Electronic Supplementary Information (ESI)

Effective Regeneration of LiCoO₂ from Spent Lithium-Ion Batteries: A

Direct Approach towards High-Performance Active Particles

Yang Shi,^a Gen Chen^b and Zheng Chen^{a,c}*

^aDepartment of NanoEngineering, University of California San Diego, La Jolla, CA 92093

^bDepartment of Chemical and Biomolecular Engineering, University of California Los

Angeles, Los Angeles, CA 90095, USA

^cProgram of Materials Science and Engineering, University of California San Diego, La

Jolla, CA 92093

*Correspondence: zhengchen@eng.ucsd.edu

Fig. S1 Discharge capacity retention of a commercial pouch cell.

Fig. S2 SEM images of regenerated LiCoO₂ powders at different conditions, and (b) their particle size distributions.

Fig. S3 XRD patterns of pristine, cycled and hydrothermal-treated LiCoO₂ powders.

Fig. S4 Cycling performance of pristine $LiCoO_2$ and $LiCoO_2$ sintered with 5% excess Li at 850 °C for 4 h, in the voltage range of 3-4.3 V at C/10 for the first cycle and 1C for the following cycles.

Fig. S5 (a) XRD patterns and (b) cycling performance of pristine and regenerated NCM in the voltage range of 3-4.3 V at C/10 for the first cycle and 1C for the following cycles. The NCM material for regeneration is from the cycled pure NCM pouch with a Li^+ loss of 20% after cycling.