ab)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-methylacetophenone (**3b**, 67.5 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ab** as yellow oily liquid (113.6 mg, 82% yield). R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.86 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.2 Hz, 1H), 7.32-7.29 (m, 3H), 7.11 (t, J = 7.1 Hz, 1H), 6.76 (s, 1H), 3.86 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.9, 142.5, 137.2, 135.9, 133.8, 129.3, 127.9, 122.0, 121.9, 120.9, 119.5, 119.0, 111.7, 108.9, 32.1, 21.3; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09970.

3-(4-Isobutylphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ac)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-(2-methylpropyl)acetophenone (**3c**, 93.8 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ac** as yellow oily liquid (97.3 mg, 61% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.87 (d, J = 7.9 Hz, 1H), 7.71-7.69 (m, 2H), 7.37 (d, J = 8.2 Hz, 1H), 7.30-7.27 (m, 3H), 7.14-7.10 (m, 1H), 6.77 (s, 1H), 3.87 (s, 3H), 2.56 (d, J = 7.2 Hz, 2H), 1.95 (dt, J = 13.5 Hz, 6.8 Hz, 1H), 0.97 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.9 , 142.5, 141.0, 136.0, 134.1, 129.3, 127.7, 122.0, 121.9, 120.8, 119.5, 119.5, 111.7, 108.9, 45.2, 32.0, 30.2, 22.5; HRMS calcd. for C₂₁H₂₂NS⁺ (M+H)⁺ 320.14675, found 320.14664.

3-(4-Methoxyphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ad)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-methoxyacetophenone (**3d**, 76.3 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to yield the desired product **3ad** as yellowish solid (121.6 mg, 83% yield), mp 147-149 °C. R_f = 0.65 (50:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.73-7.71 (m, 2H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.31-7.27 (m, 1H), 7.14-7.10 (m, 1H), 7.06-7.03 (m, 2H), 6.72 (s, 1H), 3.90 (s, 3H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.1, 144.9, 142.5, 135.6, 129.3, 129.1, 122.0, 121.9, 120.9, 119.3, 119.0, 114.0, 111.2, 109.0, 55.4, 32.1; HRMS calcd. For C₁₈H₁₆NOS⁺ (M+H)⁺ 294.09471, found 294.09479.

3-(4-Fluorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ae)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'fluoroacetophenone (**3e**, 60.6 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ae** as yellowish solid (91.3 mg, 65% yield), mp 121-123 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃.ppm) δ 7.79-7.73 (m, 3H), 7.39 (d, J = 8.3 Hz, 1H), 7.33-7.29 (m, 1H), 7.22-7.17 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.76 (s, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃, ppm) δ 162.3 (d, J = 246.3 Hz), 145.0, 142.5, 134.8, 132.8 (d, J = 3.3 Hz), 129.5 (d, J = 8.0 Hz), 122.0, 121.8, 120.7, 119.1, 115.5 (d, J = 21.4 Hz), 112.1, 109.1, 32.1; HRMS calcd. for C₁₇H₁₃FNS⁺ (M+H)⁺ 282.07472, found 282.07495.

3-(4-Chlorophenyl)-8-methyl-8H-thieno[2,3-b]indole (3af)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-chloroacetophenone (**3f**, 65.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3af** as white solid (82.8 mg, 63% yield), mp 117-119 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.9 Hz, 1H), 7.72-7.70 (m, 2H), 7.48-7.46 (m, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.14-7.10 (m, 1H), 6.78 (s, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 142.6, 135.2, 134.7, 133.3, 129.2, 128.8, 122.1, 121.8, 120.6, 119.20, 119.18, 112.5, 109.1, 32.1; HRMS calcd. for C₁₇H₁₃ClNS⁺ (M+H)⁺ 298.04517, found 298.04578.

3-(4-Bromophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ag)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-bromoacetophenone (**3g**, 100.0 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur

powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ag** as white solid (104.0 mg, 61% yield), mp 123-124 °C. $R_f = 0.80$ (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, J = 8.0 Hz, 1H), 7.66-7.60 (m, 4H), 7.37 (d, J = 8.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.14-7.10 (m, 1H), 6.78 (s, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 142.6, 135.6, 134.7, 131.8, 129.6, 122.1, 121.7, 121.4, 120.5, 119.20, 119.19, 112.5, 109.1, 32.1; HRMS calcd. for C₁₇H₁₃BrNS⁺ (M+H)⁺ 341.99466, found 341.99454.

3-(4-Iodophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ah)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-iodoacetophenone (**3h**, 123.2 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ah** as white solid (136.2 mg, 70% yield), mp 158-160 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.88-7.82 (m, 3H), 7.57 (dd, J = 8.1 Hz, 1.4 Hz, 2H), 7.42 (d, J = 8.2 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 6.83 (s, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 142.5, 137.7, 136.2, 134.8, 129.8, 122.1, 121.7, 120.4, 119.23, 119.18, 112.6, 109.1, 92.9, 32.1; HRMS calcd. for C₁₇H₁₃INS⁺ (M+H)⁺ 389.98079, found 389.98111.

4-(8-Methyl-8*H*-thieno[2,3-*b*]indol-3-yl)benzonitrile (3ai)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 4'-cyanoacetophenone (**3i**, 72.5 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ai** as yellowish solid (95.0 mg, 66% yield), mp 169-171 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.90-7.88 (m, 2H), 7.80-7.74 (m, 3H), 7.41 (d, J = 8.2 Hz, 1H), 7.35-7.31 (m, 1H), 7.17-7.13 (m, 1H), 6.89 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.3, 142.6, 141.3, 134.1, 132.5, 128.5, 122.4, 121.5, 120.1, 119.4, 119.1, 119.0, 114.2, 110.9, 109.3, 32.2; HRMS calcd. for C₁₈H₁₃N₂S⁺ (M+H)⁺ 289.07940, found 289.07977.

8-Methyl-3-(*m*-tolyl)-8*H*-thieno[2,3-*b*]indole (3aj)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-methylacetophenone (**3j**, 66.3 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3aj** as yellow liquid (115.0 mg, 83% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.85 (d, J = 7.9 Hz, 1H), 7.61-7.59 (m, 2H), 7.41-7.34 (m, 2H), 7.30-7.26 (m, 1H), 7.22-7.20 (m, 1H), 7.14-7.10 (m, 1H), 6.77 (s, 1H), 3.83 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.0, 142.6, 138.2, 136.6, 136.1, 128.7, 128.5, 128.2, 125.1, 122.0, 121.9, 120.9, 119.4, 119.0, 112.1, 109.0, 32.1, 21.5; HRMS calcd. for C₁₈H₁₆NS⁺

(M+H)⁺ 278.09980, found 278.10028.

3-(3-Methoxyphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ak)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-methoxyacetophenone (**3k**, 68.8 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ak** as yellow solid (108.4 mg, 74% yield), mp 122-125 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.89 (d, J = 7.9 Hz, 1H), 7.42-7.37 (m, 2H), 7.35-7.33 (m, 2H), 7.30-7.26 (m, 1H), 7.14-7.10 (m, 1H), 6.96-6.93 (m, 1H), 6.79 (s, 1H), 3.86 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.8, 145.0, 142.5, 138.1, 135.8, 129.6, 121.95, 121.92, 120.7, 120.5, 119.5, 119.1, 113.3, 113.3, 112.4, 109.0, 55.3, 32.0; HRMS calcd. for C₁₈H₁₆NOS⁺ (M+H)⁺ 294.09471, found 294.09467.

3-(3-Fluorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3al)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-fluoroacetophenone (**3l**, 60.6 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3al** as brown liquid (113.8 mg, 81% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.83 (d, J = 8.0 Hz, 1H), 7.58-7.56 (m, 1H), 7.49-7.43 (m, 2H), 7.38-7.36 (m, 1H), 7.32-7.28 (m, 1H), 7.16-7.07 (m, 2H), 6.81 (s, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.0 (d, J = 245.8 Hz), 145.1, 142.6, 138.9 (d, J = 8.1 Hz), 134.7 (d, J = 2.3 Hz), 130.1 (d, J = 8.5 Hz), 123.7 (d, J = 2.8 Hz), 122.1, 121.8, 120.5, 119.3 (d, J = 8.7 Hz), 114.8 (d, J = 21.9 Hz), 114.3 (d, J = 21.2 Hz), 112.9, 109.1, 32.1; HRMS calcd. for $C_{17}H_{13}FNS^{+}(M+H)^{+}282.07472$, found 282.07458.

3-(3-Chlorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3am)

Cl

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-chloroacetonenone (**3m**, 65.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3am** as yellowish solid (105.4 mg, 71% yield), mp 125-127 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 1.8 Hz, 1H), 7.69-7.66 (m, 1H), 7.45-7.41 (m, 1H), 7.39-7.36 (m, 2H), 7.33-7.29 (m, 1H), 7.17-7.13 (m, 1H), 6.82 (s, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.0, 142.5, 138.4, 134.5, 134.4, 129.8, 127.9, 127.4, 126.1, 122.1, 121.7, 120.4, 119.22, 119.20, 113.0, 109.1, 32.0; HRMS calcd. for C₁₇H₁₃ClNS⁺ (M+H)⁺ 298.04517, found 298.04480.

3-(3-Bromophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3an)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-bromoacetophenones (**3n**, 68.8 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3an** as yellowish solid (80.1 mg, 47% yield), mp 115-117 °C. R_f = 0.40 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.93 (t, *J* = 1.7 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.73-7.70 (m, 1H), 7.54-7.51 (m, 1H), 7.38-7.34 (m, 2H), 7.33-7.28 (m, 1H), 7.17-7.13 (m, 1H), 6.80 (s, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.0, 142.5, 138.7, 134.3, 130.9, 130.3, 130.1, 126.5, 122.7, 122.1, 121.7, 120.4, 119.3, 119.2, 113.0, 109.1, 32.1; HRMS calcd. for C₁₇H₁₃BrNS⁺ (M+H)⁺ 341.99466, found 341.99451.

8-Methyl-3-(3-(trifluoromethyl)phenyl)-8H-thieno[2,3-b]indole (3ao)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-(trifluoromethyl)acetophenone (**3o**, 73.8 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ao** as yellow solid (124.1 mg, 75% yield), mp 94-95 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.66-7.57 (m, 2H), 7.38-7.28 (m, 2H), 7.16-7.12 (m, 1H), 6.83 (s, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.2, 142.7, 137.6, 134.4, 131.2, 129.2, 124.8 (q, J = 3.6 Hz), 124.1 (q, J = 3.8 Hz), 122.3, 121.7, 120.5, 119.4, 119.1, 113.3, 109.2, 32.2; HRMS calcd. for C₁₈H₁₃F₃NS⁺ (M+H)⁺ 332.07153, found 332.07187.

8-Methyl-3-(3-nitrophenyl)-8*H*-thieno[2,3-*b*]indole (3ap)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3'-nitroacetophenone (**3p**, 82.6 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ap** as yellow solid (100.1 mg, 65% yield), mp 115-117 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.64 (t, *J* = 1.9 Hz, 1H), 8.26-8.24 (m, 1H), 8.12 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.67 (t, *J* = 7.9 Hz, 1H), 7.42-7.40 (m, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.92 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 148.6, 145.3, 142.6, 138.4, 133.8, 133.4, 129.6, 122.7, 122.4, 122.1, 121.5, 120.2, 119.5, 119.0, 113.9, 109.3, 32.2; HRMS calcd. for C₁7H₁₃N₂O₂S⁺ (M+H)⁺ 309.06922, found 309.06927.

8-Methyl-3-(o-tolyl)-8H-thieno[2,3-b]indole (3aq)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 2'-methylacetophenone (**3q**, 66.3 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3aq** as yellow liquid (51.2 mg, 37% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.46 (d, J = 7.2, 1H), 7.37-7.33 (m, 3H), 7.31-7.23 (m, 3H), 7.04 (t, J = 7.5, 1H), 6.68 (s, 1H), 3.88 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.9, 142.4, 136.7, 136.4, 134.7, 130.2, 130.0, 127.7, 125.7, 122.6, 122.1, 121.8, 119.1, 118.9, 113.0, 108.9, 32.1, 20.2; HRMS calcd. for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.10004.

3-(2-Fluorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3ar)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 2'-fluoroacetophenone (**3r**, 60.8 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ar** as yellow solid (91.3 mg, 65% yield), mp 90-92 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.75-7.71 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.39-7.36 (m, 2H), 7.31-7.27 (m, 2H), 7.24-7.22 (m, 1H), 7.13-7.09 (m, 1H), 6.93 (s, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.9 (d, J = 248.2 Hz), 144.4, 142.5, 131.1 (d, J = 3.4 Hz), 129.1 (d, J = 8.1 Hz), 128.4, 124.4, 124.3, 124.1 (d, J = 3.6 Hz), 122.0, 121.9, 121.6, 119.4 (d, J = 2.1 Hz), 119.1, 116.1 (d, J = 22.1 Hz), 114.6 (d, J = 3.4 Hz), 108.9, 32.1; HRMS calcd. for C₁₇H₁₃NFS⁺ [M+H]⁺ 282.07472, found 282.07483.

3-(2-Chlorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3as)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 2'-chloroacetophenone (**3s**, 65.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3as** as yellow liquid (91.7 mg, 63% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.61-7.59 (m, 1H), 7.56-7.54 (m, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.37-7.34 (m, 3H), 7.29-7.24 (m, 1H), 7.10-7.05 (m, 1H), 6.87 (s, 1H), 3.86 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃, ppm) δ 143.9, 142.4, 135.5, 133.3, 131.9, 131.6, 130.0, 128.9, 126.7, 122.2, 122.0, 121.9, 119.4, 119.1, 114.6, 108.9, 32.1; HRMS calcd. for C₁₇H₁₃ClNS⁺ (M+H)⁺ 298.04517, found 298.04523.

3-(3,4-Dimethoxyphenyl)-8-methyl-8H-thieno[2,3-b]indole (3at)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3',4'-dimethoxyacetophenone (**3t**, 90.1 μ L, 0.5mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3at** as yellowish solid (126.0 mg, 78% yield), mp 170-172 °C. R_f = 0.30 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.89 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.35-7.28 (m, 3H), 7.15-7.11 (m, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 6.75 (s, 1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 148.9, 148.6, 145.0, 142.6, 135.7, 129.6, 122.0, 121.9, 120.9, 120.3, 119.3, 119.0, 111.4, 111.3, 109.0, 56.0, 55.9, 32.1; HRMS calcd. for C₁₉H₁₈NO₂S⁺ (M+H)⁺ 324.10528, found 324.10535.

3-(3,4-Dichlorophenyl)-8-methyl-8*H***-thieno**[**2,3-***b*]**indole**(**3au**)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 3',4'-dichloroacetophenone (**3u**, 95.0 mg, 0.4 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and

sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3au** as yellowish solid (102.6 mg, 62% yield), mp 165-167 °C. $R_f = 0.60$ (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.85 (d, *J* = 2.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.61-7.59 (m, 1H), 7.56-7.54 (m, 1H), 7.38-7.36 (m, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.79 (s, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 142.5, 136.7, 133.4, 132.7, 131.3, 130.5, 129.7, 127.2, 122.2, 121.5, 120.2, 119.4, 119.1, 113.2, 109.2, 32.1; HRMS calcd. for C₁₇H₁₂Cl₂NS⁺ (M+H)⁺ 332.00620, found 332.00635.

3-(2,4-Dimethylphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (3av)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 2',4'-dimethylacetophenone (**3v**, 74.4 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3av** as yellow liquid (88.8 mg, 61% yield). R_f = 0.50 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.36-7.34 (m, 3H), 7.27-7.23 (m, 1H), 7.17 (s, 1H), 7.10 (dd, J = 7.9 Hz, 0.9 Hz, 1H), 7.06-7.02 (m, 1H), 6.65 (s, 1H), 3.87 (s, 3H), 2.41 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.9, 142.4, 137.3, 136.4, 134.7, 133.4, 131.0, 129.9, 126.4, 122.6, 122.1, 121.8, 119.1, 119.0, 112.8, 108.8, 32.1, 21.2, 20.1; HRMS calcd. for C₁₉H₁₈NS⁺ (M+H)⁺ 292.11545, found 292.11526.

8-Methyl-3-(naphthalen-2-yl)-8*H*-thieno[2,3-*b*]indole (3aw)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 2-acetylnaphthalene (**3w**, 91.0 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3aw** as yellowish solid (51.7 mg, 33% yield), mp 179-180 °C. R_f = 0.40 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.26 (s, 1H), 8.00-7.97 (m, 1H), 7.94-7.87 (m, 4H), 7.55-7.50 (m, 2H), 7.40-7.39 (m, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.91 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 142.6, 135.9, 134.2, 133.6, 132.8, 128.2, 128.1, 127.8, 126.51, 126.49, 126.3, 125.9, 122.0, 121,0, 119.5, 119.2, 112.6, 109.0, 32.1; HRMS calcd. for C₂₁H₁₆NS [M+H]⁺ 314.09980, found 314.10004.

2,8-Dimethyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ax)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.5 mmol), propiophenone (**3x**, 66.5 μ L, 0.4 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ax** as yellow liquid (126.0 mg, 91% yield). R_f = 0.70 (500:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.59-7.58 (m, 2H), 7.51-7.48 (m, 3H), 7.41-7.37 (m, 1H), 7.31 (d, *J* = 8.2, 1H), 7.22 (t, *J* = 7.5, 1H), 7.01 (t, *J* = 7.5, 1H), 3.80 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.8, 140.8, 136.0, 131.1, 129.6, 128.3, 127.1, 125.9, 122.0, 121.4, 118.8, 108.8, 32.1, 14.6; HRMS calcd. for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.10037.

8-Methyl-2,3-diphenyl-8*H*-thieno[2,3-*b*]indole (3ay)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 75.0 μ L, 0.6 mmol), 1,2-diphenylethanone (**3y**, 98.0 mg, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ay** as yellow solid (55.9 mg, 33% yield), mp = 121-123 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.54-7.49 (m, 3H), 7.43-7.34 (m, 4H), 7.31-7.28 (m, 2H), 7.26-7.16 (m, 4H), 7.06-7.01 (m, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.6, 142.0, 136.2, 135.2, 131.1, 130.0, 129.8, 129.2, 128.5, 128.3, 127.3, 126.6, 123.5, 122.4, 122.0, 119.14, 119.09, 108.9, 32.2; HRMS calcd. forC₂₃H₁₈NS⁺ (M+H)⁺ 340.11545, found 340.11545.

4,8-Dimethyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ba)

The reaction was conducted with 1,4-dimethyl-1*H*-indole (**1b**, 87.0 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ba** as yellow solid (66.5 mg, 48% yield), mp 286-288 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.52-7.49 (m, 2H), 7.41-7.39 (m, 3H), 7.21-7.14 (m, 2H), 6.84 (d, *J* = 7.5 Hz, 1H), 6.64 (s, 1H), 3.86 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.7, 142.5, 139.2, 136.5, 130.8, 129.9, 127.7, 127.5, 125.1, 122.8, 122.1, 121.1, 113.1, 106.3, 32.2, 22.3; HRMS calcd. for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.09995.

4-Fluoro-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ca)

The reaction was conducted with 4-fluoro-1-methyl-1*H*-indole (**1c**, 89.4 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ca** as brown liquid (39.3 mg, 28% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.66-7.63 (m, 2H), 7.47-7.40 (m, 3H), 7.21-7.14 (m, 2H), 6.82-6.79 (m, 1H), 6.77 (s, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 155.8 (d, *J* = 249.0 Hz), 144.9, 144.9, 144.8, 136.81, 136.79, 136.4, 129.0 (d, *J* = 3.4 Hz), 127.7, 127.4, 122.6 (d, *J* = 8.0 Hz), 119.1, 113.3, 110.9, 110.6, 105.4 (d, *J* = 20.5 Hz), 104.9 (d, *J* = 3.5 Hz), 32.5; HRMS calcd. for C₁₇H₁₃FNS⁺ (M+H)⁺ 282.07472, found 282.07480.

5,8-Dimethyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3da)

The reaction was conducted with 1,5-dimethyl-1*H*-indole (**1d**, 87.0 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3da** as yellowish liquid (88.6 mg, 64% yield), mp 107-108 ^oC. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, *J* = 7.7 Hz, 2H), 7.62 (s, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 8.8 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 6.76 (s, 1H), 3.82 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.1, 141.0, 136.8, 136.0, 128.6, 128.3, 128.0, 127.4, 123.3, 122.1, 120.4, 119.4, 112.0, 108.6, 32.1, 21.5; HRMS calcd. for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.09995.

5-Methoxy-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ea)

The reaction was conducted with 5-methoxy-1-methyl-1*H*-indole (**1e**, 96.6 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1) to yield the desired product **3ea** as yellow liquid (96.7 mg, 66% yield. R_f = 0.65 (20:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79-7.77 (m, 2H), 7.52-7.48 (m, 2H), 7.41-7.37 (m, 1H), 7.34 (d, *J* = 2.5 Hz, 1H), 7.25 (d, *J* = 8.7 Hz, 1H), 6.94 (dd, *J* = 8.9 Hz, 2.5 Hz, 1H), 6.76 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 153.5, 145.6, 137.9, 136.7, 135.8, 128.6, 128.0, 127.5, 122.3, 120.4, 111.9, 110.7, 109.5, 103.1, 56.0, 32.2; HRMS calcd. for C₁₈H₁₆NOS⁺ (M+H)⁺ 294.09471, found 294.09473.

5-Fluoro-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3fa)

The reaction was conducted with 5-fluoro-1-methyl-1*H*-indole (**1f**, 89.4 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3fa** as yellow brown liquid (84.3 mg, 60% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.73 (d, *J* = 7.2, 2H), 7.52-7.47 (m, 3H), 7.40 (t, *J* = 7.4, 1H), 7.25-7.21 (m, 1H), 7.04-6.98 (m, 1H), 6.77 (s, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.3 (d, *J* = 234.4 Hz), 146.4, 139.1, 136.4, 135.8, 128.8, 127.8, 127.6, 122.0 (d, *J* = 10.2)

Hz), 120.49, 120.45, 112.4, 109.8, 109.5 (d, J = 17.4 Hz), 109.3, 105.1 (d, J = 24.8 Hz), 32.3; HRMS calcd. for $C_{17}H_{13}FNS^+$ (M+H)⁺ 282.07472, found 282.07410.

5-Chloro-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ga)

The reaction was conducted with 5-chloro-1-methyl-1*H*-indole (**1g**, 99.0 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-Phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ga** as yellow liquid (93.6 mg, 63% yield). R_f = 0.65 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.77-7.72 (m, 3H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.24 (s, 2H), 6.79 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 146.1, 140.9, 136.3, 135.8, 128.8, 127.8, 127.7, 124.8, 122.7, 122.0, 120.1, 118.9, 112.8, 109.8, 32.2; HRMS calcd. for C₁₇H₁₃ClNS⁺ (M+H)⁺ 298.04517, found 298.04483.

5-Bromo-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ha)

The reaction was conducted with 5-bromo-1-methyl-1*H*-indole (**1h**, 125.5 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ha** as yellow liquid (97.2 mg, 57% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.93 (d, *J* = 1.9 Hz, 1H), 7.74-7.72 (m, 2H), 7.54-7.50 (m, 2H), 7.44 -7.40 (m, 1H), 7.37 (dd, *J* = 8.7 Hz, 1.9 Hz, 1H), 7.24-7.21 (m, 1H), 6.80 (s, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.9, 141.2, 136.3, 135.8, 128.8, 127.8, 127.7, 124.7,

123.4, 121.9, 120.1, 112.8, 112.3, 110.3, 32.2; HRMS calcd. for $C_{17}H_{13}BrNS^+(M+H)^+$ 341.99466, found 341.99451

6,8-Dimethyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ia)

The reaction was conducted with 1,6-dimethyl-1*H*-indole (**1i**, 87.0 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ia** as yellowy liquid (85.9 mg, 62% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80-7.78 (m, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.42-7.38 (m, 1H), 7.17 (s, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.78 (s, 1H), 3.83 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 143.0, 136.8, 135.8, 131.9, 128.6, 127.9, 127.4, 120.7, 120.5, 119.8, 119.1, 111.9, 109.2, 32.0, 21.9; HRMS calcd for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.09991.

6-Fluoro-8-methyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ja)

The reaction was conducted with 6-fluoro-1*H*-indole (**1j**, 81.0 mg, 0.6 mmol), acetophenone (58.0 μ L, 0.5 mmol), *L*-phenylalanine (**3a**, 82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ja** as yellowish-brown liquid (91.3 mg, 65% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.76-7.71 (m, 3H), 7.51-7.48 (m, 2H), 7.42-7.38 (m, 1H), 7.03 (dd, J = 9.8 Hz, 2.3 Hz, 1H), 6.91-6.82 (m, 1H), 6.79 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100

MHz, CDCl₃, ppm) δ 159.72 (d, J = 238.9 Hz), 144.9, 142.8 (d, J = 11.7 Hz), 136.5, 135.7, 128.7, 127.9, 127.5, 120.7, 120.0 (d, J = 10.0 Hz), 118.5, 112.6, 107.1 (d, J = 23.8 Hz), 96.0 (d, J = 26.6 Hz), 32.3; HRMS calcd. for C₁₇H₁₃FNS⁺ (M+H)⁺ 282.07472, found 282.07492.

7,8-Dimethyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3ka)

The reaction was conducted with 1,7-dimethyl-1*H*-indole (**1k**, 78.6 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ka** as yellow solid (92.8 mg, 67% yield), mp 153-155°C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.76-7.73 (m, 2H), 7.67 (t, J = 4.6 Hz, 1H), 7.50-7.46 (m, 2H), 7.40-7.37 (m, 1H), 6.97-6.96 (m, 2H), 6.76 (s, 1H), 4.08 (s, 3H), 2.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 146.4, 141.2, 136.8, 136.1, 128.6, 128.1, 127.4, 125.0, 122.9, 121.0, 120.5, 119.3, 117.6, 112.4, 36.3, 19.7; HRMS calcd. For C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.09988.

3-Phenyl-8*H*-thieno[2,3-*b*]indole (3la)

The reaction was conducted with 1*H*-indole (**11**, 70.2 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to yield the desired product **3la** as yellow solid (71.0 mg, 57% yield), mp 154-157°C. R_f = 0.60 (10:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.34 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.4 Hz,

2H), 7.50 (t, J = 7.5 Hz, 2H), 7.43-7.39(m, 2H), 7.27-7.23 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.3, 141.4, 136.6, 135.4, 128.6, 128.0, 127.5, 123.3, 122.5, 122.2, 119.7, 119.4, 113.2, 111.2; HRMS calcd. for C₁₆H₁₂NS⁺ (M+H)⁺ 250.06850, found 250.06863.

8-Ethyl-3-phenyl-8H-thieno[2,3-b]indole (3ma)

The reaction was conducted with 1-ethyl-1*H*-indole (**1m**, 87.0 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3ma** as yellow liquid (98.4 mg, 71% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.85 (d, *J* = 7.9 Hz, 1H), 7.80-7.78 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.41-7.38 (m, 2H), 7.30-7.26 (m, 1H), 7.13-7.09 (m, 1H), 6.78 (s, 1H), 4.29 (q, *J* = 7.3 Hz, 2H), 1.51 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.6, 141.5, 136.7, 135.9, 128.6, 128.0, 127.4, 122.0, 121.9, 121.1, 119.5, 118.9, 112.3, 109.0, 40.7, 13.8; HRMS calcd. for C₁₈H₁₆NS⁺ (M+H)⁺ 278.09980, found 278.10007.

8-Isopropyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3na)

The reaction was conducted with 1-isopropyl-1*H*-indole (**1n**, 95.4 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3na** as yellowy liquid (97.5 mg, 67% yield). R_f = 0.7 (100:1 petroleum ether/EtOAc).

¹H NMR (100 MHz, CDCl₃, ppm) δ 7.83 (d, J = 8.0 Hz, 1H), 7.78-7.76 (m, 2H), 7.51-7.47 (m, 2H), 7.44-7.37 (m, 2H), 7.29-7.25 (m, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.77 (s, 1H), 4.89 (dt, J = 13.6 Hz, 6.8 Hz, 1H), 1.65 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.6, 140.7, 136.7, 135.4, 128.6, 128.1, 127.4, 122.0, 121.9, 121.8, 119.4, 118.9, 113.2, 109.3, 47.7, 20.8; HRMS calcd. for C₁₉H₁₈NS⁺ (M+H)⁺ 292.11545, found 292.11563.

8-Benzyl-3-phenyl-8*H*-thieno[2,3-*b*]indole (3oa)

The reaction was conducted with 1-benzyl-1*H*-indole (**10**, 124.2 mg, 0.6 mmol), acetophenone (**3a**, 58.0 μ L, 0.5 mmol), *L*-phenylalanine (82.5 mg, 0.5 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **3oa** as yellow solid (105.1 mg, 62% yield), mp 124-125°C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (100 MHz, CDCl₃, ppm) δ 7.87 (d, J = 7.9 Hz, 1H), 7.79-7.77 (m, 2H), 7.51-7.48 (m, 2H), 7.42-7.38 (m, 2H), 7.33-7.24 (m, 6H), 7.16-7.11(m, 1H), 6.75 (s, 1H), 5.40 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.2, 142.3, 136.7, 135.7, 135.7, 128.9, 128.6, 128.0, 127.5, 127.4, 122.2, 122.1, 121.5, 119.5, 119.3, 112.9, 109.4, 49.7; HRMS calcd. for C₂₃H₁₈NS⁺ (M+H)⁺ 340.11545, found 340.11597.

8-Methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4aa, CAS: 22315-09-9)^[1]

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80 (d, J = 7.8 Hz, 1H), 7.64-7.62 (m, 3H), 7.37 (dd, J = 15.7 Hz, 7.7 Hz, 3H), 7.31-7.27 (m, 1H), 7.25-7.23 (m, 1H), 7.21-7.17 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, ppm) δ 144.0, 141.9, 135.72, 135.67, 128.9, 126.5, 125.1, 123.5, 122.2, 122.0, 119.5, 119.3, 114.2, 109.1, 32.2; HRMS calcd. for C₁₇H₁₄NS [M+H]⁺ 264.08415, found

264.08377.

8-Methyl-2-(p-tolyl)-8H-thieno[2,3-b]indole (4ab)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-methylacetophenone (**4b**, 54.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ab** as white solid (43.3 mg, 78% yield), mp 150-152 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, J = 7.8 Hz, 1H), 7.55 (s, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.33-7.31 (m, 1H), 7.29-7.25 (m, 1H), 7.20-7.16 (m, 3H), 3.81 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.7, 141.9, 136.4, 135.9, 132.9, 129.6, 125.0, 123.4, 122.2, 121.8, 119.4, 119.2, 113.6, 109.0, 32.2, 21.1; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09964.

2-(4-Isobutylphenyl)-8-methyl-8H-thieno[2,3-b]indole (4ac)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-(2-methylpropyl)acetophenone (**4c**, 75.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ac** as yellowish solid (42.1 mg, 66% yield), mp 132-134 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.7 Hz, 1H), 7.57 (s, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.35-7.33 (m, 1H), 7.30-7.26 (m, 1H), 7.20-7.14 (m, 3H), 3.84 (s, 3H), 2.48 (d, J = 7.2 Hz, 2H), 1.88 (dt, J = 13.5 Hz, 6.8 Hz, 1H), 0.93 (d, J = 6.6, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ

143.7, 141.9, 140.3, 136.0, 133.2, 129.6, 124.9, 123.4, 122.2, 121.9, 119.4, 119.3, 113.7, 109.0, 45.1, 32.3, 30.2, 22.4; HRMS calcd. for C₂₁H₂₂NS [M+H]⁺ 320.14675, found 320.14672.

2-(4-(tert-Butyl)phenyl)-8-methyl-8H-thieno[2,3-b]indole (4ad)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-tert-butylacetophenone (**4d**, 75.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ad** as golden solid (54.1 mg, 84% yield), mp 143-145 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.7 Hz, 1H), 7.57-7.55 (m, 3H), 7.41-7.39 (m, 2H), 7.34-7.32 (m, 1H), 7.29-7.25 (m, 1H), 7.20-7.16 (m, 1H), 3.83 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.7, 143.8, 141.9, 135.8, 132.9, 125.8, 124.9, 123.4, 122.2, 121.9, 119.4, 119.3, 113.7, 109.0, 34.5, 32.3, 31.3; HRMS calcd. for C₂₁H₂₂NS [M+H]⁺ 320.14675, found 320.14622.

2-(4-Methoxyphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4ae, CAS: 22315-10-2)^[1]

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-methoxyacetophenone (**4e**, 61.0 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) to yield the desired product **4ae** as brown solid (49.9 mg, 85% yield), mp 173-175 °C. R_f = 0.30 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.8 Hz, 1H), 7.56-7.54 (m, 2H), 7.49 (s, 1H), 7.36-7.34 (m, 1H), 7.30-7.26 (m, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H), 3.85 (s,

3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.7, 143.4, 141.9, 135.8, 128.6, 126.5, 123.4, 122.2, 121.8, 119.4, 119.2, 114.4, 113.2, 109.0, 55.4, 32.3; HRMS calcd. for C₁₈H₁₅ONS [M] 293.08689, found 293.08699.

2-(4-Fluorophenyl)-8-methyl-8H-thieno[2,3-b]indole (4af)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'fluoroacetophenone (**4f**, 48.5 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4af** as white solid (37.1 mg, 66% yield), mp 143-144 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃. ppm) δ 7.78 (d, J = 7.8 Hz, 1H), 7.56-7.52 (m, 2H), 7.50 (s, 1H), 7.34-7.25 (m, 2H), 7.19 (t, J = 7.3 Hz, 1H), 7.06 (t, J = 8.6 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.8 (d, J = 246.0 Hz), 143.8, 141.9, 134.5, 131.99, 131.96, 126.7 (d, J = 7.8 Hz), 123.5, 122.1, 122.0, 119.4 (d, J = 27.5 Hz), 115.8 (d, J = 21.8 Hz), 114.3, 109.1, 32.3; HRMS calcd. for C₁₇H₁₂NFS [M] 281.06690, found 281.06658.

2-(4-Chlorophenyl)-8-methyl-8H-thieno[2,3-b]indole (4ag)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-chloroacetophenone (**4g**, 52.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ag** as white solid (36.3 mg, 61% yield), mp 163-165 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (dd, J = 7.8 Hz, 0.9 Hz, 1H), 7.59 (s, 1H), 7.54-7.52 (m, 2H), 7.36-7.34 (m, 2H), 7.33-7.28 (m, 2H), 7.22-7.18 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, 100 MHz), 7.36-7.34 (m, 2H), 7.33-7.28 (m, 2H), 7.22-7.18 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz), 7.36-7.34 (m, 2H), 7.33-7.28 (m, 2H), 7.22-7.18 (m, 2H), 7.38-7.28 (m, 2H), 7.32-7.18 (m, 2H), 7.38-7.28 (m, 2H), 7.38-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.38-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.22-7.18 (m, 2H), 7.38-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.22-7.18 (m, 2H), 7.38-7.28 (m, 2H), 7.22-7.18 (m, 2H), 7.38-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.22-7.18 (m, 2H), 7.39-7.28 (m, 2H), 7.29-7.18 (m, 2H), 7.39-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.39-7.28 (m, 2H), 7.29-7.18 (m, 2H), 7.39-7.28 (m, 2H), 7.39 (m, 2H), 7.39 (m, 2H), 7.39 (m, 2H), 7.39 (m, 2H)

CDCl₃, ppm) δ 144.1, 142.0, 134.24, 134.21, 132.0, 129.0, 126.1, 123.5, 122.1, 122.1, 119.6, 119.3, 114.7, 109.1, 32.3; HRMS calcd. for C₁₇H₁₃NClS [M+H]⁺ 298.04517, found 298.04507.

2-(4-Bromophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4ah, CAS: 22315-11-3)^[1]

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-bromoacetophenone (**4h**, 80 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ah** as white solid (48.0 mg, 70% yield), mp 158-160 °C. R_f = 0.80 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80 (d, J = 7.7 Hz, 1H), 7.61 (s, 1H), 7.48 (s, 4H), 7.36-7.35 (m, 1H), 7.32-7.28 (m, 1H), 7.22-7.18 (m, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.2, 142.0, 134.7, 134.3, 132.0, 126.5, 123.6, 122.2, 122.1, 120.1, 119.7, 119.3, 114.8, 109.1, 32.3; HRMS calcd. for C₁₇H₁₃NBrS [M+1]⁺ 341.99466, found 341.99445.

2-(4-Iodophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4ai)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 4'-iodoacetophenone (**4i**, 98.5 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ai** as yellowish solid (31.9 mg, 41% yield), mp 169-171 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, J = 7.8 Hz, 1H), 7.68-7.65 (m, 2H), 7.60 (s, 1H), 7.35-7.33 (m, 3H), 7.31-7.27 (m, 1H), 7.20 (t, J = 7.3 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃, ppm) δ 144.1, 142.0, 137.8, 135.3, 134.3, 126.6, 123.6, 122.2, 122.1, 119.7, 119.3, 114.8, 109.1, 91.1, 32.3; HRMS calcd. for C₁₇H₁₃NIS [M+H]⁺ 389.98079, found 389.98038.

8-Methyl-2-(o-tolyl)-8H-thieno[2,3-b]indole (4aj)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 2'-methylacetophenone (**4j**, 53.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4aj** as yellow liquid (31.6 mg, 57% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.81 (d, J = 7.7 Hz, 1H), 7.49-7.47 (m, 1H), 7.38-7.36 (m, 1H), 7.33 (s, 1H), 7.31-7.27 (m, 2H), 7.25-7.23 (m, 2H), 7.21-7.17 (m, 1H), 3.87 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 141.8, 136.4, 135.1, 134.2, 130.8, 130.7, 127.4, 125.9, 122.9, 122.2, 121.9, 119.4, 119.2, 117.6, 109.0, 32.3, 21.4; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09959.

2-(2-Fluorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4ak)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 2'-fluoroacetophenone (**4k**, 48.6 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ak** as yellow solid (23.6 mg, 41% yield), mp 122-125 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.83-7.81 (m, 2H), 7.67-7.63 (m, 1H), 7.37-7.35 (m, 1H), 7.32-7.29 (m, 1H), 7.23-7.14 (m, 4H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.9 (d,

J = 249.0 Hz), 144.8, 142.1, 128.4, 127.8 (d, J = 3.7 Hz), 127.4 (d, J = 8.4 Hz), 124.5, 124.4, 123.6, 123.5, 122.2, 122.1, 119.5 (d, J = 19.7 Hz), 117.9 (d, J = 7.8 Hz), 116.3 (d, J = 22.6 Hz), 109.1, 32.4; HRMS calcd. for C₁₇H₁₃NFS [M+H]⁺ 282.07472, found 282.07489.

2-(2-Fluorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4al)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 2'-chloroacetophenone (**4l**, 52.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4al** as brown liquid (32.1 mg, 54% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.82 (d, *J* = 7.7 Hz, 1H), 7.70 (s, 1H), 7.60 (dd, *J* = 7.7 Hz, 1.7 Hz, 1H), 7.48 (dd, *J* = 7.9 Hz, 1.3 Hz, 1H), 7.37-7.36 (m, 1H), 7.32-7.28 (m, 2H), 7.24-7.18 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.2, 142.0, 134.0, 132.1, 131.3, 131.1, 130.6, 127.9, 127.0, 122.9, 122.2, 122.1, 119.5, 119.4, 119.1, 109.0, 32.4; HRMS calcd. for C₁₇H₁₃NClS [M+H]⁺ 298.04517, found 298.04498.

8-Methyl-2-(*m*-tolyl)-8*H*-thieno[2,3-*b*]indole (4am)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-methylacetophenone (**4m**, 55.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4am** as yellowish solid (38.8 mg, 70% yield), mp 125-127 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.8 Hz, 1H), 7.60 (s, 1H), 7.44-7.42 (m, 2H), 7.34-7.32 (m, 1H), 7.30-7.28 (m, 1H), 7.24-7.22 (m, 1H), 7.21-7.17 (m, 1H), 7.05 (d, J = 7.3 Hz,

1H), 3.82 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.9, 141.9, 138.5, 135.8, 135.6, 128.8, 127.4, 125.8, 123.4, 122.24, 122.15, 121.9, 119.5, 119.2, 114.1, 109.0, 32.3, 21.5; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09971.

2-(3-Methoxyphenyl)-8-methyl-8H-thieno[2,3-b]indole (4an)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-methoxyacetophenone (**4n**, 55.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4an** as yellowish solid (44.0 mg, 75% yield), mp 115-117 °C. R_f = 0.40 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.78 (d, J = 7.7 Hz, 1H), 7.60 (s, 1H), 7.33-7.25 (m, 3H), 7.22-7.15 (m, 3H), 6.79-6.77 (m, 1H), 3.85 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.0, 144.0, 141.9, 137.0, 135.4, 129.9, 123.3, 122.1, 122.0, 119.5, 119.3, 117.7, 114.5, 112.0, 110.7, 109.0, 55.3, 32.2; HRMS calcd. for C₁₈H₁₆ONS [M+H]⁺ 294.09471, found 294.09436.

2-(3-Fluorophenyl)-8-methyl-8H-thieno[2,3-b]indole (4ao)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-fluoroacetophenone (**4o**, 50.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ao** as golden solid (36.6 mg, 65% yield), mp 94-95 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80 (d, J = 7.7 Hz, 1H), 7.63 (s, 1H), 7.40-7.37 (m, 1H), 7.36-7.34 (m, 1H), 7.33-7.28 (m, 3H), 7.22-7.18 (m, 1H), 6.94-6.89 (m, 1H), 3.85 (s, 3H); ¹³C
NMR (100 MHz, CDCl₃, ppm) δ 163.3 (d, J = 245.4 Hz), 144.3, 142.0, 137.9 (d, J = 8.3 Hz), 134.1 (d, J = 2.8 Hz), 130.4 (d, J = 8.7 Hz), 123.5, 122.2, 122.1, 120.6, 120.6, 119.5 (d, J = 33.5 Hz), 115.1, 113.2 (d, J = 21.4 Hz), 111.7 (d, J = 23.0 Hz), 109.1, 32.3; HRMS calcd. for C₁₇H₁₃NFS [M+H]⁺ 282.07472, found 282.07428.

2-(3-Chlorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4ap)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-chloroacetonenone (**4p**, 52.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ap** as golden solid (37.5 mg, 63% yield), mp 115-117 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.65 (s, 1H), 7.61 (t, *J* = 1.9 Hz, 1H), 7.50-7.48 (m, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.33-7.27 (m, 2H), 7.21-7.18 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.3, 142.1, 137.5, 134.8, 133.8, 130.1, 126.3, 124.9, 123.5, 123.1, 122.2, 122.1, 119.7, 119.4, 115.2, 109.1, 32.3; HRMS calcd. for C₁₇H₁₃NClS [M+1]⁺ 298.04517, found 298.04459.

2-(3-Bromophenyl)-8-methyl-8H-thieno[2,3-b]indole (4aq)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-bromoacetophenones (**4q**, 55.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4aq** as yellow liquid (45.7 mg, 67% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 1.8 Hz, 1H), 7.61 (s, 1H), 7.53-7.50 (m, 1H), 7.36-7.28 (m, 3H), 7.24-7.18 (m, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 142.1, 137.8, 133.7, 131.0, 130.4, 129.3, 127.8, 123.6, 123.1, 122.3, 122.1, 119.8, 119.4, 115.3, 109.2, 32.4; HRMS calcd. for C₁₇H₁₃NBrS [M+H]⁺ 341.99466, found 341.99417.

8-Methyl-2-(3-(trifluoromethyl)phenyl)-8*H*-thieno[2,3-*b*]indole (4ar)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3'-(trifluoromethyl)acetophenone (**4r**, 59.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ar** as golden solid (37.8 mg, 57% yield), mp 90-92 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.84 (s, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.76-7.30 (m, 1H), 7.67 (s, 1H), 7.46-7.45 (m, 2H), 7.35-7.28 (m, 2H), 7.24-7.19 (m, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.3 (d, J = 234.6 Hz), 136.5, 133.7, 122.9 (q, J = 3.8 Hz), 123.6, 122.9, 122.93, 122.90, 122.8, 122.3, 122.1, 121.5 (q, J = 3.6 Hz), 119.6 (d, J = 38.5 Hz), 115.5, 109.2, 32.3; HRMS calcd. for C₁₈H₁₃NF₃S [M+H]⁺ 332.07153, found 332.07101.

2-(2,4-Dimethylphenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4as)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 2',4'-dimethylacetophenone (**4s**, 59.5 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4as** as yellow liquid (42.5 mg, 73% yield). R_f = 0.60 (100:1 petroleum

ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7 .80 (d, *J* = 7.8 Hz, 1H), 7.38-7.35 (m, 2H), 7.30-7.27 (m, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.11 (s, 1H), 7.05 (d, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 2.48 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.3, 141.8, 137.3, 136.2, 134.4, 132.2, 131.6, 130.6, 126.7, 122.9, 122.2, 121.8, 119.4, 119.2, 117.4, 109.0, 32.4, 21.2, 21.1; HRMS calcd. for C₁₉H₁₈NS [M+H]⁺ 292.11545, found 292.11508.

2-(3,4-Dimethoxyphenyl)-8-methyl-8H-thieno[2,3-b]indole (4at)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3',4'-dimethoxyacetophenone (**4t**, 72.1 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4at** as yellowish solid (53.0 mg, 82% yield), mp 170-172 °C. R_f = 0.30 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.80 (d, J = 7.7 Hz, 1H), 7.50 (s, 1H), 7.36-7.34 (m, 1H), 7.30-7.27 (m, 1H), 7.21-7.14 (m, 3H), 6.89 (d, J = 8.2 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.2, 148.2, 143.4, 141.8, 135.8, 128.9, 123.3, 122.1, 121.8, 119.4, 119.2, 117.8, 113.4, 111.6, 109.0, 108.8, 56.0, 55.9, 32.3; HRMS calcd. for C₁₉H₁₇O₂NS [M] 323.09745, found 323.09704.

2-(3,4-Dichlorophenyl)-8-methyl-8*H*-thieno[2,3-*b*]indole (4au)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3',4'-dichloroacetophenone (**4u**, 76.0 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to

yield the desired product **4au** as yellowish solid (34.5 mg, 52% yield), mp 165-167 $^{\circ}$ C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.79 (d, J = 7.8 Hz, 1H), 7.68 (t, J = 1.2 Hz, 1H), 7.61 (s, 1H), 7.41 (d, J = 1.2 Hz, 2H), 7.37-7.35 (m, 1H), 7.33-7.29 (m, 1H), 7.23-7.19 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 142.1, 135.8, 132.9, 132.6, 130.7, 129.9, 126.4, 124.0, 123.6, 122.4, 122.0, 119.8, 119.4, 115.5, 109.2, 32.3; HRMS calcd. for C₁₇H₁₂NCl₂S [M+H]⁺ 332.00620, found 332.00590.

8-Methyl-2-(naphthalen-1-yl)-8*H*-thieno[2,3-*b*]indole (4av)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 1-acetylnaphthalene (**4v**, 72.8 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4av** as yellowish solid (32.0 mg, 51% yield), mp 138-141 °C. R_f = 0.50 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.43-8.41 (m, 1H), 7.92-.90 (m, 1H), 7.86-7.84 (m, 2H), 7.65 (dd, *J* = 7.1 Hz, 1.2 Hz, 1H), 7.54-7.49 (m, 4H), 7.41-7.38 (m, 1H), 7.34-7.30 (m, 1H), 7.24-7.20 (m, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.6, 141.9, 134.0, 133.3, 132.7, 132.2, 128.4, 128.3, 128.1, 126.4, 125.99, 125.95, 125.3, 123.1, 122.2, 122.0, 119.5, 119.3, 118.7, 109.0, 32.4; HRMS calcd. for C₂₁H₁₆NS [M+H]⁺ 314.09980, found 314.09911.

8-Methyl-2-(naphthalen-2-yl)-8*H*-thieno[2,3-*b*]indole (4aw)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 2-acetylnaphthalene (**4w**, 72.8 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue

was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4aw** as yellowish solid (29.5 mg, 47% yield), mp 179-180 °C. $R_f = 0.40$ (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, J = 1.0 Hz, 1H), 7.85-7.79 (m, 4H), 7.75 (s, 1H), 7.50-7.40 (m, 3H), 7.37-7.35 (m, 1H), 7.32-7.28 (m, 1H), 7.23-7.19 (m, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.2, 142.0, 135.8, 133.8, 133.2, 132.3, 128.5, 127.74, 127.70, 126.53, 125.50, 123.9, 123.6, 122.8, 122.2, 122.0, 119.6, 119.3, 114.8, 109.1, 32.3; HRMS calcd. for C₂₁H₁₆NS [M+H]⁺ 314.09980, found 314.09930.

2-Isopropyl-8-methyl-8*H*-thieno[2,3-*b*]indole (4ax)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 3-methylbutan-2-one (**4x**, 49.7 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ax** as yellow liquid (17.0 mg, 37% yield). R_f = 0.70 (500:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.73 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.26-7.22 (m, 1H), 7.16-7.13 (m, 1H), 7.07 (d, *J* = 1.0 Hz, 1H), 3.81 (s, 3H), 3.26-3.20 (m, 1H), 1.40 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.3, 142.4, 141.6, 122.1, 121.6, 121.3, 119.0, 118.9, 112.5, 108.8, 32.2, 30.9, 24.9; HRMS calcd. for C₁₄H₁₆NS⁺ (M+H)⁺ 230.09980, found 230.09972.

2-((1r,3r,5r,7r)-Adamantan-2-yl)-8-methyl-8H-thieno[2,3-b]indole (4ay)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 25.0 μ L, 0.2 mmol), 1-acetyladamantan (**4y**, 71.3 mg, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by

column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ay** as yellow liquid (27.7 mg, 43% yield). $R_f = 0.90$ (100:1 petroleum ether/EtOAc). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.73 (d, J = 7.7 Hz, 1H), 7.32-7.30 (m, 1H), 7.24-7.21 (m, 1H), 7.16-7.12 (m, 1H), 7.07 (s, 1H), 3.81 (s, 3H), 2.11 (s, 3H), 2.05-2.04 (m, 6H), 1.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 150.6, 142.2, 141.7, 122.2, 121.6, 121.2, 119.0, 118.9, 111.0, 108.8, 45.2, 36.9, 36.7, 32.2, 29.0; HRMS calcd. for C₂₁H₂₄NS [M+H]⁺ 322.16240, found 322.16190.

5,8-Dimethyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ba)

The reaction was conducted with 1,5-dimethyl-1*H*-indole (**1b**, 29.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ba** as yellowish solid (46.0 mg, 83% yield), mp 124-126 °C. R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.635-7.627 (m, 1H), 7.61-7.59 (m, 3H), 7.40-7.36 (m, 2H), 7.25-7.21 (m, 2H), 7.11 (dd, J = 8.3 Hz, 1.3 Hz, 1H), 3.84 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.1, 140.4, 135.8, 135.3, 128.9, 128.8, 126.5, 125.0, 123.3, 123.1, 122.3, 119.3, 114.2, 108.7, 32.3, 21.4; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09958.

5-Methoxy-8-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ca)

The reaction was conducted with 5-methoxy-1-methyl-1*H*-indole (**1c**, 32.5 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ca** as golden solid (46.5 mg, 79% yield), mp 163-164 °C. R_f = 0.30 (100:1

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.63-7.61 (m, 2H), 7.59 (s, 1H), 7.39-7.36 (m, 2H), 7.29 (d, *J* = 2.5 Hz, 1H), 7.24-7.21 (m, 2H), 6.93 (dd, *J* = 8.9 Hz, 2.5 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 154.1, 144.5, 137.2, 135.7, 135.2, 128.9, 126.5, 125.0, 123.1, 122.5, 114.1, 111.1, 109.7, 102.3, 56.0, 32.4; HRMS calcd. for C₁₈H₁₆ONS [M+H]⁺ 294.09471, found 29409487.

5-Fluoro-8-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4da)

The reaction was conducted with 5-fluoro-1-methyl-1*H*-indole (**1d**, 30.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4da** as yellowish solid (38.8 mg, 69% yield), mp 107-108 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.63-7.60 (m, 2H), 7.55 (s, 1H), 7.45 (dd, J = 9.3 Hz, 2.5 Hz, 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.27-7.22 (m, 3H), 7.02 (td, J = 9.1 Hz, 2.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.8 (d, J = 235.3 Hz), 145.4, 138.5, 136.0, 135.5, 129.0, 126.8, 125.2, 123.1 (d, J = 4.2 Hz), 122.3 (d, J = 10.2 Hz), 114.0, 109.9, 109.6 (d, J = 6.0 Hz), 109.5, 104.9 (d, J = 24.3 Hz), 32.6; HRMS calcd. for C₁₇H₁₂NFS [M] 281.06690, found 281.06684.

5-Chloro-8-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ea)

The reaction was conducted with 5-chloro-1-methyl-1*H*-indole (1e, 33.0 mg, 0.2 mmol), acetophenone (4a, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was

purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ea** as yellowish liquid (31.5 mg, 53% yield. $R_f = 0.65$ (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.74 (t, *J* = 1.3 Hz, 1H), 7.62-7.59 (m, 2H), 7.53 (s, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.27-7.25 (m, 1H), 7.22 (d, *J* = 1.3 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.0, 140.2, 136.3, 135.4, 129.0, 126.8, 125.2, 125.2, 122.9, 122.7, 122.0, 118.9, 113.9, 109.9, 32.4; HRMS calcd. for C₁₇H₁₃NCIS [M] 298.04517, found 298.04485.

5-Bromo-8-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4fa)

The reaction was conducted with 5-bromo-1-methyl-1*H*-indole (**1f**, 42.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4fa** as yellowish solid (37.5 mg, 55% yield), mp 165-166 °C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.91 (d, J = 1.8 Hz, 1H), 7.62-7.60 (m, 2H), 7.55 (s, 1H), 7.41-7.35 (m, 3H), 7.22-7.20(m, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.9, 140.6, 136.5, 135.4, 129.0, 126.9, 125.2, 124.7, 123.6, 122.7, 122.0, 113.9, 112.7, 110.4, 32.5; HRMS calcd. for C₁₇H₁₃NBrS [M+H]⁺ 341.99466, found 341.99434.

5-Iodo-8-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ga)

The reaction was conducted with 5-iodo-1-methyl-1*H*-indole (**1g**, 51.4 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the

desired product **4ga** as yellowish solid (31.9 mg, 41% yield), mp 126-129 °C. $R_f = 0.70$ (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.10 (d, J = 1.6 Hz, 1H), 7.62-7.59 (m, 2H), 7.54-7.51 (m, 2H), 7.41-7.37 (m, 2H), 7.27-7.23 (m, 2H), 7.10 (d, J = 8.6 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.5, 141.0, 136.5, 135.4, 130.2, 129.0, 128.1, 126.9, 125.2, 124.3, 122.4, 113.9, 111.0, 82.7, 32.4; HRMS calcd. for C₁₇H₁₃NIS [M+H]⁺ 389.98079, found 389.98080.

6,8-Dimethyl-2-phenyl-8H-thieno[2,3-b]indole (4ha)

The reaction was conducted with 1,6-dimethyl-1*H*-indole (**1h**, 29.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ha** as yellowish solid (37.2 mg, 67% yield), mp 143-145°C. R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.68 (d, J = 8.0 Hz, 1H), 7.63-7.61 (m, 2H), 7.59 (s, 1H), 7.39-7.35 (m, 2H), 7.24-7.20 (m, 1H), 7.14 (s, 1H), 7.02 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.5, 142.4, 135.8, 135.3, 131.9, 128.9, 126.4, 125.0, 123.4, 121.0, 120.0, 118.9, 114.2, 109.3, 32.2, 21.9; HRMS calcd. for C₁₈H₁₅NS [M] 277.09197, found 277.09180.

6-Chloro-8-methyl-2-phenyl-8H-thieno[2,3-b]indole (4ia)

The reaction was conducted with 1,6-dimethyl-1*H*-indole (**1i**, 33.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ia** as yellowish solid (30.9 mg, 52% yield), mp 84-86°C. R_f = 0.65 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.69 (d, J = 8.4 Hz, 1H), 7.63-7.61 (m, 2H), 7.57 (s, 1H), 7.41-7.34 (m, 4H), 7.16 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 142.2, 136.5, 135.4, 128.9, 128.0, 126.8, 125.2, 123.3, 120.7, 119.98, 119.95, 114.0, 109.3, 32.4; HRMS calcd. for C₁₇H₁₃NCIS [M+H]⁺ 298.04517, found 298.04487.

7,8-Dimethyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ja)

The reaction was conducted with 1,7-dimethyl-1*H*-indole (**1**j, 29.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ja** as yellowish solid (40.5 mg, 73% yield), mp 183-185°C. R_f = 0.65 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm): δ 7.64-7.60 (m, 3H), 7.57 (s, 1H), 7.39-7.35 (m, 2H), 7.24-7.20 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 7.1 Hz, 1H), 4.08 (s, 3H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.3, 140.6, 135.7, 135.6, 128.9, 126.5, 125.05, 125.03, 123.3, 123.1, 121.1, 119.8, 117.4, 114.2, 36.4, 19.5; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09968.

2-Phenyl-8*H*-thieno[2,3-*b*]indole (4ka, 22315-06-6)^[1]

The reaction was conducted with 1*H*-indole (**1k**, 23.5 mg, 0.2 mmol), acetophenone (**4a**, 47.0 µL, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) to yield the desired product **4ka** as yellowish solid (37.4 mg, 75% yield), mp 265-267°C. $R_f = 0.60$ (10:1 petroleum ether/EtOAc). ¹H NMR (400 MHz, Acetone, ppm) δ 10.76 (s, 1H), 7.84-7.82 (m, 2H), 7.70-7.68 (m, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.42-7.38 (m, 2H), 7.27-7.20 (m, 2H), 7.16-7.12 (m, 1H); ¹³C NMR (100 MHz, Acetone, ppm) δ 142.0, 141.0, 135.8, 135.6, 129.0, 126.6, 125.3, 124.8, 122.3, 122.1, 119.5, 118.9,

113.9, 111.6; HRMS calcd. for $C_{16}H_{12}NS [M+H]^+$ 250.06850, found 250.06824.

8-Ethyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4la)

The reaction was conducted with 1-ethyl-1*H*-indole (**11**, 29.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4la** as yellow liquid (39.9 mg, 72% yield). R_f = 0.60 (100:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.86 (d, J = 7.7 Hz, 1H), 7.69-7.66 (m, 3H), 7.45-7.41 (m, 3H), 7.35-7.33 (m, 1H), 7.31-7.28 (m, 1H), 7.27-7.22 (m, 1H), 4.32 (q, J = 7.3 Hz, 2H), 1.57 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.5, 141.0, 135.70, 135.69, 128.9, 126.5, 125.1, 123.9, 122.3, 121.9, 119.41, 119.36, 114.1, 109.1, 40.9, 13.8; HRMS calcd. for C₁₈H₁₆NS [M+H]⁺ 278.09980, found 278.09973.

8-Isopropyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4ma)

The reaction was conducted with 1-isopropyl-1*H*-indole (**1m**, 31.8 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4ma** as yellow liquid (49.5 mg, 78% yield). R_f = 0.65 (100:1 petroleum ether/EtOAc). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.65-7.63 (m, 3H), 7.42-7.35 (m, 3H), 7.29-7.25 (m, 2H), 7.20-7.16 (m, 1H), 4.86 (dt, *J* = 13.5 Hz, 6.8 Hz, 1H), 1.64 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.0, 139.7, 136.2, 135.6, 128.9, 126.6, 125.1, 124.8,

122.2, 121.9, 119.4, 119.3, 113.6, 109.4, 47.8, 20.9; HRMS calcd. for $C_{19}H_{18}NS$ [M+H]⁺ 292.11545, found 292.11517.

8-Ethyl-5-methyl-2-phenyl-8*H*-thieno[2,3-*b*]indole (4na)

The reaction was conducted with 1-ethyl-5-methyl-1H-indole (**1n**, 31.8 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **4na** as gold solid (43.7 mg, 75% yield), mp 107-109°C. R_f = 0.65 (100:1 petroleum ether/EtOAc).

¹H NMR (100 MHz, CDCl₃, ppm) δ 7.63-7.61 (m, 3H), 7.59 (s, 1H), 7.39-7.35 (m, 2H), 7.26-7.22 (m, 2H), 7.09 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 4.24 (q, J = 7.3 Hz, 2H), 2.50 (s, 3H), 1.49 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.6, 139.4, 135.8, 135.3, 128.9, 128.7, 126.5, 125.0, 123.5, 123.2, 122.5, 119.3, 114.1, 108.8, 40.9, 21.4, 13.8; HRMS calcd. for C₁₉H₁₈NS [M+H]⁺ 292.11545, found 292.11531.

8-Ethyl-5-methoxy-2-phenyl-8H-thieno[2,3-b]indole (40a)

The reaction was conducted with 1-ethyl-5-methoxy-1*H*-indole (**10**, 35.0 mg, 0.2 mmol), acetophenone (**4a**, 47.0 μ L, 0.4 mmol) and sulfur powder (32.0 mg, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 300:1) to yield the desired product **40a** as brown solid (47.9 mg, 78% yield), mp 163-164°C. R_f = 0.40 (100:1 petroleum ether/EtOAc).

¹H NMR (100 MHz, CDCl₃, ppm) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.59 (s, 1H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 2.4 Hz, 1H), 7.24-7.21 (m, 2H), 6.92 (dd, *J* = 8.9 Hz, 2.5 Hz, 1H), 4.23 (q, *J* = 7.3 Hz, 2H), 3.90 (s, 3H), 1.50 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 154.0, 143.0, 136.2, 135.7, 135.3, 128.9, 126.5, 125.1, 123.5, 122.6, 114.0, 111.1, 109.7, 102.4, 56.0, 41.0, 13.8; HRMS calcd. for C₂₀H₁₉ONS [M] 321.11819, found 321.11728.

1-methyl-3-(1-phenylvinyl)-1H-indole (3a, CAS: 112122-42-6)^[3]

1-Methyl-1*H*-indole (38.0 µL, 0.3 mmol), acetophenone (24.0 µL, 0.2 mmol) and *L*-phenylalanine (33.0 mg, 0.2 mmol) were added to an oven-dried reaction vessel (20 mL). The reaction vessel was sealed and HI (50 mol %, 55% w/w aqueous. solution, stab with 1.5% hypophosphorous acid) and CF₃Ph/1,4-dioxane (1.0 mL, 2:3) were added by syringe. The reaction vessel was stirred at 115 °C for 1.5 h under air atmosphere. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on neutral alum (petroleum ether/EtOAc = 50:1) to yield the desired product **3a** as white solid (9.8 mg, 21% yield). R_f = 0.70 (100:1 petroleum ether/EtOAc).

¹H NMR (100 MHz, CDCl₃, ppm) δ 7.56 (d, J = 8.1 Hz, 1H), 7.49-7.46 (m, 2H), 7.34-7.33 (m, 5H), 7.11-7.08 (m, 1H), 6.97 (s, 1H), 5.56 (d, J = 1.4 Hz, 1H), 5.37 (d, J = 1.5 Hz, 1H), 3.77 (s, 3H).

N,N-Dimethyl-2-phenylethanethioamide (4a, CAS: 17709-95-4)^[4]

Acetophenone (**2a**, 23.0 µL, 0.2 mmol) and sulfur powder (32.0 mg, 1.0 mmol) were added to a oven-dried reaction vessel (20 mL). HOAc(0.1 mL) and DMF (0.3 mL) were added by syringe. The sealed reaction vessel was stirred at 150 °C for 16 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated salt water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over sodium sulfate, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to yield the desired product **4a** as white solid (23.3 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35-7.29 (m, 4H), 7.28-7.22 (m, 1H), 4.32 (s, 2H), 3.50 (s, 3H), 3.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 200.6, 135.6, 128.8, 128.0, 126.9, 50.9,

44.8, 42.2.

(E)-1-Methyl-3-styryl-1H-indole (5a, CAS: 72228-54-7)^[5]

1-Methyl-1*H*-indole (**1a**, 25.0 µL, 0.2 mmol) and styrene (28.0 µL, 1.2 mmol) were added to a oven-dried reaction vessel (20 mL), $Pd(OAc)_2$ (10 mol%), $Cu(OAc)_2$ (1.8 equiv) and DMF/DMSO (9:1, 0.4 mL) by syringe. The reaction vessel under air atmosphere was stirred at 70 °C for 18 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated salt water. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over sodium sulfate, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to yield the desired product **5a**.

2-Phenylthiirane (6a, CAS: 1498-99-3)^[6]

A solution of styrene oxide (230.0 μ L, 2.0 mmol) and KSCN (778.0 mg, 8.0 mmol) in water (5.0 mL) was heated to 45 °C and stirred for 24 h at the same temperature. The resulting mixture was diluted with EtOAc and washed with brine. The organic phase was dried (MgSO₄) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE) to give 2-phenylthiirane **6a**.

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.03 (m, 5H), 4.05-3.66 (m, 1H), 2.86 (dd, *J* = 6.6 Hz, 1.5 Hz, 1H), 2.64 (dd, *J* = 5.6 Hz, 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 139.1, 128.5, 127.6, 126.7, 36.1, 27.3.

8-Methyl-2-phenyl-8H-thieno[2,3-b]indole 1,1-dioxide (4aa')

A solution of **4aa** (0.53 g, 2.0 mmol) and *m*-CPBA(1.73 g, 10.0 mmol) in trichloromethane (10.0 mL) was heated to 40 °C and stirred for 24 h at the same temperature. The resulting mixture was diluted with EtOAc and volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to yield the desired product **4aa**' as white solid (0.52 g, 87% yield). $R_f = 0.60$ (5:1 petroleum ether/EtOAc).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.75 (dd, *J* = 7.7 Hz, 1.7 Hz, 2H), 7.50-7.43 (m, 5H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.64 (s, 1H), 3.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.5, 143.9, 140.3, 132.5, 131.2, 129.4, 127., 126.4, 125.8, 125.0, 124.1, 122.7, 109.4, 84.6, 27.1.

7. References

- [1] G. Kobayashi, S. Furukawa, Y. Matsuda, R. Natsuki, Yakugaku Zasshi 1969, 89, 58-63.
- [2] R. A. Irgashev, A. A. Karmatsky, G. L. Rusinov, V. N. Charushin, *Beilstein J. Org. Chem.* 2015, 11, 1000-1007.
- [3] U. Pindur, G. Lutz, D. Schollmeyer, W. Massa, L. Schöder, Tetrahedron 1993, 49, 2863-2872.
- [4] S. Kumar, R. Vanjari, T. Guntreddi, K. N. Singh, Tetrahedron 2016, 72, 2012-2017.
- [5] N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. Int. Ed. 2005, 44, 3125-3129.
- [6] X. P. Chen, J. X. Xu, Tetrahedron Lett. 2017, 58, 1651-1654.

8. Crystal data and structure refinement for 3ah and 4aa

Crystal size

Index ranges

Reflections collected

Independent reflections

Absorption correction

Goodness-of-fit on F^2

Final R indices [I>2sigma(I)]

Refinement method

 $\alpha = 90$ °.

 $\beta = 90^{\circ}$. $\gamma = 90$ °.

Table 1. Crystal data and structure refinement f	or 3ah .
Identification code	3ah
Empirical formula	C17 H12 I N S
Formula weight	389.24
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P b c a
Unit cell dimensions	a = 6.2817(13) Å
	b = 19.730(4) Å
	c = 23.695(5) Å
Volume	2936.7(10) Å ³
Z	8
Density (calculated)	1.761 Mg/m ³
Absorption coefficient	2.311 mm ⁻¹
F(000)	1520

? x ? x ? mm³ Theta range for data collection 2.064 to 27.487 °. -8 <= h <= 8, -24 <= k <= 16, -30 <= l <= 3012514 3329 [R(int) = 0.0426] 99.4 % Completeness to theta = 25.242° None Full-matrix least-squares on F² 3329 / 0 / 182 Data / restraints / parameters 1.162

R1 = 0.0469, wR2 = 0.0900

R indices (all data)	R1 = 0.0514, wR2 = 0.0923
Extinction coefficient	n/a
Largest diff. peak and hole	0.483 and -0.659 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **3ah**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
 I1	9666(1)	1718(1)	3106(1)	37(1)
S1	1249(2)	5339(1)	3279(1)	35(1)
N1	-1065(6)	4821(2)	4217(1)	32(1)
C17	-2754(8)	5320(2)	4271(2)	42(1)
C1	7630(6)	2559(2)	3193(2)	28(1)
C2	5572(6)	2449(2)	3385(2)	28(1)
C3	4245(6)	2999(2)	3471(2)	27(1)
C4	4924(6)	3660(2)	3368(2)	26(1)
C5	6996(6)	3753(2)	3160(2)	30(1)
C6	8347(7)	3206(2)	3069(2)	31(1)
C7	3454(6)	4234(2)	3453(2)	26(1)
C8	3320(7)	4790(2)	3111(2)	34(1)
C9	527(7)	4811(2)	3825(2)	29(1)
C10	1826(6)	4253(2)	3883(2)	26(1)
C11	1014(6)	3892(2)	4366(2)	27(1)
C12	-787(7)	4256(2)	4555(2)	31(1)
C13	-2011(7)	4045(2)	5016(2)	40(1)
C14	-1362(8)	3470(2)	5302(2)	41(1)
C15	461(8)	3117(2)	5136(2)	40(1)
C16	1633(7)	3314(2)	4672(2)	32(1)

Table 3. Bond lengths [Å] and angles [] for **3ah**.

I1-C1	2.105(4)
S1-C8	1.739(5)
S1-C9	1.722(4)
N1-C17	1.453(5)
N1-C9	1.366(5)

N1-C12	1.384(5)
C17-H17A	0.9600
C17-H17B	0.9600
C17-H17C	0.9600
C1-C2	1.388(5)
C1-C6	1.386(6)
C2-H2	0.9300
C2-C3	1.384(6)
С3-Н3	0.9300
C3-C4	1.394(6)
C4-C5	1.404(5)
C4-C7	1.475(6)
С5-Н5	0.9300
C5-C6	1.389(6)
С6-Н6	0.9300
C7-C8	1.368(6)
C7-C10	1.444(5)
C8-H8	0.9300
C9-C10	1.377(5)
C10-C11	1.442(5)
C11-C12	1.412(6)
C11-C16	1.407(6)
C12-C13	1.399(6)
C13-H13	0.9300
C13-C14	1.381(7)
C14-H14	0.9300
C14-C15	1.398(7)
C15-H15	0.9300
C15-C16	1.377(6)
C16-H16	0.9300
C9-S1-C8	89.6(2)
C9-N1-C17	127.1(4)
C9-N1-C12	106.9(3)
C12-N1-C17	126.0(4)
N1-C17-H17A	109.5
N1-C17-H17B	109.5
N1-C17-H17C	109.5
H17A-C17-H17B	109.5

H17A-C17-H17C	109.5
H17B-C17-H17C	109.5
C2-C1-I1	118.3(3)
C6-C1-I1	120.5(3)
C6-C1-C2	121.1(4)
С1-С2-Н2	120.4
C3-C2-C1	119.1(4)
С3-С2-Н2	120.4
С2-С3-Н3	119.2
C2-C3-C4	121.6(4)
С4-С3-Н3	119.2
C3-C4-C5	117.8(4)
C3-C4-C7	120.2(3)
C5-C4-C7	121.9(4)
С4-С5-Н5	119.3
C6-C5-C4	121.3(4)
С6-С5-Н5	119.3
C1-C6-C5	119.0(4)
С1-С6-Н6	120.5
С5-С6-Н6	120.5
C8-C7-C4	125.0(4)
C8-C7-C10	110.7(4)
C10-C7-C4	124.0(4)
S1-C8-H8	122.9
C7-C8-S1	114.2(3)
С7-С8-Н8	122.9
N1-C9-S1	134.1(3)
N1-C9-C10	112.2(4)
C10-C9-S1	113.7(3)
C9-C10-C7	111.7(4)
C9-C10-C11	105.3(3)
C11-C10-C7	143.0(4)
C12-C11-C10	106.6(3)
C16-C11-C10	135.4(4)
C16-C11-C12	118.0(4)
N1-C12-C11	109.1(4)
N1-C12-C13	128.5(4)
C13-C12-C11	122.4(4)

С12-С13-Н13	121.2
C14-C13-C12	117.7(4)
C14-C13-H13	121.2
C13-C14-H14	119.6
C13-C14-C15	120.8(4)
C15-C14-H14	119.6
C14-C15-H15	119.2
C16-C15-C14	121.5(4)
C16-C15-H15	119.2
C11-C16-H16	120.3
C15-C16-C11	119.4(4)
C15-C16-H16	120.3

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **3ah**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I1	28(1)	41(1)	43(1)	2(1)	3(1)	4(1)
S 1	48(1)	26(1)	32(1)	3(1)	-6(1)	-2(1)
N1	33(2)	29(2)	33(2)	-3(2)	-2(2)	4(2)
C17	43(3)	35(2)	49(3)	-9(2)	-3(2)	11(2)
C1	25(2)	35(2)	24(2)	1(2)	0(2)	0(2)
C2	29(2)	29(2)	28(2)	-3(2)	4(2)	-6(2)
C3	23(2)	34(2)	26(2)	-5(2)	5(2)	-6(2)
C4	29(2)	28(2)	21(2)	-3(2)	1(2)	-4(2)
C5	29(2)	36(2)	23(2)	2(2)	-2(2)	-12(2)
C6	24(2)	42(2)	27(2)	3(2)	1(2)	-5(2)
C7	30(2)	28(2)	22(2)	-3(2)	1(2)	-6(2)
C8	46(2)	31(2)	26(2)	-1(2)	-1(2)	-8(2)
C9	36(2)	26(2)	26(2)	-3(2)	-4(2)	0(2)
C10	28(2)	23(2)	27(2)	-4(2)	-1(2)	0(2)
C11	30(2)	26(2)	25(2)	-6(2)	2(2)	-2(2)
C12	31(2)	34(2)	29(2)	-5(2)	1(2)	-1(2)
C13	34(2)	45(3)	43(3)	-7(2)	10(2)	-1(2)
C14	47(3)	41(3)	34(2)	0(2)	14(2)	-8(2)

C15	54(3)	28(2)	36(2)	6(2)	2(2)	-4(2)
C16	35(2)	28(2)	32(2)	-1(2)	5(2)	1(2)

	Х	У	Z	U(eq)
H17A	-2462	5697	4027	63
H17B	-2828	5475	4654	63
H17C	-4088	5118	4167	63
H2	5091	2011	3455	34
H3	2866	2926	3601	33
H5	7475	4189	3082	35
H6	9710	3274	2927	37
H8	4255	4868	2813	41
H13	-3220	4282	5126	49
H14	-2149	3317	5609	49
H15	893	2741	5342	48
H16	2823	3066	4563	38

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for 3ah.

Crystal data and structure refinement for 4aa

Table S1. Crystal data and structure refinement for 4aa.

Table 1. Crystal data and structure refinement for **4aa**.

Identification code	4aa		
Empirical formula	$C_{17}H_{13}N S$		
Formula weight	263.34		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 5.4797(4) Å	$\alpha = 90$ °.	
	b = 9.5670(7) Å	β= 90 °.	
	c = 24.6309(17) Å	$\gamma = 90$ °.	
Volume	1291.26(16) Å ³		
Z	4		
Density (calculated)	1.355 Mg/m ³		
Absorption coefficient	0.234 mm ⁻¹		
F(000)	552		
Crystal size	0.389 x 0.324 x 0.171 mm ³		
Theta range for data collection	3.270 to 27.468 °.		
Index ranges	-6<=h<=6, -12<=k<=11, -15<=l<=31		
Reflections collected	5038		
Independent reflections	2767 [R(int) = 0.0268]		
Completeness to theta = 26.000 $^{\circ}$	99.4 %		
Absorption correction	Semi-empirical from equivalent	its	
Max. and min. transmission	1.00000 and 0.85076		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2767 / 0 / 173		
Goodness-of-fit on F ²	1.132		
Final R indices [I>2sigma(I)]	R1 = 0.0392, wR2 = 0.0857		

R indices (all data)	R1 = 0.0417, wR2 = 0.0878
Absolute structure parameter	0.09(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.189 and -0.177 e.Å ⁻³

	X	у	Z	U(eq)
S1	1630(1)	3575(1)	5361(1)	30(1)
N1	2871(4)	2420(2)	6390(1)	30(1)
C1	4697(5)	2730(3)	6763(1)	28(1)
C2	5173(5)	2100(3)	7262(1)	33(1)
C3	7137(5)	2600(3)	7558(1)	35(1)
C4	8607(5)	3686(3)	7365(1)	34(1)
C5	8141(5)	4303(3)	6867(1)	30(1)
C6	6148(5)	3848(3)	6560(1)	27(1)
C7	5124(5)	4208(3)	6037(1)	26(1)
C8	5413(5)	5130(3)	5586(1)	27(1)
C9	3700(5)	4922(3)	5193(1)	27(1)
C10	3156(5)	3321(3)	5963(1)	27(1)
C11	1011(5)	1350(3)	6436(1)	34(1)
C12	3433(5)	5657(3)	4672(1)	26(1)
C13	5160(5)	6658(3)	4514(1)	28(1)
C14	4992(5)	7344(3)	4017(1)	30(1)
C15	3080(6)	7037(3)	3665(1)	32(1)
C16	1352(5)	6069(3)	3817(1)	34(1)
C17	1506(5)	5389(3)	4314(1)	32(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **4aa**. U(eq) is defined as one third of the trace of the orthogonalized U^{iJ} tensor.

Table 3. Bond lengths [Å] and angles [^o] for **4aa**.

S1-C9	1.766(3)
S1-C10	1.719(3)
N1-C1	1.391(4)
N1-C10	1.368(3)
N1-C11	1.449(3)

C1-C2	1.394(4)
C1-C6	1.423(4)
C2-H2	0.9300
C2-C3	1.385(4)
С3-Н3	0.9300
C3-C4	1.398(4)
C4-H4	0.9300
C4-C5	1.386(4)
С5-Н5	0.9300
C5-C6	1.399(4)
C6-C7	1.446(4)
C7-C8	1.427(4)
C7-C10	1.384(4)
С8-Н8	0.9300
C8-C9	1.363(4)
C9-C12	1.472(4)
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
C12-C13	1.402(4)
C12-C17	1.398(4)
C13-H13	0.9300
C13-C14	1.392(4)
C14-H14	0.9300
C14-C15	1.392(4)
C15-H15	0.9300
C15-C16	1.376(4)
C16-H16	0.9300
C16-C17	1.391(4)
C17-H17	0.9300
C10-S1-C9	89.62(13)
C1-N1-C11	127.2(2)
C10-N1-C1	106.9(2)
C10-N1-C11	125.9(2)
N1-C1-C2	128.7(3)
N1-C1-C6	109.3(2)
C2-C1-C6	122.0(3)
С1-С2-Н2	121.3

C3-C2-C1	117.4(3)
С3-С2-Н2	121.3
С2-С3-Н3	119.2
C2-C3-C4	121.7(3)
С4-С3-Н3	119.2
С3-С4-Н4	119.6
C5-C4-C3	120.8(3)
С5-С4-Н4	119.6
С4-С5-Н5	120.3
C4-C5-C6	119.4(3)
С6-С5-Н5	120.3
C1-C6-C7	106.0(2)
C5-C6-C1	118.7(2)
C5-C6-C7	135.3(2)
C8-C7-C6	142.8(2)
C10-C7-C6	105.9(2)
C10-C7-C8	111.3(2)
С7-С8-Н8	123.6
C9-C8-C7	112.7(2)
С9-С8-Н8	123.6
C8-C9-S1	112.5(2)
C8-C9-C12	128.2(3)
C12-C9-S1	119.30(19)
N1-C10-S1	134.1(2)
N1-C10-C7	112.0(2)
C7-C10-S1	113.92(19)
N1-C11-H11A	109.5
N1-C11-H11B	109.5
N1-C11-H11C	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C13-C12-C9	120.0(2)
C17-C12-C9	122.5(2)
C17-C12-C13	117.5(2)
С12-С13-Н13	119.3
C14-C13-C12	121.4(2)
С14-С13-Н13	119.3

C13-C14-H14	120.0
C13-C14-C15	119.9(3)
C15-C14-H14	120.0
C14-C15-H15	120.3
C16-C15-C14	119.3(3)
С16-С15-Н15	120.3
С15-С16-Н16	119.6
C15-C16-C17	120.9(3)
С17-С16-Н16	119.6
С12-С17-Н17	119.5
C16-C17-C12	121.0(3)
С16-С17-Н17	119.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **4aa**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S1	24(1)	35(1)	31(1)	-4(1)	-2(1)	-5(1)
N1	27(1)	31(1)	31(1)	-2(1)	2(1)	-6(1)
C1	28(1)	29(1)	29(1)	-5(1)	3(1)	2(1)
C2	37(2)	35(2)	27(1)	1(1)	7(1)	1(1)
C3	41(2)	40(2)	26(1)	0(1)	1(1)	7(1)
C4	37(2)	33(1)	32(1)	-7(1)	-7(1)	5(1)
C5	31(2)	27(1)	33(1)	-5(1)	-2(1)	-1(1)
C6	25(1)	25(1)	30(1)	-3(1)	0(1)	2(1)
C7	23(1)	26(1)	30(1)	-5(1)	0(1)	-1(1)
C8	23(1)	27(1)	32(1)	-3(1)	0(1)	-1(1)
C9	23(1)	27(1)	31(1)	-4(1)	2(1)	1(1)
C10	24(1)	29(1)	28(1)	-3(1)	0(1)	-2(1)
C11	31(2)	31(1)	39(2)	-6(1)	6(1)	-8(1)
C12	22(1)	28(1)	27(1)	-8(1)	-1(1)	5(1)
C13	26(1)	30(1)	30(1)	-6(1)	-2(1)	1(1)
C14	29(2)	28(1)	33(1)	-4(1)	3(1)	1(1)
C15	36(2)	29(1)	30(1)	-1(1)	-3(1)	6(1)
C16	28(2)	41(2)	34(1)	-4(1)	-8(1)	1(1)

C17	25(2)	35(1)	35(1)	-1(1)	-2(1)	-1(1)

	х	У	Z	U(eq)
H2	4209	1373	7391	39
Н3	7486	2203	7894	43
H4	9912	3998	7574	40
Н5	9144	5014	6738	36
H8	6637	5801	5563	33
H11A	1522	530	6243	50
H11B	-490	1689	6284	50
H11C	769	1122	6812	50
H13	6445	6870	4747	34
H14	6157	8006	3921	36
H15	2970	7482	3330	38
H16	65	5867	3583	41
H17	309	4746	4411	38

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for **4aa**.

Table 6. Torsion angles [^o] for **4aa**.

S1-C9-C12-C13	-175.45(19)
S1-C9-C12-C17	3.9(3)
N1-C1-C2-C3	179.4(3)
N1-C1-C6-C5	-178.3(2)
N1-C1-C6-C7	-0.3(3)
C1-N1-C10-S1	-179.9(2)
C1-N1-C10-C7	0.7(3)
C1-C2-C3-C4	-0.5(4)
C1-C6-C7-C8	-179.7(3)
C1-C6-C7-C10	0.7(3)
C2-C1-C6-C5	1.4(4)
C2-C1-C6-C7	179.4(2)
C2-C3-C4-C5	0.0(4)

C3-C4-C5-C6	1.2(4)
C4-C5-C6-C1	-1.8(4)
C4-C5-C6-C7	-179.1(3)
C5-C6-C7-C8	-2.1(6)
C5-C6-C7-C10	178.2(3)
C6-C1-C2-C3	-0.2(4)
C6-C7-C8-C9	-179.6(3)
C6-C7-C10-S1	179.57(18)
C6-C7-C10-N1	-0.9(3)
C7-C8-C9-S1	0.2(3)
C7-C8-C9-C12	-179.3(2)
C8-C7-C10-S1	-0.2(3)
C8-C7-C10-N1	179.4(2)
C8-C9-C12-C13	4.0(4)
C8-C9-C12-C17	-176.6(3)
C9-S1-C10-N1	-179.2(3)
C9-S1-C10-C7	0.3(2)
C9-C12-C13-C14	178.3(2)
C9-C12-C17-C16	-177.8(2)
C10-S1-C9-C8	-0.3(2)
C10-S1-C9-C12	179.3(2)
C10-N1-C1-C2	-179.9(3)
C10-N1-C1-C6	-0.2(3)
C10-C7-C8-C9	0.0(3)
C11-N1-C1-C2	0.0(5)
C11-N1-C1-C6	179.7(2)
C11-N1-C10-S1	0.3(4)
C11-N1-C10-C7	-179.2(2)
C12-C13-C14-C15	-0.1(4)
C13-C12-C17-C16	1.6(4)
C13-C14-C15-C16	0.9(4)
C14-C15-C16-C17	-0.5(4)
C15-C16-C17-C12	-0.8(4)
C17-C12-C13-C14	-1.1(4)

Symmetry transformations used to generate equivalent atoms:

