Supplementary Information

Contents

1 General Information	S2-S2
2 General Procedures	S2-S2
2.1 General procedure for the oxidation of aldehydes using H_2O_2 as the o	xidant
	S2-S2
2.2 General procedures oxidation of aldehydes using O2 as the oxidant	S2-S2
3 Characterization data for all products	S3-S4
4 ¹ H NMR and ¹³ C NMR spectrum for product	S6-S14

1 General Information

All chemicals were commercially available and purchased from Aladdin (Shanghai, China) and were used as received without any further purification. All chemicals used were of analytical grade. ¹H NMR and ¹³C NMR spectrum were recorded on a Bruker Avance-400 instrument, 400 MHz for ¹ H NMR and 100 MHz for ¹³C NMR, with CDCl₃ or DMSO-*d*₆ as solvent in all cases. All chemical shifts (δ) were quoted in parts per million (ppm) and reported relative to an internal tetramethylsilane (TMS, δ 0.00) standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t =triplet, q =quartet, m = multiplet. Yields of products were measured by HPLC analysis using SHIMADZU instrument equipped with a column Wonda Sil C18-WR 5µm.

2 General Procedures

2.1 General procedure for the oxidation of aldehydes using H_2O_2 as the oxidant

A reaction vessel was charged with water 5ml, aldehyde was introduced to form a final concentration of 10 or 5 mM, and hydrogen peroxide (4ml) was dropwisely added to the reaction vessel. After completion of the addition of hydrogen peroxide, the reaction was allowed to proceed for 8 hours in a shaker incubator (160rpm/min). After reactions completed, samples were taken out for HPLC analysis.

2.2 General procedures oxidation of aldehydes using O2 as the oxidant

A closed reaction vessel, charged with water 5 mL, aldehyde was introduced to form a final concentration of 10 or 5 mM. Oxygen was flushed into the vessel and sealed with a balloon filled with oxygen. After that, the reaction mixture was heated to 37 °C and kept for 24h in shaker incubator (160rpm/min). After reaction completed, samples were taken for further HPLC analysis.

2.3 General procedure for scalable preparation of carboxylic acids

A closed reaction vessel, charged with water 20 mL, aldehyde was introduced to form a final concentration of 5mM. Oxygen was simply flushed into the vessel and sealed with a balloon filled with enough oxygen. After that, the reaction mixture was heated to 37 °C and kept for 24h in shaker incubator (160rpm/min). After reaction completed, pH of the mixture was made at 10.0, and the reaction mixture was cooled to -20°, which was then kept in a freeze dryer till all water was removed. The resulted powder was introduced with 1mL water to dissolve and pH of the solution was made at 5.0 with sulphuric acid. Which was then extracted with ethyl acetate (3 × 5 ml). The organic layer was isolated and combined, dried over anhydrous MgSO₄, and the organic solvents were removed under vacuum to give crude product, which was then chromatographed to afford pure product.

3 Characterization data for all products.

Benzoic acid (1a): ¹ H NMR (400 MHz, CDCl₃) δ 11.67 (s, 1H), 8.20 (d, J = 7.2 Hz, 2H), 7.68 (t, J = 7.44 Hz, 1H) 7.68 (t, J = 7.92 Hz, 2H); ¹³ C NMR (100MHz, CDCl₃) δ 172.60, 133.89, 130.28, 129.39, 128.55.

*Phenylacetate***(1b):** ¹ H NMR (400 MHz, DMSO) δ 12.35 (*s*, H), 7.29 (m, 5H), 3.59 (s, 2H); ¹³ C NMR (100MHz, DMSO) δ 173.19, 135.50, 129.85, 128.71, 127.05, 41.18.

3,4,5-Trimethoxybenzoic acid(**1c**): ¹ H NMR (400 MHz, DMSO) δ 12.95 (*s*, H), 7.25 (*s*, 2H), 3.84 (*s*, 6H), 3.74(*s*, 3H) ; ¹³ C NMR (100MHz, DMSO) δ 167.40, 153.11, 141.81, 126.38, 106.98, 60.55, 56.35.

4-Methylbenzoic acid (**1d**): ¹H NMR (400 MHz, DMSO) δ 12.80(*s*, 1H), 7.84 (*d*, *J* = 6.48 Hz, 2H), 7.29 (*d*, *J* = 7.88 Hz, 2H) 2.36 (*s*, 3H); ¹³C NMR (100MHz, DMSO) δ 167.80, 143.46, 129.80, 129.55, 128.52, 21.55, 126.75.

2-*Chlorobenzoic acid*(**1e**): ¹H NMR (400 MHz, CDCl₃): δ 8.09(*d*, *J* = 7.44 Hz, 1H), 7.50 (*m*, 1H), 7.40(*m*, 1H), 7.31(*m*, 1H) ¹³C NMR (100MHz, CDCl₃) δ 171.09, 134.83, 133.65, 132.54, 131.56, 128.46, 126.75.

3-Chlorobenzoic acid(**1f**): ¹H NMR (400 MHz, DMSO) δ 13.34 (s, 1H), 7.79 (*m*, 2H), 7.70(m, 1H), 7.55(*t*, *J* = 8.08 Hz, 1H); ¹³C NMR (100MHz, DMSO) δ 166.54, 133.82, 133.37, 133.15, 131.30, 129.30, 128.37.

4-Fluorobenzoic acid (**1g**): ¹H NMR (400 MHz, DMSO) δ 13.06 (s, 1H), 8.01 (dd, *J* = 5.64, 5.6 Hz, 1H), 7.32 (t, *J* = 8.88 Hz, 1H); ¹³C NMR (100MHz, DMSO) δ 166.85, 166.63, 164.14, 132.61, 132.52, 127.84, 127.81, 116.18 , 115.96.

2-Furoic acid(**1h**): ¹H NMR (400 MHz, DMSO) δ 7.90 (dd, *J* = 1.64, 0.76 Hz, 1H), 7.22 (dd, *J* = 3.48, 0.76 Hz, 1H), 6.64 (dd, *J* = 3.44, 1.72 Hz, 1H) ; ¹³C NMR (100MHz, DMSO) δ 159.81, 147.44, 145.38, 118.16, 112.52.

2-*Picolinic acid*(**1i**): ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.68 Hz, 1H), 8.32 (d, *J* = 7.76 Hz, 1H), 8.04 (td, *J* = 7.72, 1.64 Hz, 1H), 7.76(m, 1H), 7.31(s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 164.69, 148.10, 146.70, 138.60, 127.83, 124.26.

2-Hydroxy-1-naphthotic acid(**1j**): ¹H NMR (400 MHz, DMSO) δ 12.82 (s, 1H), 8.57 (d, *J* = 8.68 Hz, 1H), 7.99 (t, *J* = 9.08 Hz, 1H), 7.86(t, *J* = 7.76 Hz, 1H), 7.56(m, 1H) 7.36(m, 1H) 7.22(m, 1H); ¹³C NMR (100MHz, DMSO) δ172.99, 160.78, 135.26, 131.99, 129.19, 128.47, 12.39, 125.02, 123.81, 119.33, 108.52.

Cinnamic acid(**1k**): ¹H NMR (400 MHz, DMSO); δ 7.84 (d, *J* = 8.00 Hz, 1H), 7.59(dt, *J* =6, 3.6 Hz, 1H), 7.45(m, 1H), 7.28(s, 1H), 6.50(d, *J* = 16.00 Hz, 1H); ¹³C NMR (100MHz, DMSO) δ172.67, 147.12, 134.05, 130.77, 128.98, 128.40, 117.38.

4¹H NMR and ¹³C NMR spectrum for product

¹H NMR spectra of benzoic acid (1a)

g.1 ¹H NMR spectra of benzoic acid

¹³C NMR spectra of benzoic acid (1a)

Fig.2 ¹³C NMR spectra of benzoic acid

¹H NMR spectra of phenylacetate (1b)

Fig.3 ¹H NMR spectra of phenylacetate

¹³C NMR spectra of phenylacetate (1b)

Fig.4 ¹³C NMR spectra of phenylacetate

1H NMR spectra of 3,4,5-trimethoxybenzoic acid (1c)

Fig.5 ¹H NMR spectra of 3,4,5-trimethoxybenzoic acid

¹³C NMR spectra of 3,4,5-trimethoxybenzoic acid (**1c**)

Fig.6 ¹³C NMR spectra of 3,4,5-trimethoxybenzoic acid

¹H NMR spectra of 4-methylbenzoic acid (1d)

Fig.7 ¹³H NMR spectra of 4-methylbenzoic acid

¹³C NMR spectra of 4-methylbenzoic acid (1d)

Fig.8 ¹³C NMR spectra of 4-methylbenzoic acid

¹H NMR spectra of 2-chlorobenzoic acid (**1e**)

Fig.9 ¹H NMR spectra of 2-chlorobenzoic acid

¹³C NMR spectra of 2-chlorobenzoic acid (1e)

Fig.10 ¹³C NMR spectra of 2-chlorobenzoic acid

¹H NMR spectra of 3-chlorobenzoic acid (1f)

¹³C NMR spectra of 3-chlorobenzoic acid (**1f**)

Fig.12 ¹³C NMR spectra of 3-chlorobenzoic acid

¹H NMR spectra of 4-fluorobenzoic acid (**1g**)

Fig.13 ¹H NMR spectra of 4-fluorobenzoic acid

¹³C NMR spectra of 4-fluorobenzoic acid (**1g**)

14 ¹³C NMR spectra of 4-fluorobenzoic acid

¹H NMR spectra of 2-furoic acid (**1**h)

Fig.15 ¹H NMR spectra of 2-furoic acid

¹³C NMR spectra of 2-furoic acid (**1**h)

Fig.16 ¹³C NMR spectra of 2-furoic acid

¹H NMR spectra of 2-picolinic acid (1i)

Fig.17 ¹H NMR spectra of 2-picolinic acid

¹³C NMR spectra of 2-picolinic acid (**1***i*)

Fig.18 ¹³C NMR spectra of 2-picolinic acid

¹H NMR spectra of 2-hydroxy-1-naphthotic acid(**1j**)

Fig.19 ¹H NMR spectra of 2-hydroxy-1-naphthotic acid

¹³C NMR spectra of 2-hydroxy-1-naphthotic acid(j)

20 ¹³C NMR spectra of 2-hydroxy-1-naphthotic acid

¹H NMR spectra of Cinnamc acid(**1**k)

Fig.21 ¹H NMR spectra of Cinnamc acid

¹³C NMR spectra of Cinnamic acid(**1**k)

Fig.22 ¹³C NMR spectra of Cinnamc acid