Isomerization of aldo-pentoses into keto-pentoses catalyzed by phosphates

Irina Delidovich,*^a Maria S. Gyngazova,^a Nuria Sánchez-Bastardo,^b Julia P. Wohland,^a Corinna Hoppe^a and Peter Drabo^a

^aChair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany. E-mail: Delidovich@itmc.rwth-aachen.de

^bHigh Pressure Processes Group, Chemical Engineering and Environmental Technology Department, Escuela de Ingenierías Industriales, University of Valladolid, 47011 Valladolid, Spain

Fig. 1S Equilibrium constants of the isomerization reactions (left) and equilibrium yields (right) of keto-pentoses as functions of temperature according to the thermodynamic data reported by Tewari et al.^{1, 2}

Scheme 1S. Isotope label scrambling with D-(1^{-13} C)-ribose as a substrate via consecutive retro aldol and aldol reactions. According to the previously published data, isomerization of glyceraldehyde into dihydroxyacetone (shown in the upper sequence of reactions) is highly favorable in the presence of NaH₂PO₄+Na₂HPO₄.³

Table 1S. Assignments of the resonance signals in the NMR spectra recorded after the isomerization of D- $(1^{-13}C)$ -ribose in the presence of NaH₂PO₄+Na₂HPO₄ (Fig. 2). F and P denote a furanose and a pyranose cyclic form, respectively.

pj: a	,	
Peak number	Chemical shift, ppm	Assignment of the resonance signal
1	103.6	C2-β-Xylulose
2	101.6	C1-βF-Ribose
3	97.4	C1-αP-Arabinose
4	96.9	C1-αF-Ribose
5	94.5	C1-βP-Ribose
6	94.2	C1-aP-Ribose
7	72.5	C5-α-Xylulose
8	71.3	C5-β-Ribulose
9	70.5	C5-β-Xylulose
10	67.0	C1-keto-Ribulose
11	66.6	C1-keto-Xylulose
12	63.7	C1-β-Xylulose
13	63.4	C1-α-Ribulose
14	63.2	C1-β-Ribulose
15	63.1	C1-a-Xylulose
Μ	49.5	Methanol (internal standard)

Fig. 2S. Linearized dependence of R_0 , the initial reaction rate of xylose isomerization, on C_0 , the initial concentration of xylose to determine the reaction order α : $lnR_0=\alpha lnC_0+lnk$. Reaction conditions: 2, 5 or 7 wt.% aqueous solution of a substrate, 78°C, 750 rpm, 0.5M NaH₂PO₄+Na₂HPO₄.

Scheme 2S. Extended reaction network used for kinetic modeling

Based on this reaction network, we derive the following system of ordinary differential equations (ODEs):

$$\frac{d[\text{Ribose}]}{dt} = -(k_1 + k_2 + k_{10}) \cdot [\text{Ribose}] + k_{-1} \cdot [\text{Ribulose}] + k_{-2} \cdot [\text{Arabinose}]$$
(15)

$$\frac{d[\text{Arabinose}]}{dt} = -(k_{-2} + k_3 + k_{11}) \cdot [\text{Arabinose}] + k_{-3} \cdot [\text{Ribulose}] + k_2 \cdot [\text{Ribose}]$$
(25)

$$\frac{d[\text{Ribulose}]}{dt} = -(k_{-1} + k_{-3} + k_4) \cdot [\text{Ribulose}] + k_1 \cdot [\text{Ribose}] + k_{-4} \cdot [\text{Xylulose}] + k_3 \cdot [\text{Arabinose}]$$
(35)

$$\frac{d[\text{Xylulose}]}{dt} = -(k_{-4} + k_5 + k_6) \cdot [\text{Xylulose}] + k_4 \cdot [\text{Ribulose}] + k_{-5} \cdot [\text{Xylose}] + k_{-6} \cdot [\text{Lyxose}]$$
(45)

$$\frac{d[\text{Xylose}]}{dt} = -(k_{-5} + k_7 + k_8) \cdot [\text{Xylose}] + k_5 \cdot [\text{Xylulose}] + k_{-7} \cdot [\text{Lyxose}]$$
(55)

$$\frac{d[\text{Lyxose}]}{dt} = -(k_{-6} + k_{-7} + k_9) \cdot [\text{Lyxose}] + k_6 \cdot [\text{Xylulose}] + k_7 \cdot [\text{Xylose}]$$
(65)

$$\frac{d[\text{By} - \text{product 1]}}{dt} = k_8 \cdot [\text{Xylose}]$$
(75)

$$\frac{d[\text{By} - \text{product 2]}}{dt} = k_{10} \cdot [\text{Ribose}]$$
(85)

$$\frac{d[\text{By} - \text{product 3]}}{dt} = k_{10} \cdot [\text{Ribose}]$$
(95)

Fig. 3S. Model (solid line) and experimental data (markers) of xylose isomerization in the presence of $NaH_2PO_4+Na_2HPO_4$ at different temperatures. Reaction conditions: 10wt. % of the substrate, 0.5M $NaH_2PO_4+Na_2HPO_4$ at pH 7.5, 750 rpm.

Fig. 4S. Model (solid line) and experimental data (markers) of lyxose isomerization in the presence of $NaH_2PO_4+Na_2HPO_4$ at different temperatures. Reaction conditions: 10wt. % of the substrate, 0.5M $NaH_2PO_4+Na_2HPO_4$ at pH 7.5, 750 rpm.

Fig. 5S. Model (solid line) and experimental data (markers) of arabinose isomerization in the presence of $NaH_2PO_4+Na_2HPO_4$ at different temperatures. Reaction conditions: 10wt. % of the substrate, 0.5M $NaH_2PO_4+Na_2HPO_4$ at pH 7.5, 750 rpm.

Fig. 6S. Model (solid line) and experimental data (markers) of ribose isomerization in the presence of $NaH_2PO_4+Na_2HPO_4$ at different temperatures. Reaction conditions: 10wt. % of the substrate, 0.5M $NaH_2PO_4+Na_2HPO_4$ at pH 7.5, 750 rpm.

Reaction	ln k _o	E _a , kJ/mol
Xylose— <u>k</u> 8→By−products	25.6	110
Lyxose—kg→By−products	33.7	131
Ribose ^k 10 → By – products	18.5	87
Arabinose— ^k 11→By−products	58.6	206

Table 2S. Effective pre-exponential factors (k_0) and activation energies (E_a) obtained for the degradation of pentoses in the presence of NaH₂PO₄+Na₂HPO₄.

Table 3S.	Comparison	of the	obtained	values for	the equilibrium	constants	(K) with	the l	literature
data									

Reaction	Expression for	K at 78°C obtained in this	K at 78°C, literature	
	K value ^a	work	data	
Ribose 픚 Ribulose	K ₁ =k ₁ /k ₋₁	0.66	0.62 ²	
Ribose A rabinose	$K_2 = k_2 / k_2$	1.9	2.2 ²	
Arabinose Ribulose	K ₃ =k ₃ /k ₋₃	0.28	0.29 ²	
Ribulose 🚗 Xylulose	$K_4 = k_4 / k_4$	1.6	No data	
Xylose 💶 Xylulose	$K_5 = k_{-5} / k_5$	0.45	0.45 ¹	
Lyxose 🗲 Xylulose	$K_6 = k_{-6} / k_6$	0.37	No data	
Lyxose 🚤 Xylose	K ₇ =k ₋₇ /k ₇	1.44	1.4 ^{b 4}	

^aExpressions were derived in accordance with the reaction network presented in Scheme 2S. ^bTemperature was not specified in the reference.

Estimating accuracy of rate constants

Interconversions of ribose-ribulose-arabinose and their equilibrium constants can be presented as follows:

Ribose
$$k_1$$

 k_1 Ribulose $K_1 = [Ribulose]/[Ribose] = k_1/k_1$ Ribose $\frac{k_2}{k_2}$
 k_2 Arabinose $K_2 = [Arabinose]/[Ribose] = k_2/k_2$ Arabinose $\frac{k_3}{k_3}$
 k_3 Ribulose
 $k_3 = [Ribulose]/[Arabinose] = k_3/k_3$

A certain combination of the equilibrium constants would be equal to 1 because a microscopic reversibility determines the Gibbs energy of the cycles equal to zero:

$$Y = 1 = \frac{[Ribulose]}{[Ribose]} \cdot \frac{[Arabinose]}{[Ribulose]} \cdot \frac{[Ribose]}{[Arabinose]} = \frac{K_1}{K_3 \cdot K_2} = \frac{k_1}{k_{-1}} \cdot \frac{k_{-3}}{k_3} \cdot \frac{k_{-2}}{k_2}$$
(11S)

An absolute error of a function Y $(x_1, x_2, ..., x_n)$ can be calculated as follows:

$$\Delta Y = \sum_{i=1}^{n} \left| \frac{\partial Y}{\partial x_i} \cdot \Delta x_i \right|$$
(12S)

In our case Y(k₁, k₋₁, k₂, k₋₂, k₃, k₋₃)=(k₁·k₋₃·k₋₂)/(k₋₁·k₃·k₂), as indicated by the equation (11S). Assuming the same relative error for all the obtained rate constants, i.e. $\Delta k_i/k_i$ is independent of *i*, the following formula could be derived after differentiation of the Y function:

$$\frac{\Delta Y}{Y} = \sum_{i=1}^{n} \frac{\Delta k_i}{k_i} = 6 \frac{\Delta k_i}{k_i}$$
(135)

As a result, a relative rate of determining the rate constants can be estimated as follows:

$$\frac{\Delta k_i}{k_i} = \left(\frac{\Delta Y}{Y}\right)/6\tag{14S}$$

Thus obtained values are provided in Table 4S. The same approach was used to calculate the relative errors of the rate constants of lyxose-xylulose-xylose interconversions.

Table Iot Estimatin											
Entry	Temperature, °C	Y_{calc}^{a}	ΔΥ/Υ, % ^b	∆k _i /k _i , %							
	Ribose-ribulos	e-arabinose, Y=(k ₁ ·k ₋	₃ ·k ₋₂)/(k ₋₁ ·k ₃ ·k ₂)								
1	56	2.5	150	25							
2	64	1.7	70	12							
3	70	1.3	30	5							
4	78	0.9	10	2							
	Lyxose-xylulo	ose-xylose, Y=(k ₋₅ ·k ₆ ·k	κ₋ ₇)/ (k₅·k₋ ₆ ·k ₇)								
5	56	1.4	40	7							
6	64	1.5	50	8							
7	70	1.6	60	10							
8	78	1.8	80	13							
7 8	70 78	1.6 1.8	60 80	10 13							

Table 4S. Estimating relative errors of determining the rate constants $(\Delta k_i/k_i)$

^a Y_{calc} denotes Y value calculated according to the equation (11S) based on the determined rate constants;

^b Relative error of Y was determined as follows: $\Delta Y/Y = (|Y_{calc}-Y_{true}|/Y_{true}) \cdot 100\%$, where $Y_{true} = 1$, since Gibbs energy of the cycles is equal to zero.

Fig. 75. Parity plot for the substrates and the products. The following data were used for the parity plot: concentrations of all the substrates (xylose, lyxose, arabinose, and ribose) at all the temperatures (56, 64, 70, and 78 °C) as well as concentrations of all the isomeric products upon isomerization of xylose at all the temperatures.

Aldoso		Free energy, kcal mol ⁻¹							
Aluose	α form	β form	average ^a						
Xylose	1.9	1.6	1.7						
Lyxose	1.85	2.4	2.0						
Ribose	3.1	2.3	2.6						
Arabinose	1.95	2.2	2.05						
Glucose	2.4	2.05	2.2						

Table 5S. Conformational free energies of the pyranosides in aqueous equilibrium solutions of D-aldopyranoses.

^aAverage free energy = (Average free energy of α form)·(Percentage of α form)+ (Average free energy of β form)·(Percentage of β form)

Fig. 9S. A correlation between activation energy of isomerization of the aldoses into the corresponding ketoses with relative free energy of the substrates.

Table 6S. Reaction rates contributing to the overall kinetics of the isomerization of the pentoses in the presence of NaH₂PO₄+Na₂HPO₄. The reaction rates were calculated based on the results of kinetic modeling at 10% substrate conversion in accordance with the reaction network shown in Scheme S2. R denotes reaction rate.

Entry	try T, Conversion rate of a substrate aldo-pentose,			Ildo-pentose,	Conversion rate	e of a keto-pentose	, mol L ⁻¹ s ^{-1 a}	Formation rate o	of an epimeric aldo-
	°C		mol L ⁻¹ s ^{-1 a}					pentose,	mol L ⁻¹ s ^{-1 b}
		Aldo-pentose to	Aldo-pentose to	Aldo-pentose to	Keto-pentose to	Keto-pentose to	Keto-pentose to	From substrate	From keto-
		keto-pentose	epimeric aldo-	by-product	epimeric aldo-	C-3 epimeric	substrate aldo-	aldo-pentose	pentose
			pentose		pentose	keto-pentose	pentose		
					Substrate: Xylose	è			
		Xylose to	Xylose to lyxose	Xylose to by-	Xylulose to lyxose	Xylulose to	Xylulose to	Lyxose	Lyxose formation
		xylulose		product 1		ribulose	xylose	formation	based on xylulose
								based on xylose	
		R = k ₋₅ [Xylose]	$R = k_7[Xylose]$	$R = k_8[Xylose]$	$R = k_6[Xy u ose]$	$R = k_{-4}[Xy u ose]$	$R = k_5[Xy u ose]$	$R = k_7[Xylose]$	$R = k_6[Xy u ose]$
1	56	4.1·10 ⁻⁷ (58%)	1.1·10 ⁻⁸ (2%)	2.8·10 ⁻⁷ (40%)	2.2·10 ⁻⁷ (52%)	1.6·10 ⁻⁷ (37%)	4.6·10 ⁻⁸ (11%)	1.1·10 ⁻⁸ (5%)	2.2·10 ⁻⁷ (95%)
2	64	1.3·10 ⁻⁶ (65%)	3.6·10 ⁻⁸ (2%)	6.7·10 ⁻⁷ (33%)	8.7·10 ⁻⁷ (55%)	5.5·10 ⁻⁷ (34%)	1.8·10 ⁻⁷ (11%)	3.6·10 ⁻⁸ (4%)	8.7·10 ⁻⁷ (96%)
3	70	3.4·10 ⁻⁶ (69%)	9.9·10 ⁻⁸ (2%)	1.4·10 ⁻⁶ (29%)	1.9·10 ⁻⁶ (56%)	1.1.10-6 (33%)	3.9·10 ⁻⁷ (11%)	9.9·10 ⁻⁸ (5%)	1.9·10 ⁻⁶ (95%)
4	78	1.1·10 ⁻⁵ (74%)	3.3·10 ⁻⁷ (2%)	3.6·10 ⁻⁶ (24%)	6.1·10 ⁻⁶ (58%)	3.2·10 ⁻⁶ (30%)	1.2·10 ⁻⁶ (12%)	3.3·10 ⁻⁷ (5%)	6.1·10 ⁻⁶ (95%)
					Substrate: Lyxose	5			
		Lyxose to	Lyxose to xylose	Lyxose to by-	Xylulose to xylose	Xylulose to	Xylulose to	Xylose	Xylose formation
		xylulose		product 2		ribulose	lyxose	formation	based on xylulose
								based on lyxose	
		R = k ₋₆ [Lyxose]	$R = k_{-7}[Lyxose]$	R = k ₉ [Lyxose]	R = k ₅ [Xylulose]	$R = k_{-4}[Xy u ose]$	$R = k_6[Xy u ose]$	R = k₋ ₇ [Lyxose]	$R = k_5[Xy u ose]$
5	56	2.1·10 ⁻⁶ (84%)	1.7·10 ⁻⁸ (1%)	3.9·10 ⁻⁷ (15%)	1.1·10 ⁻⁷ (11%)	3.9·10 ⁻⁷ (37%)	5.5·10 ⁻⁷ (52%)	1.7·10 ⁻⁸ (13%)	1.1·10 ⁻⁷ (87%)
6	64	6.1·10 ⁻⁶ (84%)	5.3·10 ⁻⁸ (1%)	1.1·10 ⁻⁶ (15%)	3.6·10 ⁻⁷ (11%)	1.1.10-6 (34%)	1.8·10 ⁻⁶ (55%)	5.3·10 ⁻⁸ (13%)	3.6·10 ⁻⁷ (87%)
7	70	1.5·10 ⁻⁵ (84%)	1.4.10-7 (1%)	2.6·10 ⁻⁶ (15%)	8.2·10 ⁻⁷ (11%)	2.4.10-6 (33%)	4.1·10 ⁻⁶ (56%)	1.4·10 ⁻⁷ (14%)	8.2·10 ⁻⁷ (86%)
8	78	4.1·10 ⁻⁵ (84%)	4.1·10 ⁻⁷ (1%)	7.2·10 ⁻⁶ (15%)	2.4·10 ⁻⁶ (11%)	6.5·10 ⁻⁶ (30%)	1.2·10 ⁻⁵ (58%)	4.1·10 ⁻⁷ (14%)	2.4·10 ⁻⁶ (86%)
						fame al da a a an			

^adifferential selectivities are given in parentheses; ^bpercentages of epimeric aldo-pentoses formed via a corresponding reaction pathway are given in

parentheses.

Table 6S (Continuation). Reaction rates contributing to the overall kinetics of the isomerization of the pentoses in the presence of NaH₂PO₄+Na₂HPO₄. The reaction rates were calculated based on the results of kinetic modeling at 10% substrate conversion in accordance with the reaction network shown in Scheme S2. R denotes reaction rate.

Entry	Τ,	Conversion r	ate of a substrate a	ldo-pentose,	Conversion rate	e of a keto-pentose	, mol L ⁻¹ s ^{-1 a}	Formation rate of an epimeric aldo-		
	°C		mol L ⁻¹ s ^{-1 a}					pentose,	mol L ⁻¹ s ^{-1 b}	
		Aldo-pentose to	Aldo-pentose to	Aldo-pentose to	Keto-pentose to	Keto-pentose to	Keto-pentose to	From substrate	From keto-	
		keto-pentose	epimeric aldo-	by-product	epimeric aldo-	C-3 epimeric	substrate aldo-	aldo-pentose	pentose	
			pentose		pentose	keto-pentose	pentose			
					Substrate: Ribose	e				
		Ribose to	Ribose to	Ribose to by-	Ribulose to	Ribulose to	Ribulose to	Arabinose	Arabinose	
		ribulose	arabinose	product 3	arabinose	xylulose	ribose	formation based	formation based	
							on ribose	on ribulose		
		$R = k_1[Ribose]$	$R = k_2[Ribose]$	$R = k_{10}[Ribose]$	R = k ₋₃ [Ribulose]	$R = k_4$ [Ribulose]	R = k ₋₁ [Ribulose]	$R = k_2[Ribose]$	R = k ₋₃ [Ribulose]	
9	56	4.0·10 ⁻⁶ (78%)	5.1·10 ⁻⁸ (1%)	1.1·10 ⁻⁶ (21%)	1.4·10 ⁻⁷ (9%)	8.0·10 ⁻⁷ (52%)	5.9·10 ⁻⁷ (39%)	5.1·10 ⁻⁸ (27%)	1.4·10 ⁻⁷ (73%)	
10	64	1.1·10 ⁻⁵ (82%)	1.7·10 ⁻⁷ (1%)	2.3·10 ⁻⁶ (17%)	3.8·10 ⁻⁷ (9%)	2.1·10 ⁻⁶ (50%)	1.7·10 ⁻⁶ (41%)	1.7·10 ⁻⁷ (30%)	3.8·10 ⁻⁷ (70%)	
11	70	2.3·10 ⁻⁵ (84%)	3.9·10 ⁻⁷ (1%)	3.9·10 ⁻⁶ (14%)	6.5·10 ⁻⁷ (9%)	3.5·10 ⁻⁶ (49%)	3.0·10⁻ ⁶ (42%)	3.9·10 ⁻⁷ (38%)	6.5·10 ⁻⁷ (62%)	
12	78	5.9·10 ⁻⁵ (87%)	1.2·10 ⁻⁶ (2%)	7.7·10 ⁻⁶ (11%)	2.9·10 ⁻⁶ (9%)	1.5·10 ⁻⁵ (47%)	1.4·10 ⁻⁵ (44%)	1.2·10 ⁻⁶ (29%)	2.9·10 ⁻⁶ (71%)	
					Substrate: Arabino	se				
		Arabinose to	Arabinose to	Arabinose to	Ribulose to ribose	Ribulose to	Ribulose to	Ribose	Ribose formation	
		ribulose	ribose	by-product 4		xylulose	arabinose	formation based	based on ribulose	
								on arabinose		
		$R = k_3$ [Arabin.]	$R = k_{-2}[Arabin.]$	$R = k_{11}[Arabin.]$	R = k ₋₁ [Ribulose]	$R = k_4$ [Ribulose]	$R = k_{-3}[Ribulose]$	$R = k_2[Arabin.]$	R = k ₋₁ [Ribulose]	
13	56	2.6·10 ⁻⁷ (76%)	4.9·10 ⁻⁸ (14%)	3.5·10 ⁻⁸ (10%)	6.8·10 ⁻⁸ (39%)	9.1·10 ⁻⁸ (52%)	1.6·10 ⁻⁸ (9%)	4.9·10 ⁻⁸ (42%)	6.8·10 ⁻⁸ (58%)	
14	64	7.3·10 ⁻⁷ (71%)	1.1·10 ⁻⁷ (11%)	1.8·10 ⁻⁷ (17%)	4.6·10 ⁻⁷ (41%)	5.6·10 ⁻⁷ (50%)	1.0·10 ⁻⁷ (9%)	1.1·10 ⁻⁷ (20%)	4.6·10 ⁻⁷ (80%)	
15	70	1.9·10 ⁻⁶ (66%)	2.6·10 ⁻⁷ (9%)	6.9·10 ⁻⁷ (25%)	1.1·10 ⁻⁶ (42%)	1.3·10 ⁻⁶ (49%)	2.5·10 ⁻⁷ (9%)	2.6·10 ⁻⁷ (18%)	1.1·10 ⁻⁶ (82%)	
16	78	5.6·10 ⁻⁶ (57%)	6.5·10 ⁻⁷ (7%)	3.6·10 ⁻⁶ (36%)	3.5·10 ⁻⁶ (44%)	3.7·10 ⁻⁶ (47%)	7.3·10 ⁻⁷ (9%)	6.5·10 ⁻⁷ (16%)	3.5·10 ⁻⁶ (84%)	
adiffere	ential s	electivities are giver	n in parentheses; ^b p	ercentages of epi	meric aldo-pentoses	formed via a corr	esponding reaction	on pathway are gi	ven in	

parentheses.

Table 6S presents reaction rates and values of differential selectivities towards the products. By definition, differential selectivity is the ratio of the rate of desired product formation to the rate of reaction consumption.⁶ The differential selectivities were calculated as follows:

1. Differential selectivities for conversion of a substrate into a ketose, an epimeric aldopentose and by products

The calculations for xylose as a substrate were performed according to the following formula:

 $S_{diff} (Xylose for xylulose) =$ $= \frac{R(Xylose intoxylulose)}{R(Xylose intoxylulose) + R(Xylose intolyxose) + R(Xylose intoby - product 1)} =$ $= \frac{k_{-5}[Xylose]}{k_{-5}[Xylose] + k_{7}[Xylose] + k_{8}[Xylose]} = \frac{k_{-5}}{k_{-5} + k_{7} + k_{8}}$ (155)

Analogously differential selectivities can be expressed for all the products and all the substrates

$$S_{\text{diff}}(Xy \text{lose for } | yx \text{ose}) = \frac{k_7}{k_{-5} + k_7 + k_8}$$
(165)

$$S_{diff} (Xylose for by - product 1) = \frac{k_8}{k_{-5} + k_7 + k_8}$$
(175)

$$S_{diff}(Lyxose \text{ for xylulose}) = \frac{k_{-6}}{k_{-6} + k_{-7} + k_9}$$
(185)

$$S_{\text{diff}}(Lyxose \text{ for } xylose) = \frac{k_{-7}}{k_{-6} + k_{-7} + k_9}$$
(195)

$$S_{diff} (Lyxose for by - product 2) = \frac{k_9}{k_{-6} + k_{-7} + k_9}$$
(20S)

$$S_{diff} (Ribose for ribulose) = \frac{k_1}{k_1 + k_2 + k_{10}}$$
(21S)

$$S_{diff} (Ribose for arabinose) = \frac{k_2}{k_1 + k_2 + k_{10}}$$
(22S)

$$S_{diff} \text{(Ribose for by - product 3)} = \frac{k_{10}}{k_1 + k_2 + k_{10}}$$
(23S)

$$S_{diff} (Arabinose for ribulose) = \frac{k_3}{k_3 + k_{-2} + k_{11}}$$
(24S)

$$S_{diff} (Arabinose for ribose) = \frac{k_{-2}}{k_3 + k_{-2} + k_{11}}$$
(25S)

$$S_{diff} (Arabinose for by - product 4) = \frac{k_{11}}{k_3 + k_{-2} + k_{11}}$$
(26S)

Differential selectivities for conversion of a keto-pentose into a C-3 epimeric ketose and aldoses

$$S_{diff} (Xy|u|ose for ribulose) = \frac{k_{-4}}{k_{-4} + k_5 + k_6}$$
(275)

$$S_{diff}(Xy|ulose \text{ for } xylose) = \frac{k_5}{k_-4 + k_5 + k_6}$$

$$S_{diff}(Xy|ulose \text{ for } lyxose) = \frac{k_6}{k_-4 + k_5 + k_6}$$

$$S_{diff}(Ribulose \text{ for } xy|ulose) = \frac{k_4}{k_4 + k_-1 + k_{-3}}$$

$$S_{diff}(Ribulose \text{ for } ribose) = \frac{k_{-1}}{k_4 + k_{-1} + k_{-3}}$$

$$(305)$$

$$S_{diff}$$
 (Ribulose for arabinose) = $\frac{k_{-3}}{k_4 + k_{-1} + k_{-3}}$

3. Percentage of an epimeric aldo-pentose formed via direct epimerization of an aldo-pentose and isomerization of a ketose

(32S)

Xylose as a substrate

$$%(Lyxose from xylose) = \frac{R(Xylose into lyxose)}{R(Xylose int o lyxose) + R(Xylulose into lyxose)} =$$

$$= \frac{k_7[Xylose]}{k_7[Xylose] + k_6[Xylulose]}$$
(335)
$$%(Lyxose from xylulose) = \frac{k_6[Xylulose]}{k_7[Xylose] + k_6[Xylulose]}$$
(345)
$$Lyxose as a substrate$$
(355)
$$%(Xylose from lyxose) = \frac{k_{-7}[Lyxose] + k_5[Xylulose]}{k_{-7}[Lyxose] + k_5[Xylulose]}$$
(355)
$$%(Xylose from xylulose) = \frac{k_5[Xylulose]}{k_{-7}[Lyxose] + k_5[Xylulose]}$$
(365)
$$Arabinose as a substrate$$
(375)
$$%(Ribose from ribulose) = \frac{k_{-2}[Arabinose] + k_{-1}[Ribulose]}{k_{-2}[Arabinose] + k_{-1}[Ribulose]}$$
(375)
$$%(Ribose from ribulose) = \frac{k_{-1}[Ribulose]}{k_{-2}[Arabinose] + k_{-1}[Ribulose]}$$
(385)
$$Ribose as a substrate$$
(395)

$$% (Arabinose from ribulose) = \frac{k_{3}[Ribulose]}{k_{2}[Ribose] + k_{3}[Ribulose]}$$
(40S)

Fig. 10S. Concentration profiles of xylulose formation based on lyxose (left) and ribulose formation based on ribose (right) at various temperatures.

Calculation of amount of extracted monosaccharides and selectivity of extraction

In order to optimize the conditions of the anionic extraction, the solutions after reactions in the presence of $NaH_2PO_4+Na_2HPO_4$ were utilized. In addition to the substrate and the ketoses, the solutions contained minor amounts of other saccharides (Table 7S):

contantions:						
Separation of aldose- ketose	[Lyxose], M	[Xylose], M	[Ribose], M	[Arabinose], M	[Ribulose], M	[Xylulose], M
Lyxose- xylulose	0.45	0.013	0.004	0	0.010	0.072
Ribose- ribulose	0.003	0.001	0.43	0.009	0.088	0.014

Table 7S. Concentrations of the saccharides in the solutions used for optimization of the extraction conditions.

Percentages of the extracted components and selectivity of extraction shown in Table 3 were calculated as follows:

Percentage of the extracted component% =
$$\frac{c_i^0 - c_i}{c_i^0} \cdot 100\%$$
 (41S)

Selectivity,
$$\% = \frac{c_i^0 - c_i}{\sum_{i} c_i^0 - c_i} \cdot 100\%$$
 (42S)

Where c_i^0 and c_j^0 correspond to concentrations of the saccharides in aqueous phase before and after extraction, respectively.

Fig. 11S Results of ESI-MS analysis in negative mode of the organic phase after anionic extraction of ribulose (up) and xylulose (down) with HMPBA.

Fig. 12S. HSQC NMR spectra of the extracted complexes of keto-pentoses with HMBPA

Table 8S. Chemical sh	ifts (in ppm)	observed	d in ¹³ C NMR sp	ectra for comp	lexes betwee	n ribulose and
HMPBA as well as xylu	lose and HN	MPBA (CD	Cl ₃) and their c	omparison with	n α-ribulose a	ind β-xylulose
(D ₂ O).						
	· · · · · · · · · · · · · · · · · · ·					

	C1	C2ª	C3	C4	C5	CH ₂ -HMPBA ^b
β-Xylulose-	62.3	-	84.1	77.2	72.5	61.8
HMPBA						
complex						
β-Xylulose	64.5	104.4	77.7	76.4	71.3	-
$\Delta \delta^{13} C^c$	-2.2	-	6.4	0.8	1.2	-
α-Ribulose-	65.1	-	77.2	72.1	70.6	68.0
HMPBA						
complex						
α-Ribulose	64.3	104.0	71.9	71.6	72.9	-
$\Delta \delta^{13} C^c$	0.8	-	5.3	0.5	-2.3	-

^a ¹³C NMR signals of the quaternary C2 atoms were not detected; ^b chemical shifts of the hydroxymethyl rest of HMPBA ligand; ^c ¹³C chemical shift differences for a complex and a corresponding saccharide.

Table 95. Results of extraction-assisted isomerization of lyxose into xylulose. Reaction conditions: isomerization over 0.5M NaH₂PO₄+Na₂HPO₄, 89 °C, 20 min, 750 rpm; extraction was conducted at room temperature for 1 h, 750 rpm using 0.1 M HMPBA and 0.1 M Aliquat[®] 336 in 1-octanol as an organic phase, reaction mixture after the isomerization was used as an aqueous phase.

Run		Isomerization							Extraction				Yield of	
			Extracted amount, % Selectivity of extraction, %				ction, %	xylulose,						
	[Lyx] ₀ ,ª	[Xylu] ₀ ,ª	[Ribu] ₀ ,ª	[Lyx] _{fin} , ^b	[Xylu] _{fin} , ^b	[Ribu] _{fin} , ^b	Lyx	Lyx	Xylu	Ribu	Lyx	Xylu	Ribu	%
	М	М	М	М	M	М	conversion,							
							%							
1	0.60	0	0	0.48	0.095	0.009	19	5	57	44	8	92	<1	16
2	0.57	0.02	0.002	0.48	0.092	0.011	16	4	51	56	7	93	<1	24
3	0.59	0.002	0.0009	0.47	0.092	0.008	21	3	48	54	6	94	<1	31
4	0.61	0.02	0.002	0.48	0.11	0.014	22	3	45	54	9	91	<1	37

^a[Lyx]₀, [Xylu]₀, and [Ribu]₀ are concentrations of lyxose, xylulose, and ribulose in the reaction mixture prior to the isomerization ^b[Lyx]_{fin}, [Xylu]_{fin}, and [Ribu]_{fin}, are concentrations of lyxose, xylulose, and ribulose, in the reaction mixture after the isomerization

Calculation of conversion, selectivity, and yield for the reaction-assisted isomerization

Lyxose conversion was calculated as follows

$$Lyxose \text{ conversion} = \frac{\sum_{i} ([Lyx]_{0, i} - [Lyx]_{fin, i})}{\sum_{i} ([Lyx]_{0, i} - [Lyx]_{extr, i-1})}$$
(43S)

Xylulose yield was calculated for the total amount of formed xylulose according to the formula:

$$Xy|ulose yield = \frac{\sum_{i} ([Xy|u]_{fin,i} - [Xy|u]_{0,i})}{\sum_{i} ([Lyx]_{0,i} - [Lyx]_{extr,i-1})}$$
(44S)

Used for Equations 43S and 44S parameter i denotes a number of run, whereas [Lyx]₀, [Xylu]₀, [Lyx]_{fin}, [Xylu]_{fin}, denote concentrations of lyxose and xylulose provided in Table 9S. [Lyx]_{extr}, and [Xylu]_{extr} denote concentrations of lyxose and xylulose in aqueous phase after extraction.

References

1. Y.B. Tewari, D.K. Steckler and R.N. Goldberg, *Biophys. Chem.*, 1985, 22, 181.

2. Y.B. Tewari and R.N. Goldberg, *Biophys. Chem.*, 1985, **22**, 197.

3. I.V. Delidovich, A.N. Simonov, O.P. Pestunova and V.N. Parmon, *Kinet. Catal.*, 2009, **50**, 297.

4. L. Petruš, M. Petrušová and Z. Hricovíniová, The Bílik Reaction. In *Glycoscience*, Springer Berlin / Heidelberg: 2001; Vol. 215, pp 15.

5. J.B. Lambert, G. Lu, S.R. Singer and V.M. Kolb, J. Am. Chem. Soc., 2004, **126**, 9611.

6. D. Murzin and T. Salmi, Chapter 4 - Complex reactions. In *Catalytic Kinetics*, Elsevier Science: Amsterdam, 2005; pp 111.