S1

Electronic Supporting Information

Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate

Saumya Dabral,^a Julien Engel,^a Jakob Mottweiler,^a Stéphanie S. M. Spoehrle,^b Ciaran W. Lahive^b and Carsten Bolm^{*}_a

^a Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany

^b School of Chemistry and Biomedical Science Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom.

Email: Carsten.Bolm@oc.rwth-aachen.de

TABLE OF CONTENT

1. General	S2
1.1 Materials and methods	S2
1.2 Instruments	S2
2. Experimental Information for BCD of lignin	S3
2.1 Lignin organosolv extraction process	S3
2.2 Lignin profiling	S4
2.3 General procedure for the BCD of lignin in DMC	S 8
2.4 Analysis of depolymerised lignin reaction mixture	S 8
2.5 General procedure for BCD of beechwood chips in DMC	S19
3. Experimental Information on BCD of lignin model compounds	S23
3.1 Isolating lignin β - β model compound from sesame oil	S23
3.2 Synthesis of lignin β -O-4 model compounds	S23
3.3 General procedure for BCD of lignin β -O-4 model compounds in DMC	S26
3.4 Spectroscopic data of the isolated products	S26
4. Reaction profile and rate calculation for model compound 1b	S28
4.1 General procedure for monitoring the reaction progress for model compound 1b	S28
4.2 HPLC chromatograms	S30
4.3 Reaction profile for cleavage of 1b with Cs ₂ CO ₃ in DMC	S33
4.4 Reaction profile for cleavage of 1b with LiOt-Bu in DMC	S34
5. Synthesis and reactivity of vinyl ketone M4	S37
6. NMR spectra	S39
7. Computational details	S58
8. References	S67

1. General

1.1 Materials and methods

Dimethyl carbonate (DMC) was purchased from Alfa Aesar and was used without further purification. Cesium carbonate and lithium *tert*-butoxide were purchased from Sigma Aldrich and Acros Organics, respectively. Kraft Lignin **370959** was purchased from Sigma Aldrich. THF used for the model compound synthesis was dried by distillation over Solvona® (sodium on molecular sieves) in the presence of benzophenone and then stored under a nitrogen atmosphere. Thin-layer chromatography (TLC) analysis was performed using Merck silica gel 60 F254 TLC plates, visualised by UV light irradiation (254 nm). Catalytic reactions were carried out in screw cap pressure tubes.

1.2 Instruments

Nuclear Magnetic Resonance (NMR): The 2D-HSQC NMR spectra for lignin samples were recorded on a Bruker Avance III 500 MHz or Bruker Ascend 700 MHz spectrometer using previously described methods in DMSO- d_6 solvent.¹ The ³¹P NMR analysis for the lignin samples were recorded on a Varian Mercury 300 MHz spectrometer. The ¹H and ¹³C spectra for the analysis of reactions with model compounds were recorded on a Varian Inova 400 (¹H NMR: 400 MHz, ¹³C NMR: 101 MHz) or Agilent VNMRS 600 (¹H NMR: 600 MHz, ¹³C NMR: 151 MHz) spectrometer. Chemical shifts (δ) are given in ppm relative to the residual solvent peak (CDCl₃: δ = 7.26 ppm, DMSO- d_6 : δ = 2.50 ppm). Spin-spin coupling constants (*J*) are given in Hz. Abbreviations are as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplet) br.s (broad singlet), br.d (broad doublet), br.t (broad triplet).

Mass spectrometry: The mass data were recorded on a Finnigan SSQ 7000 spectrometer (EI) and HRMS on a Finnigan MAT 95 spectrometer (ESI).

High performance liquid chromatography (HPLC): The measurements were conducted on a Shimadzu UFLC system equipped with a photodiode detector (Shimadzu SPD-M20A Prominence) and an Agilent Eclipse XDB-C18 Column (5 μ m 4.6 x 150 mm). Analysis was performed using Shimadzu Lab solutions Version 5.51 software. MeCN (0.1% formic acid) (A)/H₂O (0.1% formic acid) (B) were used as eluents with a flow rate of 1.0 mL/min.

HPLC Method: 5% A/95% B for 10 minutes followed by a gradient to 95% A/5% B over 30 minutes followed by 10 minutes at 95% A/5% B followed by a gradient to 5% A/95% B over 5 minutes followed by 5 minutes at 5% A/95% B at a flow rate of 1.0 mL/min.

Gel Permeation Chromatography (GPC): The GPC measurements were performed on an Agilent technologies 1200 series system equipped with an Isocratic pump G1310 A. Three PL-gel 3lm MIXED-E columns were operated in series at 42 °C. A mixture of DMF with 0.2 M LiCl was used as solvent with a flow-rate of 1 mL/min and an injection volume of 100 μ L. The signals were detected with an ECO Sec RI detector. The molecular weight was determined using polystyrene sulfonate standards of known molecular weight distribution.

Melting Point: Melting points were measured with a Büchi Melting Point B-540 apparatus.

Reaction profile: Modelled rate analysis lines were obtained using DYNAFIT software.

Computational Details: All quantum chemical calculations were performed with a Gaussian 09 Revision D.0² on the facilities of the IT Centre of RWTH Aachen University. For geometry optimisations Head-Gordon's long-range corrected density functional ζ B97X-D³ was used with the SDD pseudopotential⁴ for cesium and Dunning's double- ζ cc-pVDZ basis set⁵ for all other atoms. Single-point calculations were performed with the SDD pseudopotential for cesium Pople's triple- ζ basis set 6-311++G(d,p).⁶ Solvation effects were simulated with a polarisable continuum model (PCM) for dimethyl carbonate.⁷ The static dielectric constant was defined as 3.13⁸ and the dynamic dielectric constant as 1.87 based on the refractive index of dimethyl carbonate.⁹ The nature of the obtained structure was evaluated with normal mode analysis. Gibbs free energies were calculated for a temperature of 298.15 K. A standard state correction for a 1 M solution was applied.

2. Experimental Information for BCD of lignin

2.1 Lignin organosolv extraction processes:

a) Dioxasolv cherry and oak lignin: The lignins were extracted following a previously established literature procedure¹

A 2 L flask was charged with either cherry or oak sawdust (200 g) and 1,4-dioxane (1.5 L) was added followed by the addition of 2N HCl (0.16 L) solution. The mixture was heated to a gentle reflux under a N₂ atmosphere for 1 hour. It was then cooled to room temperature and the lignin containing liquor was collected by filtration. This liquor was concentrated under vacuum, resulting in a gummy residue, which was then taken up in acetone/water (9:1, ~250 mL) and precipitated by addition to rapidly stirring water (2.5 L). The crude lignin was collected by filtration and dried under vacuum. The dried crude lignin was taken up in acetone/methanol (9:1) and precipitated by dropwise addition to rapidly stirring Et₂O (2.0 L). The precipitated lignin was collected by filtration and dried under vacuum to give purified samples of cherry/ oak lignin (ca. 20 g). These lignins were used in subsequent experiments without further processing.

b) Ethanosolv beechwood Lignin:

The beechwood lignin was extracted from the corresponding wood chips using the following ethanol-based organosolv process. The lignin was extracted with aqueous ethanol (50% w/w) without the addition of an acid catalyst. Lignin was then precipitated with water and afterwards washed with water to remove the residual carbohydrates. The precipitate was sedimented by centrifugation and the liquor above decanted. Finally, the lignin was dried and pulverised.

2.2 Lignin Profiling:

a) Identification and quantification of major structures in the lignin polymers by 2D-HSQC NMR methodology:

The organosolv beechwood, oak and cherry lignins along with Aldrich-Kraft lignin were characterised using 2D-HSQC experiments (**Fig. S1**) following a previously published report.¹⁰ The signals corresponding to the major structural linkages in the 2D-HSQC NMR spectra were identified and their respective areas were used to determine relative quantities of the major linkages. This was done by taking integrals corresponding to the α -proton in various linkages (**A**: β -O-4, **B**: β - β , **C**: β -5) relative to the aromatic signals while maintaining the same contour level.

Quantification Results:

Figure S1: These calculations revealed a low β -O-4 content of 5 per 100 aromatic units for Aldrich-kraft lignin having an S:G:H ratio of trace:100:0. Oak and cherry lignins on the contrary resulted in a β -O-4 content of 33 per 100 aromatic units and 49 per 100 aromatic units respectively, with an S:G:H ratio of 84:14:0 corresponding to both lignin samples. The ethanosolv beechwood lignin afforded a β -O-4 content of 24 per 100 aromatic units and an S:G:H ratio of 73:27:0. It is important to note that the above values are bound to have a certain degree of error owing to differences in relaxation time, therefore they should mainly be referred to for comparative studies of different lignins and not as exact values.

Fig. S1 2D-HSQC NMR spectra of lignins: A) Region from ppm 2.5–6.0 in the ¹H, 50–90 in the ¹³C; B) Region from ppm 7.2–7.6 in the ¹H, 100–124 in the ¹³C. A: β -O-4' aryl ether linkages with a free-OH at the α -carbon; A': β -O-4' aryl ether linkages with α -methoxylated/ ethoxylated units; B: resinol substructures formed by β - β -, α -O- γ -, and γ -O- α '-linkages; C: phenyl coumaran substructures formed by β -5' - and α -O-4' -linkages; e) S: syringyl units; S': syringyl unit with oxidised benzylic position; G: guaiacyl units.

The quantitative ³¹P NMR analysis for the phenolic and the aliphatic hydroxyl groups in the lignins, both before and after the base-catalysed depolymerisation (BCD) (**Fig. 3**), were conducted on a Brukner 300 MHz spectrometer following previous literature reports.¹¹ 30 mg vacuum dried lignin sample was dissolved in 700 μ L of an anhydrous solvent mixture (pyridine:CDCl₃, 1.6:1, v/v). 100 μ L of a cyclohexanol solution (10.85 mg/mL) was added as an internal standard along with 100 μ L of chromium (III) acetylacetonate solution (5.2 mg/mL) as the relaxation reagent. Finally, 100 μ L of the phosphitylating agent (2-chloro-4,4,5,5-tetramethyl-1,2,3-dioxa phospholane) was added and the mixture was transferred into a 5 mm NMR tube for NMR acquisition using 512 scans, 250 ppm sweep width and a relaxation delay of 10 sec.

	OH (mmol/g) ^(a)					
Lignins	Aliphatic OH	5- Substituted OH	Guaiacyl OH (G)	<i>p</i> - Hydroxyphenyl OH (H)	СООН	
OS-Oak (before rxn.)	2.37	1.06	0.56	0.05	0.12	
OS-Oak (rxn. with Cs ₂ CO ₃)	0.05	0.02	0.01	-	-	
OS-Oak (rxn.with LiOt-Bu)	0.37	0.55	0.15	-	-	
OS-BW (before rxn.)	2.38	1.24	0.69	0.01	0.01	
OS-BW (rxn. with Cs ₂ CO ₃)	0.03	0.03	0.01	-	-	
OS-BW (rxn. with LiOt-Bu)	0.25	0.40	0.18	-	-	
OS-C (before rxn.)	1.90	1.70	0.88	0.03	0.07	
OS-C (rxn. with Cs ₂ CO ₃)	0.04	0.03	0.03	-	-	
OS-C (rxn. with LiOt-Bu)	0.15	0.61	0.23	-	-	
Kraft (before rxn.)	1.79	0.90	1.77	0.17	0.20	
Kraft (rxn. with Cs ₂ CO ₃)	0.01	0.01	0.02	-	-	
Kraft (rxn. with LiOt-Bu)	0.07	0.06	0.12	-	-	

Table S1: Comparative study based on quantitative ³¹P NMR calculating the decrease in the amount of hydroxyl groups (mmol/g) following the BCD approach.

(a) Quantifications are relative to a known amount of cyclohexanol as an internal standard.

C) GPC analysis of lignin samples:

Fig. S2 GPC (DMF/LiCl) graphs of organosolv and kraft lignin measured using RI detector with respect to polystyrene sulfonate standards.

Entry	Lignin	M _n (g/mol)	M _w (g/mol)
1	Aldrich-Kraft	137	7106
2	Beechwood	113	3103
3	Cherry	441	15220
4	Oak	117	2610

Table S2 The average molar mass (M_n) and weight average molar mass (M_w) determined by GPC (DMF/LiCl) using polystyrene sulfonate standards.

2.3 General procedure for the BCD of lignin in DMC

A 20 mL pressure tube with a Teflon screw cap and a magnetic stirrer was charged with lignin (100 mg) and either Cs_2CO_3 (10 wt%, 0.03 mmol) or LiO*t*-Bu (10 wt%, 0.125 mmol) in dimethyl carbonate (5.0 mL). The mixture was stirred at 180 °C for 8 h or 12 h (depending on the base) followed by cooling to room temperature.

Workup for 2D-HSQC NMR: The reaction mixture was transferred into a 25 mL round bottom flask, followed by the removal of dimethyl carbonate under reduced pressure. Next, the residue was dissolved in deuterated dimethyl sulfoxide (DMSO- d_6) solution and filtered into an NMR tube.

Workup for GPC analysis and ³¹P NMR: The reaction mixture was transferred into a 25 mL round bottom flask, followed by removal of dimethyl carbonate under reduced pressure. The resulting residue was further analysed by GPC or died overnight under reduced pressure and used for ³¹P NMR analysis.

Workup for GC-MS analysis: After the completion of the reaction, the solvent (DMC) was removed under reduced pressure. The resulting residue was then transferred into a centrifuge tube with EtOAc (5 mL) and spun at 5000 rpm for 10 min. The EtOAc soluble products were separated from the insoluble residue by multiple centrifugations using fresh EtOAc for each run (3.5 mL). The soluble fractions were combined and the solvents evaporated under reduced pressure resulting in an oil. The insoluble residue was then washed with water (3.5 mL) and pentane (3.5 mL). The oil and residue fractions were further dried overnight at 40 °C under vacuum and the weights corresponding to each fraction are given in **Table S2**. The oil containing the low molecular weight components was re-dissolved in EtOAc and a known amount of external standard (*n*-octadecane) was added to it. This mixture was analysed by GC-MS for the identification and quantification of methoxy-capped compounds.

Table S3: Dry weights of the oil and residue fractions for lignin samples after BCD.								
Base	Lignin Type	Weight of oil (mg)	Weight of residue (mg)					
	OS- Oak	58	48					
Cs ₂ CO ₃	OS-Cherry	52	42					
	OS-Beechwood	67	37					
	Aldrich-Kraft	60	36					
	OS-Oak	29	80					
LiOt-Bu	OS-Cherry	10	94					
	OS-Beechwood	35	66					
	Aldrich-Kraft	20	86					

2.4. Analysis of depolymerised lignin reaction mixtures

2.4.1 GC-MS measurements for lignin (oil fractions) obtained after BCD with Cs₂CO₃

(a)	Beechwood	lignin
(4)	Decenwood	1151111

designat	ion obtair	ied from the	e depolymer	risation of beechwood (US-BW) lignin.	
Entry	Ret.	Quant	Found	Structure	Match
	(min.)	(mg)	mass		(%)
	· /		(m/z)		
1	3.26	-	96	furan-2-carbaldehyde	80
2	6.59	-	110	5-methylfuran-2-carbaldehyde	90
3	6.94	-	126	methyl furan-3-carboxylate	80
5	10.62	0.05	138	OMe OMe Veratrole	87 Sample injected
6	13.27	0.1	168	OMe OMe 1,2,3-trimethoxybenzene	85 Sample injected

				OMe	90
7	13.74	0.03	166	MeO methyl 4-methoxybenzoate	Sample injected
					91
9	15.60	0.1	166	H MeO 3,4-dimethoxybenzaldehyde	Sample injected
				MeO	89
10	16.06	0.2	182	HO methyl 4-hydroxy-3-methoxybenzoate	Sample injected
				MeO OMo	94
11	16.96	1.1	196	MeO methyl 3,4-dimethoxybenzoate	Sample injected
				MeO	96
12	17.06	0.2	196	MeO OMe	Sample injected
				3,4,5-trimethoxybenzaldehyde	
				MeO H	96
13	17.73	0.05	182	HO OMe	Sample injected
				4-hydroxy-3,5-dimethoxybenzaldehyde	
				MeO	99
14	18.40	3.2	226	MeOOMe	Sample injected
				methyl 3,4,5-trimethoxybenzoate	
				ОМе	
15	21.14	-	208	OMe 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylaldebyde	83

Table S5 Complete overview of the GC-FID signals, identification, quantification and designation obtained from the depolymerisation of Oak (OS-O) lignin.

Entry	Ret.	Quant	Found	Structure	Match
	(min.)	(mg)	mass		(%)
			(m/z)		
1	3.26	-	96	furan-2-carbaldehyde	80
2	6.59	-	110	5-methylfuran-2-carbaldehyde	90
3	6.94	-	126	methyl furan-3-carboxylate	80
4	9.49	0.01	124	OH OMe 2-methoxyphenol	79 Sample injected
5	10.62	0.03	138	OMe OMe Veratrole	90 Sample injected

				OMe	96
6	13.27	0.2	168	OMe OMe	Sample injected
				1,2,3-trimethoxybenzene	J
_	10.74	0.01	1.00	O OMe	90
/	13.74	0.01	166	MeO	Sample injected
0	12.95	0.02	154	OMe	67
8	15.85	0.02	134	OMe	Sample
				2,6-dimethoxyphenol	injected
				MeO	91
9	15.60	0.1	166	↓ ↓ H	Samula
				MeO ⁻	injected
				3,4-dimethoxybenzaldehyde	injeeve a
				MeO	89
10	16.06	0.1	182	но	Sample
				methyl 4-hydroxy-3-methoxybenzoate	injected
				<u>0</u>	
				MeO	94
11	16.96	0.6	196	MeO	Sample
				methyl 3,4-dimethoxybenzoate	injected
				0 	
				MeO	96
12	17.06	0.3	196	MeO	Sample
				OMe	injected
				3,4,5-trimethoxybenzaldehyde	5
					06
1.2	1	0.00	100	H	90
13	17.73	0.02	182	но	Sample
					injected
				4-hydroxy-3,5-dimethoxybenzaldehyde	

14	18.40	3.4	226	MeO MeO OMe methyl 3,4,5-trimethoxybenzoate	99 Sample injected
15	21.14	-	208	OME OH OMe 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylaldehyde	83

(c) Cherry lignin

Fig. S5 GC spectrum for Cherry (OS-C) lignin with Cs₂CO₃.

Table S6 Complete overview of the GC-FID signals, identification, quantification and
designation obtained from the depolymerisation of cherry (OS-C) lignin.

Entry	Ret. (min.)	Quant (mg)	Found mass (m/z)	Structure	Match (%)
1	3.55	-	130	o o propyl butyrate	76
2	10.62	0.02	138	OMe OMe Veratrole	87 Sample injected

				MeO	91
3	15.60	0.1	166	MeO	Sample injected
				3,4-dimethoxybenzaldehyde	5
4	16.96	0.9	196	MeO	95
т	10.70	0.7	170	MeO	Sample
				methyl 3,4-dimethoxybenzoate	injected
				MeO.	06
				H H	90
5	17.06	0.4	196	MeO	Sample
				ÓМе	injected
				3,4,5-trimethoxybenzaldehyde	
				MeO	96
6	17.73	0.05	182	HO	Sample
				OMe	injected
				4-hydroxy-3,5-dimethoxybenzaldehyde	5
				MeO OMe	99
7	18.40	4.0	226	MeO	Sample
				ÓMe	injected
				methyl 3,4,5-trimethoxybenzoate	_
8	18.65		180	-	-
9	19.51		210	-	-
10	20.92		226	Dimer	-
11	21.14		208	Dimer	

(d) Kraft Lignin

Fig.	S6 G	C spect	rum for	Kraft	lignin	with	Cs ₂ CO ₂	
8*	~ ~ ~	- sp					00200	, •

Table S7 Complete overview of the GC-FID signals, identification, quantification and
designation obtained from the depolymerisation of Aldrich Kraft (KL) lignin.

Entry	Ret.	Quant	Found	Structure	Match
	(mın.)	(mg)	mass		(%)
			(m/z)		
1	3.55	-	130	o o propyl butyrate	76
2	4.04	-	106		50
				p-xylene	
3	4.82	-	130		72
	0.00		104		
4	8.36	-	104	-	-
5	9.50	0.03	124	OH OMe 2-methoxyphenol	80 Sample injected
6	10.62	0.3	138	OMe OMe Veratrole	84 Sample injected

7	14.58	-	198	Tetradecane	76
8	15.60	0.1	166	MeO MeO 3,4-dimethoxybenzaldehyde	96 Sample injected
9	16.64	0.08	180	MeO MeO 1-(3,4-dimethoxyphenyl)ethan-1-one	90 Sample injected
10	16.06	0.01	182	MeO HO HO methyl 4-hydroxy-3-methoxybenzoate	89 Sample injected
11	16.96	1.8	196	MeO MeO MeO methyl 3,4-dimethoxybenzoate	94 Sample injected
12	17.10	-	184	-	-
13	20.35	-	254	-	-
14	24.55	-	281	Dimer	76
15	24.44	-	314	Dimer	90
16	24.88	-	316	Dimer	95
17	27.96	-	300	MeO OMe 1,2-bis(3,4-dimethoxyphenyl)ethene	70

2.4.2 GC-MS Measurements for lignin (oil) obtained after BCD with KOH

Table S8 Complete overview of the GC-FID signals, identification, quantification and	nd
designation obtained from the depolymerisation of Aldrich Kraft (KL) lignin.	

Entry	Ret. (min.)	Quant (mg)	Found mass	Structure	Match (%)
1	7.01		(m/z)		
1	/.01	-		-	
2	9.50	0.02	124	OH OMe	80 Sample
				2-memoxyphenoi	Injected
3	10.62	0.2	138	OMe OMe Veratrole	94 Sample injected
4	14.58	-	198	Tetradecane	76
5	15.60	0.3	166	MeO MeO 3.4-dimethoxybenzaldehyde	96 Sample injected

6	16.06	0.01	182	MeO HO HO methyl 4-hydroxy-3-methoxybenzoate	89 Sample injected
7	16.95	1.5	196	MeO MeO MeO methyl 3,4-dimethoxybenzoate	94 Sample injected
8	17.10	-	184	-	-
9	20.35	-	254	-	-
10	24.55	-	281	Dimer	76
11	24.44	-	314	Dimer	90
12	24.88	-	316	Dimer	95
13	27.96	-	300	MeO OMe 1,2-bis(3,4-dimethoxyphenyl)ethene	70

2.5. General procedure for the BCD of beechwood chips in DMC

a) Pre-grinding the woodchips in a planetary ball mill

Beechwood chips (2 g) were taken in a FRITSCH Planetary micro mill model "Pulverisette 7 premium line" in a milling jar containing 20 balls of diameter (5 mm) and milled for 1h at 1600 rpm to get a fine powder. The jars (20 ml in volume) and balls (5 mm diameter) are made of ZrO_2 .

b) BCD of beechwood powder in DMC

Reaction tube A: A 20 mL pressure tube with a Teflon screw cap and a magnetic stirrer was charged with beechwood powder (100 mg) and Cs_2CO_3 (10 mg) in DMC (5 mL). The mixture was stirred at 180 °C for 8 h followed by its cooling to room temperature. To the above mixture was added 200 µl of internal standard (*n*-octadecane, 0.062 M solution) and the solvent was evaporated under reduced pressure. The resulting residue was dissolved in EtOAc (5 mL) and centrifuged to separate the soluble products from the residual powder which sedimented at the bottom of the tube. This process was repeated 3 times. The combined fractions were then dried under reduced pressure to get an oil residue. A sample of this residue was dissolved in EtOAc and was injected in the GC-MS for further quantitative product analysis.

Control reaction tube B: To rule out any cleavage reaction induced during the pre-milling of wood chips, and to highlight the role of Cs_2CO_3

in the current system, a control experiment was performed with beechwood powder (100 mg) in DMC (5 mL) but in the absence of Cs_2CO_3 (10 mg). A similar workup procedure and product analysis was performed as above.

Table S9 Complete overview of the GC-FID signals, identification, quantification and designation obtained from the depolymerisation of beechwood powder.

Entry	Ret.	Quant	Found	Structure	Match
	(min.)	(mg)	mass		(%)
			(m/z)		
1	3.26	-	96	furan-2-carbaldehyde	80
2	3.38	-	118	o o methyl 3-methoxypropanoate	72
3	6.59	-	110	5-methylfuran-2-carbaldehyde	90
4	6.85	-	148	methyl 3,3 dimethoxy propionate	78
5	6.94	-	126	O methyl furan-3-carboxylate	80

6	9.06	-	160	Butanedioic acid, methyl, dimethyl ester	72
				OMe	84
7	10.62	0.2	138	OMe Veratrole	Sample injected
8	12.36	-	174	2-Methoxy-2-butenedioic acid dimethyl ester	93
0				OMe	94
9	13.26	0.05	168	OMe OMe 1,2,3-trimethoxybenzene	Sample injected
					95
10	13.73	0.02	166	MeO MeO methyl 4-methoxybenzoate	Sample injected
11	14.13	0.2	168	OMe OMe OMe 1,2,4-trimethoxybenzene	98 Sample injected
12	15.23	-	194	-	-
13	15.60	0.1	166	MeO MeO H MeO 3,4-dimethoxybenzaldehyde	91 Sample injected
14	16.95	0.8	196	MeO MeO MeO methyl 3,4-dimethoxybenzoate	99 Sample injected
15	17.05	0.2	196	MeO MeO MeO MeO MeO Me OMe 3,4,5-trimethoxybenzaldehyde	96 Sample injected

16	18.40	1.2	226	MeO MeO OMe methyl 3,4,5-trimethoxybenzoate	99 Sample injected
17	20.133	-	222	MeO OMe methyl 3-(3,4-dimethoxyphenyl)acrylate	93
18	20.60	-	270	hexadecanoic acid methylester	93
19	21.43	-	252	MeO MeO OMe methyl 3-(3,4,5-trimethoxyphenyl)acrylate	93

Fig. S9 GC spectrum for beechwood chips (oil fraction) after method B.

3. Experimental Information for BCD of lignin model compounds

3.1 Isolating lignin β - β model compound from sesame oil:

(1*S*,3a*R*,4*S*,6a*R*)-1,4-Bis(benzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan, Sesamin (1a)

A solution of Kunella Feinkost sesame oil (200 mL) in pentane (500 mL) was loaded onto a column pre-packed with 50 g of silica in pentane. Next the column was eluted with pentane (700 mL) until a colorless eluent was obtained. Elution was then continued using a mixture of pentane/EtOAc (750 mL of a 9/1 mix followed by 750 mL of a 1/9 mix). The column was then flushed with EtOAc to afford the remaining sesamin. The combined fractions were concentrated *in vacuo* to give a light yellow semi-solid which was triturated with hexanes to afford

sesamin **1a** as a white solid in 98% purity. ¹ **H NMR (400 MHz, CDCl₃):** $\delta = 6.85$ (s, 2H), 6.83–6.74 (m, 4H), 5.94 (s, 4H), 4.71 (d, J = 4.24 Hz, 2H), 4.23 (ddd, J = 9.2 Hz, 4.4 Hz and 2.1 Hz, 2H), 3.86 (dd, J = 9.2 Hz and 3.6 Hz, 2H), 3.08–2.99 (m, 2H). ¹³C **NMR (101 MHz, CDCl₃):** δ 148.1 (2C), 147.2 (2C), 135.2 (2C), 119.5 (2C), 108.3 (2C), 106.6 (2C), 101.2 (2C), 85.9 (2C), 71.8 (2C), 54.5 (2C). **mp:** 121–122 °C (lit. 122–122.5 °C). ¹H NMR data are in accordance with those previously reported.¹²

3.2 Synthesis of lignin β -O-4 model compounds

The lignin model compounds (**1b-g**) used for the cleavage reactions were prepared according to the procedure described in literature.¹³

erythro-1- (3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1b)

White solid, mp: 100–101 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.06$ (ddd, J = 8.0 Hz, 7.2 Hz and 1.6 Hz, 1H), 6.99–6.88 (m, 5H), 6.83 (d, J = 8.0 Hz, 1H), 4.98 (br.t, J = 4.7 Hz, 1H), 4.16 (ddd, J = 6.0 Hz, 4.7 Hz and 3.7 Hz, 1H), 3.95–3.89 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.87 (s, 3H), 3.66 (ddd, J = 12.0 Hz, 7.2 Hz

and 3.7 Hz, 1H), 3.55 (br.s, 1H), 2.79 (br.s, 1H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 151.7$, 149.1, 148.6, 147.0, 132.6, 124.3, 121.7, 121.1, 118.5, 112.3, 111.1, 109.3, 87.5, 72.8, 60.9, 56.0 (3C). MS (EI, 70 eV): m/z (%): 334 [M]⁺ (6), 167 (15), 166 (12), 151 (14), 150 (100), 139 (20), 124 (10), 121 (12), 109 (10). HPLC MeCN (0.1% formic acid): t_R = 22.1 min.

erythro-1-(3,4-Dimethoxyphenyl)-3,3-dimethyl-2-(2-methoxyphenoxy)-l,3-propanediol (1c)

3.55 (br.s, 2H), 1.41 (s, 3H), 1.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 150.0, 148.8, 148.6, 148.5, 134.0, 122.2, 121.0, 119.4, 117.0, 111.9, 110.8, 110.1, 89.1, 74.5, 74.2, 55.9 (2C), 55.8, 27.1, 25.1. MS (EI, 70 eV): *m/z* (%): 362 (2) [M⁺], 180 (18), 179 (100), 167 (12), 139 (19), 124 (18), 123 (13), 77 (12).

3-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)butane-1,3-diol (1d)

Mixture of *erythro+threo* diol = 1.3:0.6

Colorless liquid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ (d, J = 2.1 Hz, 1H), 7.12 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.3 Hz and 1.5 Hz, 1H), 7.07–6.92 (m, 7H), 6.89–6.84 (m, 3H), 6.83 (d, J = 8.3 Hz, 1H), 4.19 (dd, J = 5.7 Hz and 3.8 Hz, 1H), 4.15 (t, J = 3.9 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.80 (dd, J = 12.3 Hz and 5.7 Hz, 1H),

3.68 (dd, *J* = 12.3 Hz and 3.8 Hz, 1H), 3.56 (qd, *J* = 12.6 Hz and 3.9 Hz, 2H), 1.70 (s, 3H), 1.69 (s, 3H). ¹³C NMR (101 Hz, CDCl₃): δ = 151.1, 150.8, 148.8, 148.6, 148.3, 148.0, 147.9 (2C), 137.6, 137.3, 123.7, 123.6, 121.6, 121.5, 120.0, 119.7, 117.8, 117.1, 112.2, 112.0, 110.9, 110.6, 109.3, 108.6, 89.9, 87.9, 76.6, 75.8, 61.5, 61.0, 55.8, 55.9 (2C), 55.9 (3C), 27.7, 25.1. MS (EI, 70 eV): *m*/*z* (%): 348 (3) [M⁺],182 (34), 181 (53), 165 (17), 151 (15), 150 (100), 139 (18), 124 (19), 121 (15), 109 (13), 77 (16).

erythro-3-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)-1-propanol (1e)

White solid, mp: 76–77 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.97-6.92$ (m, 3H), 6.87–6.82 (m, 2H), 6.76 (td, J = 7.8 Hz and 1.5 Hz, 1H), 6.53 (dd, J = 8.0 Hz and 1.6 Hz, 1H), 4.43 (d, J = 7.2 Hz, 1H), 4.07 (ddd, J = 7.2 Hz, 4.6 Hz and 3.8 Hz, 1H), 3.92 (dd, J = 12.0 Hz and 4.7 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.84–3.80 (m, 1H), 3.82 (s, 3H), 3.31 (s, 3H), 3.17 (m,

1H). ¹³C NMR (101 Hz, CDCl₃): $\delta = 151.2$, 149.0, 148.7, 147.5, 131.4, 123.6, 121.3, 120.4, 120.3, 112.0, 110.8, 110.2, 86.7, 82.8, 61.6, 57.1, 55.9, 55.9, 55.8. MS (EI, 70 eV): *m/z* (%): 348 (3) [M⁺], 182 (17), 181 (100), 151 (11).

erythro-1-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)-1-propanol (1f)

White solid, mp: 68–69 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.08-7.05$ (m, 1H), 7.03–6.99 (m, 2H), 6.92–6.87 (m, 3H), 6.81 (d, J = 7.8 Hz, 1H), 4.87 (d, J = 3.6 Hz, 1H), 4.34 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.85 (s, 3H), 3.63 (dd, J = 10.2 Hz and 6.0 Hz, 1H), 3.43 (dd, J = 10.2 Hz and 3.6 Hz, 1H), 3.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 151.4$, 148.8, 148.3, 147.3,

132.5, 123.7, 121.4, 120.6, 118.6, 112.1, 110.8, 109.6, 85.1, 72.9, 71.4, 59.3, 55.9, 55.8, 55.8. **MS (EI, 70 eV):** *m/z* (%): 348 (2) [M⁺], 181 (11), 167 (12), 166 (12), 165 (10), 151 (20), 150 (100), 139 (24), 124 (15), 121 (18), 109 (15), 95 (14), 77 (18).

erythro-1,3-dimethoxy-1- (3,4-Dimethoxyphenyl)-2- (2-methoxyphenoxy) propane (1g)

White solid, mp: 50–51 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.96$ (d, J = 1.8 Hz, 1H), 6.93–6.87 (m, 2H), 6.85–6.76 (m, 4H), 4.47–4.42 (m, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.75 (s, 3H), 3.74–3.70 (m, 1H) 3.64–3.60 (m, 1H), 3.37 (s, 3H), 3.29 (s, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 150.8$, 148.8, 148.5, 147.9, 130.9, 122.3, 120.8, 120.4, 118.1, 112.2, 110.7, 110.5, 82.6, 82.3, 71.3,

59.3, 57.2, 55.8, 55.8, 55.7. **MS (EI, 70 eV):** *m/z* (%): 362 (6) [M⁺], 182 (20), 181 (100), 151 (14), 45 (11).

erythro-1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)-propane-1,3-diyldimethyl biscarbonate (1h)¹⁴

Colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.00-6.95$ (m, 3H), 6.86–6.79 (m, 4H), 5.87 (d, J = 6 Hz, 1H), 4.68 (m, 1H), 4.50 (dd, J = 12 Hz and 5.4 Hz, 1H), 4.33 (dd, J = 12 Hz and 4.3 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 155.5$, 154.7, 151.0,

OME 149.2, 148.8, 146.9, 128.2, 123.6, 120.9, 120.1, 119.4, 112.5, 110.7, 110.5, 79.9, 77.8, 65.9, 55.8 (2C), 55.7, 55.0, 54.9. **IR (ATR):** v [cm⁻¹] = 2956, 2077, 1747, 1597, 1466, 1242, 952, 759. **HRMS (ESI, 70 eV):** m/z calcd. for C₂₂H₂₆O₁₀+Na⁺: 473.14182 [M+Na⁺]; found: 473.14166. **HPLC MeCN (0.1% formic acid):** t_R = 29.6 min.

3.3 General procedure for the BCD of lignin β -O-4 model compounds in DMC

A 10 mL pressure tube with a Teflon screw cap and a magnetic stirrer was charged with model compound **1a-h** (0.25 mmol, 1.00 equiv) and base (0.01 mmol, 0.05 equiv) in dimethyl carbonate (1.2 mL). The mixture was stirred at 180 °C for 8 h or 12 h (depending on the reaction conditions) followed by cooling to room temperature. A standard solution (1.00 mL of naphthalene in DMC, c = 0.2 mol/L) was added with an Eppendorf pipette to the reaction mixture. The solution was then diluted with MeCN (10.0 mL) and passed through microfilter. Three samples were then prepared for HPLC measurements by diluting 0.2 mL of the above solution with acetonitrile (1.0 mL) for each sample, followed by filtration into a HPLC vial.

Note: In the case of model **1a**, the crude reaction mixture was vacuum dried to remove DMC and analysed by quantitative ¹H NMR with respect to 1,4-dinitrobenzene which was added as the internal standard to monitor the progress of the reaction.

3.4 Spectroscopic data of the isolated products

1,2-Dimethoxybenzene (2a)¹⁵

OMe Colorless oil. ¹H NMR (600 MHz, CDCl₃): $\delta = 6.94-6.88$ (m, 4H), 3.88 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): $\delta = 148.9$ (2C), 120.8 (2C), 111.2 (2C), 55.7 (2C).MS (EI, 70 eV): m/z (%) = 138 [M⁺] (100), 94.9 (14). HPLC MeCN (0.1% formic acid): t_R = 22.8 min.

Methyl 3,4-dimethoxybenzoate (3a)¹⁶

Yellow solid. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.68$ (dd, J = 8.4 Hz and 1.8 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): $\delta = 166.8$, 152.9, 148.5, 123.5, 122.6, 111.9, 110.2, 56.0, 55.9, 52.0. MS (EI, 70 eV): m/z (%) = 196 [M⁺] (100), 165 (83), 124.9 (18), 79(25). HPLC MeCN (0.1% formic acid): t_R = 23.6 min.

(Z)-1,2-Dimethoxy-4-[2-(2-methoxyphenoxy)vinyl]benzene (4a)¹⁴

Yellow Solid. mp: 77–78 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.60$ (d, J = 1.8 Hz, 1H), 7.13 (dd, J = 8.2 Hz and 1.8 Hz, 1H), 7.09 (dd, J = 8.1 Hz and 1.6 Hz, 1H), 7.09–7.06 (m, 1H), 6.97 (dd, J = 9.9 Hz and 1.5 Hz, 1H), 6.94 (m, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.55 (d, J = 6.9 Hz, 1H), 5.56 (d, J = 6.9 Hz, 1H),

3.91 (s, 3H), 3.88 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): $\delta = 149.9$, 148.5, 147.7, 146.5, 140.7, 128.1, 123.7, 121.4, 120.9, 116.6, 112.5, 111.9, 110.8, 109.9, 55.9, 55.8, 55.6. MS (EI, 70 eV): m/z (%) = 287 [M+1]⁺ (20), 286 [M⁺] (100), 271 (13), 226 (25), 151 (22), 77(34). HRMS (ESI, 70 eV): m/z calcd. for C₁₇H₁₈O₄+Na⁺: 309.10973 [M+ Na⁺]; found: 309.11053.

6-(3,4-Dimethoxyphenyl)-5-(2-methoxyphenoxy)-4,4-dimethyl-1,3-dioxan-2-one (5)

White solid, mp: 133–134 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 6.96$ (dd, J = 8.4 Hz and 2.4 Hz, 1H), 6.90 (m, 1H), 6.86 (d, J = 2.4 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.79 (dd, J = 8.4 Hz and 1.8 Hz, 1H), 6.64 (m, 1H), 6.24 (dd, J = 8.4 Hz and 1.8 Hz, 1H), 5.43 (d, J = 9.0 Hz, 1H), 4.38 (d, J = 9.0 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 1.74 (s, 3H), 1.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): $\delta = 150.3$, 149.7, 149.3, 148.5, 147.3, 128.7, 123.9, 121.1,

119.9, 118.3, 112.4, 111.1, 109.7, 82.7, 81.8, 80.0, 56.1, 56.0, 55.8, 26.7, 21.8. **IR (ATR):** v [cm⁻¹] = 3457, 2954, 2590, 2300, 2085, 1738, 1591, 1497, 1351, 1226, 1121, 645. **MS (EI, 70 eV):** m/z (%) = 389 [M+1]⁺ (23), 388 [M⁺] (94), 189 (32), 178 (100), 165 (32), 124 (42). **HRMS (ESI, 70 eV):** m/z calcd. for C₂₁H₂₄O₇: 388.15165 [M⁺]; found: 388.15187.

(Z)-1,2-Dimethoxy-4-(1-(2-methoxyphenoxy)prop-1-en-2-yl)benzene (6a)

Yellow solid, mp: 82–83 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.06-7.01$ (m, 2H), 6.98–6.90 (m, 4H), 6.84 (d, J = 8.4 Hz, 1H), 6.68 (q, J = 2.4 Hz and 1.2 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 2.15 (d, J = 1.2 Hz, 3H).¹³C NMR (151 MHz, CDCl₃): $\delta = 149.6$, 148.8, 148.1, 147.1, 138.9, 132.8, 123,2, 120.9, 120.8, 117.9, 116.8, 112.4, 111.1, 108.9, 56.1, 55.9,

55.8, 13.4. **HRMS (ESI, 70 eV):** *m/z* calcd. for C₁₈H₂₀O₄+ Na⁺: 323.12538 [M+ Na⁺]; found: 323.12497.

Note: (*E*)-1,2-Dimethoxy-4-(1-(2-methoxyphenoxy)prop-1-en-2-yl)benzene (6b): This alkene was obtained as a minor product and the yields were determined by ${}^{1}H$ NMR.

erythro-3-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)propyl methyl carbonate (7)

Colorless oil. ¹**H NMR (600 MHz, CDCl₃):** $\delta = 6.92-6.87$ (m, 3H), 6.82–6.80 (m, 2H), 6.78–6.74 (m, 1H), 6.69 (dd, J = 1.8 Hz and 7.8 Hz, 1H), 4.54–4.50 (m, 1H), 4.47–4.43 (m, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.73(s, 3H), 3.72 (s, 3H), 3.27 (s, 3H).¹³**C NMR (151 MHz, CDCl₃):** $\delta = 155.6$, 150.9, 148.9, 148.7, 147.5, 130.4, 122.9, 120.8, 120.2, 118.9, 112.3, 110.6, 110.3, 82.1, 81.6, 66.6, 57.1, 55.8 (2C), 55.6, 54.7. **IR (ATR):** v [cm⁻¹] = 2942, 2316,

2086, 1747, 1596, 1470, 1248, 1119, 1025, 755. **MS (EI, 70 eV):** m/z (%) = 407 [M+1]⁺ (8),406 [M⁺] (24), 182 (19), 181 (100). **HRMS (ESI, 70 eV):** m/z calcd. for C₂₁H₂₆O₈+Na⁺: 429.15199 [M+Na⁺]; found: 429.15155.

erythro-1-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)propyl methyl carbonate (8)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.05$ (d, J = 2 Hz, 1H), 7.00 (dd, J = 2 Hz and 8.4 Hz, 1H), 6.97–6.80 (m, 5H), 5.86 (d, J = 5.6 Hz, 1H), 4.67–4.63 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.69–3.64 (m, 1H), 3.56–3.51 (m,

MeO O OMe 1H), 3.35 (s, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 154.8, 150.8, 149.0, 148.6, 147.5, 128.6, 122.8, 120.8, 120.3, 118.4, 112.4, 110.9, 110.5, 80.7, 78.3, 70.8, 59.2, 55.8, 55.7 (2C), 54.8. IR (ATR): <math>v [\text{cm}^{-1}] = 2935, 2087, 1745, 1596, 1475, 1243, 1130, 1024, 757.$ MS (EI, 70 eV):*m*/*z* (%) =407 [M+1]⁺ (25),406 [M⁺] (100), 251 (29), 225 (31), 181 (36). HRMS (ESI, 70 eV): *m*/*z* calcd. for C₂₁H₂₆O₈+Na⁺: 429.15199 [M+Na⁺]; found: 429.15195

erythro-3-(3,4-Dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propyl methyl carbonate. (MC)

Colorless oil. ¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.10-7.04$ (m, 2H), 6.98 (d, J = 1.8 Hz, 1H), 6.96–6.90 (m, 2H), 6.89–6.81 (m, 2H), 4.90 (d, J = 3.6 Hz, 1H), 4.51–4.43 (m, 2H), 4.17–4.12 (m, 1H), 3.88 (s, 6H), 3.86 (s, 3H), 3.74 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃):** $\delta = 155.7$, 151.6, 148.9, 148.5, 146.8, 131.3, 124.3, 121.6, 121.0, 118.4, 112.2, 110.9, 109.1, 84.6, 71.7, 66.2, 55.9 (2C), 55.8 54.9. **IR (ATR):** v [cm⁻¹] = 3501, 2951, 2840, 2587,

2284, 2083, 2001,1919, 1749, 1595, 1504, 1455, 1251, 1171, 1126, 1023, 917, 855, 747. **HRMS (ESI, 70 eV):** m/z calcd. for $C_{20}H_{24}O_8$ + Na⁺: 415.13634 [M+ Na⁺]; found: 415.13535. **HPLC MeCN (0.1% formic acid):** $t_R = 26.3$ min.

4. Reaction Profile and rate calculations for model compound 1b

4.1 General procedure for monitoring the reaction progress for model compound 1b:

Individual reactions were set up to monitor the progress at different time intervals. Dilignol **1b** (1 equiv) was placed in a 20 mL microwave vial with a magnetic stirring bar. A known amount of either Cs_2CO_3 or LiO*t*-Bu (0.05 equiv) was then added to the reactor along with DMC (1.5 mL) and heated at 180 °C. An internal standard (naphthalene, 1 mL from a 0.2 M stock solution in DMC) was added each time towards the end of the reaction. After this, samples (50 µL) from the mixture were taken out and diluted with MeCN (ca. 1 mL). The samples were then analysed by HPLC. In case of measurements corresponding to the initial time (0 h), point sample (50 µL) was taken out at room temperature. The modelled reaction rates were obtained using DynaFit software.¹⁷ First, feasible reaction pathways for each model compound were proposed to assemble the reaction parameters. These reaction pathways are shown in Schemes S1 and S2. The dashed boxes indicate compounds for which

yields have been experimentally determined while those between brackets were not detected but rationalised based on experimental data. To account for any possible decomposition of the formed reaction products, several reaction sinks were incorporated into the model. The obtained reaction rate values for each individual pathway are shown between brackets. An overview of the data points with an overlay of the modelling data are given in Figures S13-S14.

Fig. S10 Representative HPLC chromatograms showcasing individual retention times for the starting material (1b), intermediates (MC, 1h) and products (2a, 3a, 4a/b).

Fig. S11 Representative HPLC chromatograms for the reaction progress of 1b with Cs₂CO₃.

Fig. S12 Representative HPLC chromatograms for the reaction progress of 1b with LiOt-Bu.

4.3 Reaction profile for cleavage of 1b with Cs₂CO₃ in DMC

Scheme S1 Reaction pathways considered in the modelling of reaction parameters for the stepwise catalytic deconstruction of β -O-4 model compound 1b using Cs₂CO₃. End products are veratrole (2a) and dimethoxy benzoate (3a).

Reaction Pathyways:

dilignol(1b)	>	monocarboxylated (MC)	:	k1 (0.69 mins ⁻¹ ± 0.07)
monocarboxylated (MC))>	dicarboxylated (1h)	:	$k2 (0.15 \text{ mins}^{-1} \pm 0.01)$
dicarboxylated (1h)	>	veratole (2a) + M	:	k3 (0.0032 mins ⁻¹ ± 0.0003)
M	>	benzoate (3a)	:	k4 (0.0014 mins ⁻¹ ± 0.002)
Sinks:				
dilignol (1b)	>	sink	:	ks1 (0.15 mins ⁻¹ ± 0.07)
monocarboxylated (MC))>	sink	:	ks2 $(1 \cdot 10^{-10} \text{ mins}^{-1} \pm 0.02)$
dicarboxylated (1h)	>	sink	:	ks3 (0.00051 mins ⁻¹ ± 0.0006)
veratrole (2a)	>	sink	:	ks4 (9.9·10 ⁻⁵ mins ⁻¹ ± 0.0002)
benzoate (3a)	>	sink	:	ks5 (0.00038 mins ⁻¹ ± 0.005)
Μ	>	sink	:	ks6 (0.002 mins ⁻¹ ±0.01)

Fig. S13 Reaction profile for the formation of veratrole (2a) and dimethoxy benzoate (3a) upon cleavage of β -O-4 model compound dilignol (1b). Reaction conditions:1b (0.250 mmol, 1 equiv), Cs₂CO₃ (0.05 equiv), DMC (1.2 mL), 180 °C. Dots show experimental data points, whereas the line is a modeled reaction. Black: 1b; Red: MC; Green: 1h; Blue: 2a; Pink: 3a.

4.4. Reaction profile for cleavage of 1b with LiOt-Bu in DMC

Scheme S2 Reaction pathways considered in the modelling of reaction parameters for the stepwise catalytic deconstruction of β -O-4 model compound Ib using LiO*t*-Bu. End products are *cis/trans* alkenes (4a/4b)

Reaction Pathways

dilignol (Ib)	>	monocarboxylated (MC)	: $k1 (0.2 \text{ mins}^{-1} \pm 0.04)$
monocarboxylated (MC)	>	dicarboxylated (1h)	: $k2 (0.025 \text{ mins}^{-1} \pm 0.003)$
dicarboxylated (1h)	>	alkenes (4a/4b)	: k3 (0.005 mins ⁻¹ ± 0.0007)
Sinks			
dilignol (1b)	>	sink	: ks1 ($1 \cdot 10^{-1}$ mins ⁻¹ ± 0.02)
monocarboxylated (MC)	>	sink	: $ks2 (1 \cdot 10^{-11} mins^{-1} \pm 0.005)$
dicarboxylated (1h)	>	sink	: ks3 (0.0011 mins ⁻¹ \pm 0.001)
alkenes (4a/4b)	>	sink	: ks4 ($1 \cdot 10^{-11}$ mins ⁻¹ ±0.0002)

Fig. S14 Reaction profile for the formation of *cis/trans* alkenes **(4a/4b)** upon modification of β -O-4 model compound dilignol **(1b)**. Reaction conditions: **1b** (0.250 mmol, 1 equiv), LiO*t*-Bu (0.05 equiv), DMC (1.2 mL), 180 °C. Dots show experimental data points, whereas the line is a modeled reaction. Black: **Ib**; Red: **MC**; Green: **1h**; Brown: *cis/trans* alkenes **(4a/4b)**.

5. Synthesis and reactivity of vinyl ketone M4

5.1 Synthesis of vinyl ketone M4

The vinyl ketone was synthesised following literature procedures. Starting from veratrole and 3-chloropropionylchlorid, a Friedel-Craft acylation reaction led to 3-chloro-1-(3,4-dimethoxy phenyl)propan-1-one in 93% yield. Subsequent elimination of HCl afforded **M4** in good yield.

Synthesis of 3-chloro-1-(3,4-dimethoxyphenyl)propan-1-one¹⁸

A flame-dried and argon flushed 250 mL three-neck flask equipped with a magnetic stirrer and an argon inlet was charged with AlCl₃ (2.7 g, 20.4 mmol, 1.03 equiv) and dry CH₂Cl₂ (76 mL). The solution was cooled to 0 °C and 3-chloropropionylchlorid (1.7 mL, 17.3 mmol, 1.1 equiv) was added dropwise. A solution of veratrole (2.0 mL, 16.0 mmol, 1.0 equiv) in dry CH₂Cl₂ was then added dropwise. The reaction mixture was allowed to warm to room temperature and heated at 40 °C for 3 h. The mixture was again cooled to room temperature and aq. HCl (6 M, 10 mL) was added. The phases were separated and the organic phase was washed with water (100 mL), aq. NaOH (10%, 100 mL) and brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The title compound was obtained without further purification as a pink solid (4.0 g, 14.6 mmol, 93%) with spectroscopic data in accordance with the literature.¹⁹

mp: 110–112 °C. ¹**H NMR (300 MHz, CDCl₃):** $\delta = 7.57$ (dt, J = 8.4 Hz and 1.9 Hz, 1H), 7.53 (t, J = 1.7, 1H), 6.90 (dd, J = 8.4 Hz and 1.4 Hz, 1H), 3.94 (s, 3H), 3.95 (s, 3H), 3.74 (td, J = 6.8 Hz and 1.2 Hz 2H), 3.48–3.60 (td, J = 6.8 Hz and 1.2 Hz, 2H).

Synthesis of 1-(3,4-dimethoxyphenyl)prop-2-en-1-one (10)¹⁸

A flame-dried and argon flushed 100 mL two-neck flask equipped with a reflux condenser, a magnetic stirrer and argon inlet was charged with 3-chloro-1-(3,4an dimethoxyphenyl)propan-1-one (4.02 g, 14.7 mmol, 1.0 equiv) and dry toluene (52 mL). 1.8-Diazabicyclo[5.4.0]undec-7-ene (2.4 mL, 16.2 mmol, 1.1 equiv) was added dropwise and the reaction mixture was heated at 80 °C for 3.5 h. The solution was then allowed to cool to room temperature and water (100 mL) was added. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic phases were washed with water (100 mL) and brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel (Hexane to Hexane/Et₂O 1/1) yielding compound M4 (2.00 g, 10.4 mmol, 71%) as a yellow viscous oil with spectroscopic data in accordance with the literature.¹⁹

5.2 Reaction of the vinyl ketone in DMC in the presence of Cs₂CO₃

A 20 mL pressure tube with a Teflon screw cap and a magnetic stirrer was charged with vinyl ketone (0.25 mmol, 1.00 equiv) and $C_{s_2}CO_3$ (0.05 equiv) in dimethyl carbonate (1.2 mL). The mixture was stirred at 180 °C for 8 h followed by cooling to room temperature. A standard solution (1.00 mL of 3,4-dimethoxy benzylalcohol in methanol, c = 0.2 mol/L) was added with an Eppendorf pipette to the reaction mixture. The solution was then diluted with water (10 mL) and extracted with dichloromethane. The organic phase was successively washed with 20 mL of a 1 M HCl solution, brine (30 mL) and water and dried over MgSO₄. The solvent was removed under reduced pressure. The resulting residue was dissolved in acetonitrile (15 mL) and three samples were prepared for HPLC measurements by diluting 0.2 mL of the above solution with acetonitrile (1.0 mL) for each sample, followed by filtration into a HPLC vial. The average yield for the dimethoxy benzoate (**3a**) was hence calculated to be 40 %.

6. NMR spectra:

(1*S*,3a*R*,4*S*,6a*R*)-1,4-Bis(benzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan, Sesamin (1a)

erythro-1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)-l,3-propanediol (1b)

3-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy) butane-1,3-diol (1d)

erythro-3-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)-1-propanol (1e)

erythro-1,3–Dimethoxy–1–(3,4–dimethoxyphenyl)–2–(2–methoxyphenoxy) propane (1g)

erythro-1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)-propane-1,3-diyldimethyl biscarbonate (1h)

(Z)-1,2-Dimethoxy-4-(1-(2-methoxyphenoxy)prop-1-en-2-yl)benzene (6a)

erythro-3-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)propyl methyl carbonate (7)

erythro-1-(3,4-Dimethoxyphenyl)-3-methoxy-2-(2-methoxyphenoxy)propyl methyl carbonate (8)

erythro-3-(3,4-Dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propyl methyl carbonate. (MC)

NMR measurements for lignin

S53

S56

7. Computational Details

 Table S10: Calculation of the relative Gibbs energies.

Molecules	GSP+SSC	ΔG [kcal mol ⁻¹]
	[a.u.]	
1b + 2 DMC - 2 MeOH + CsOMe	-1741.067161	0.0
1h + CsOMe	-1741.06478	1.5
TS-1 + Cs(DMC) - DMC	-1741.00793	37.2
M1 + Cs(DMC) - DMC + MeOH	-1741.0084	36.9
TS-2 + Cs(DMC) - DMC + MeOH	-1741.00788	37.2
M2 + MeOH + 11-Cs	-1741.09926	-20.1
TS-3 + MeOH - CsOMe + Cs(DMC) - DMC + 11-Cs	-1741.04537	13.7
M3 + MeOH - CsOMe + Cs(DMC) - DMC + 11-Cs	-1741.0679	-0.5
TS-4 + MeOH - CsOMe + Cs(DMC) - DMC + 11-Cs	-1741.06479	1.5
M4 + MeOH - CsOMe + DMC + 11-Cs + CsMMC	-1741.18683	-75.1
TS-5 - 2 CsOMe + Cs(DMC) + MeOH + 11-Cs + CsMMC	-1741.186828	-38.3
M5 – 2 CsOMe+ Cs(DMC) + MeOH + 11-Cs + CsMMC	-1741.128167	-61.6
TS-6 - 2 CsOMe + Cs(DMC) - DMC + MeOH + 11-Cs + CsMMC	-1741.165268	-40.6
M6 – 2 CsOMe + Cs(DMC) – DMC + MeOH + 11-Cs + CsMMC	-1741.131792	-48.3
TS-7 – 2 CsOMe + Cs(DMC) – DMC + MeOH + 11-Cs + CsMMC	-1741.144158	-41.3
M7 – 2 CsOMe + Cs(DMC) – DMC + MeOH + 11-Cs + CsMMC	-1741.133031	-51.0
TS-8 - 2 CsOMe + Cs(DMC) - DMC + MeOH + 11-Cs + CsMMC	-1741.148394	-48.0
3a - 2 CsOMe + M8 + MeOH + 11-Cs + CsMMC	-1741.167347	-92.8
TS-9 + Cs(DMC)	-1740.95655	69.4
M11 + DMC + Cs(DMC)	-1741.027114	25.1
TS-10a + DMC + Cs(DMC)	-1740.993539	46.2
TS10b + DMC + Cs(DMC)	-1740.985107	51.5
2a + DMC + CsMMC + FA	-1741.112372	-28.4
3a + DMC + CsMMC + FA	-1741.113758	-29.2

1b

E [a.u.] = -1150.149700
G [a.u.] = -1149.824298
$E_{SP}[a.u.] = -1150.392543$

Cha		- 1	
Cha	1ge – 0, Multiplicity	0 285571	-1 201026
c	4.004/	0.383371	-1.691930
č	2 805024	0.109554	-0.270007
c	2.605954	0.24342	-0.3/909/
C	3.023399	0.053207	0.09184
Č	4.909632	0.939392	0.44/334
U U	5.492907	0.803367	-0.84195
н	5.095677	0.275848	-2.896546
H	2.6604 -	0.220018	-2.446381
H	5.624584	1.258987	1.257794
Н	6.54/456	1.02612	-1.013429
0	1.480631	0.021641	-0.130202
C	1.043642	-1.331837	-0.173837
Н	1.864546	-1.979255	-0.525015
С	0.651278	-1.713898	1.247309
Н	1.552852	-1.647368	1.881707
Н	-0.076165	-0.967584	1.614506
С	-0.105535	-1.481041	-1.176538
Н	-0.414625	-2.539698	-1.122402
0	0.107771	-3.021397	1.224661
Н	-0.213846	-3.223385	2.108601
0	3.020765	0.724383	1.9052
С	3.797506	1.147162	3.000253
Н	3.123584	1.156265	3.86533
Н	4.634	0.454782	3.201553
Н	4.201439	2.163058	2.847316
0	0.442647	-1.185007	-2.449768
Н	-0.282024	-1.196368	-3.084497
С	-1.296678	-0.610097	-0.838003
С	-2.341835	-1.118378	-0.057275
С	-1.362683	0.713921	-1.259607
С	-3.419991	-0.32615	0.308342
Н	-2.309044	-2.146513	0.309484
С	-2.447524	1.521699	-0.911385
Н	-0.549646	1.12437	-1.858421
С	-3.480141	1.016171	-0.121198
Н	-2.467369	2.556332	-1.25273
0	-4.388286	-0.846745	1.123437
0	-4.567034	1.72206	0.286709
Ċ	-4.633816	3.085303	-0.06211
Ĥ	-5.554814	3 471147	0.390809
н	-3 771929	3 647882	0 335783
Н	-4.682989	3.226902	-1.155874
C	-5.630824	-1.086389	0.483617
й	-6.301485	-1.499796	1.247975
н	-6.065492	-0.157085	0.083421
Н	-5.517848	-1.820762	-0.333601

1h

E[a.u.] = -1605.815694
G [a.u.] = -1605.415125
$E_{SP}[a.u.] = -1606.149998$

Ch	arge = 0; Multiplici	ty = 1	
С	4.4789701344	2.5378402576	1.2940877758
С	3.2193968961	1.9398830653	1.2197928546
С	3.1023447409	0.5643870512	1.0869255394
С	4.2566514654	-0.2397482406	1.0070691798
С	5.513903108	0.3616044115	1.0718461839
С	5.6188308591	1.7476143677	1.2191138489
Η	4.5607869263	3.6203804055	1.3987303234
Η	2.304823487	2.5316774413	1.2437602565
Н	6.4201318594	-0.2403923487	1.0151667729
Η	6.609634304	2.2018280954	1.2728948951
0	1.8618811848	-0.0205929704	1.0958792285
С	1.4016483374	-0.5740717686	-0.1335090121
Η	2.2317437632	-0.6020336642	-0.8572050461
С	0.9264180745	-1.983194028	0.1996601134
Η	1.7929279147	-2.6234570261	0.405740454
Н	0.2761304145	-1.9572736443	1.0833772429
С	0.2849405398	0.2886887395	-0.7402010083
Н	0.1110966573	-0.0599324691	-1.7666254934
0	0.2029363335	-2.4971492284	-0.9209566699
0	4.0368663458	-1.5734505209	0.8632800612

С	5.1585044561	-2.4204635419	0.7574335261
Н	4.7637016806	-3.4372449981	0.645403208
Н	5.7734419305	-2.1719800755	-0.1247251493
Н	5.7881153199	-2.3759086852	1.6623549878
0	0.8260332121	1.6207995679	-0.7910977755
С	-1.0242196464	0.2585475548	0.0101617245
С	-2.16288397	-0.252604151	-0.6203078655
С	-1.128047038	0.6931519332	1.3294095067
С	-3.3650978194	-0.3759387539	0.0572545626
Н	-2.120769174	-0.5945074598	-1.6558079934
С	-2.339583343	0.5994469865	2.0156351517
Η	-0.2494492647	1.0886608687	1.8381239953
С	-3.4651788275	0.0550448307	1.3945791867
Η	-2.3876410225	0.9373618713	3.0501133047
0	-4.4288432286	-0.9701679862	-0.5691628695
0	-4.6785473438	-0.1014756139	1.9793021337
С	-4.8096200294	0.2671249775	3.3337750561
Η	-5.8462627812	0.0419857527	3.6105870379
Н	-4.1284886351	-0.3136772356	3.9786661955
Η	-4.6202339379	1.3441676248	3.4834835358
С	-5.4700294507	-0.0811516731	-0.9430182756
Η	-6.2365957649	-0.6900000155	-1.4389313938
Η	-5.9096062461	0.4117742294	-0.0620922385
Η	-5.0988833838	0.682826901	-1.6477840679
С	0.2909559576	2.4245887775	-1.7121926629
0	-0.515106046	2.1170965665	-2.5536106141
0	0.8183325636	3.6384676056	-1.5416734968
С	-0.9521356034	-3.1177187367	-0.637990879
0	-1.347001926	-3.4272237407	0.4561188031
0	-1.5817114561	-3.3321984001	-1.7915781434
С	-2.8934555678	-3.8872748917	-1.6558473907
Η	-3.2107230576	-4.1350484846	-2.6749048532
Н	-2.8712519857	-4.7897435355	-1.0301557122
Η	-3.5735598658	-3.1436732786	-1.215294272
С	0.3591145902	4.6172537021	-2.4705504851
Н	0.8707550018	5.5457652482	-2.1950487113
Η	0.6170967614	4.3307922587	-3.5000121686
Η	-0.7303674043	4.7431470749	-2.3977343985

TS-1

E [a.u.] = -1720.915311G [a.u.] = -1720.483169E_{SP} [a.u.] = -1721.32861

Charge = -1; Multiplicity = 1 4.9976149269 -0.1994748472 1.1316523442 C Ĉ 3.6151386256 -0.1841798156 0.9253254152 С 3.0821471 -0.4831522635 -0.3268340998 С 3.9572028817 -0.7925496635 -1.394174847С 5.3343506615 -0.8223581581 -1.17792430510.0871284541 С 5.8534574025 -0.5222072515 н 5.3969120865 0.033462604 2.1207002457 2.9158869312 0.0434633201 1.7320584546 Η 6.0181567243 -1.0655326907 -1.9915995959 Н 6.9343796883 -0.5450566287 0.2409568939 Н 0 1.7558506097 -0.5290966314 -0.5691631228 С 0.9638043823 0.6804051586 -0.2961480384 Η 1.6562406939 1.4524969513 0.0764361105 -1.6793049457 0.4682892633 1.102413974 С 1.0011637233 -2.3890242604 1.3002354592 Η -2.013974791 -0.373054645 0.4818555836 Η -0.1162540149 0.7289194718 С 0.4670271476 Η -1.0036302163 1.6033623867 0.7709276813 0.09276266042.4811786314 -1.6669253896 0 0 3.3545178603 -1.0368019826-2.5906614195 -3.6757398945-4.527758142-3.9286319216-1.3759259966С 4.1733857169 Н 3.5008732676 -1.5369137383 -0.569156534 4.8860216907 Η 4.7434316685 -2.3045037396 -3.4883138006 Н 0.663757132 0.2605103246 1.97225629 0 С -0.9495033205-0.75672072880.4623888266С -2.1683917463 -0.585872948-0.2143345082 С -0.5804775192-2.04509413860.8401314613-1.6667742085 0.4283170103 -0.5385429666 -0.4772561463 -2.9787974218C H -2.4651910719 0.5449793562 -1.4009384003 -3.1393623818 C Ĥ 0.3616350662 -2.2038403368 1.3657989254 С -2.5944467015 -2.9670924447 -0.1496569655 Η -1.0846927241-4.1359202870.8559411082 0 -4.1613270646-1.5674169935-1.2086398127 0 -3.4597604987 -3.9738385845 -0.4932046913 -3.0888401515-5.2764655358 C H -0.1463529718-3.8894519085 -5.9353824122 -0.5092810147 -5.5788567519 Н -2.1353750506 -0.619326642

Lor	[u.u.] 1000.00700		
Cha	rge = -1: Multiplicit	v = 1	
C	-4 021826342	1 4472463029	0 6490549007
č	-3 1437436525	0 3918968006	0.3792416738
č	-2 6853789273	0 1637423423	-0.9187955713
c	-3 11/0332200	1 0335775604	-1 05300/1782
c	2 0070026575	2.0719221529	1 677514207
c	-5.99/99203/3	2.0/18221338	-1.0//31420/
U U	-4.4558551295	2.282011/828	-0.3689/69818
н	-4.3552542744	1.6100354929	1.0/000/0939
H	-2.7897671893	-0.23/1254996	1.1943828/0/
Н	-4.3303855002	2.740893946	-2.4713839169
Н	-5.1373424762	3.1084111998	-0.1640442509
0	-1.8686948001	-0.8317741902	-1.284219115
С	-0.9516219945	-1.4637129494	-0.2499796638
Н	-1.5741708519	-2.1487153164	0.35031645
С	-0.0887506202	-2.3301602391	-1.1748639258
Н	-0.7073479457	-2.8363230937	-1.9279575494
Н	0.7015397992	-1.7431772659	-1.6588295115
С	-0.2316560195	-0.5818476888	0.6550387923
0	0.4964819329	-3.366304323	-0.3786863246
Ó	-2.603936159	0 7622029642	-3.1925712914
Č	-2.9679786151	1.6195953494	-4.238647079
Ĥ	-2 4494729496	1 2517358836	-5 1341257877
н	-4.0582214317	1 6047061244	-4 4262169327
н	-2 6552523672	2 6626736266	-4 0483267528
0	-0.6081101674	-0.6665976561	2 0217774783
č	0.0981191074	0.6214405145	0.2120272826
C	0.41/0232322	1 0154171786	1.0526721954
C	0.3822943993	1.01341/1/80	-1.0330/31834
c	0.91/9300437	1.544/95595/	1.2/02208102
U U	1.222009/19/	2.18/0641204	-1.4220158697
Н	0.13519128/1	0.3939306561	-1.8253834535
C	1.5561393855	2.7264730582	0.8895352126
Н	0.7980094132	1.333/130436	2.3331818978
C	1.7325561272	3.0681511242	-0.4469143213
Н	1.9222975505	3.3900430503	1.6755414434
0	1.3823759245	2.5887480153	-2.7224220526
0	2.3555355548	4.2111137395	-0.9156326783
С	2.829454009	5.0976351444	0.04815424
Н	3.2804614201	5.9418033808	-0.4934968788
Н	2.0217071873	5.4857594018	0.7003466619
Н	3.6009725156	4.6421912952	0.7007835447
С	0.9066490731	1.7204389107	-3.7160054153
Н	1.1024289081	2.2176339928	-4.6765839903
Н	1.4326199009	0.7476088928	-3.6991231656
Н	-0.1751333123	1 5227984297	-3.6166738051
C	0.0465369726	-1 339621164	2 8771993656
õ	1 1084590399	-1 8888388363	2 7143161615
ŏ	-0 5999727755	-1 3196821989	4 0704641298
č	1 7639272407	-3 184208482	-0.0067518129
0	2 5578328044	-2 4054388731	-0.4676454262
õ	2.3370320044	-4 1011240131	0.033//21072
č	2.050500425	-2 0025600022	1 571202422
с ц	2 2082502774	-3.9023090022	1.3/1292422
п	3.3782373774	-4./320193139	2.2009330293
п	4.1104/9/095	-5.9140511515	0.845500192/
н	3.2834692934	-2.9433133312	2.10/16/0411

E [a.u.] = -1605.202416
G[a.u.] = -1604.817187
$E_{SP}[a.u.] = -1605.587331$

M1

Н	-2.988427671	-5.4069893165	0.9478811635
С	-4.5754461925	-0.2647037574	-1.5606335548
Н	-5.52076681	-0.3876438944	-2.1061862342
Н	-4.7496567491	0.3599717987	-0.6666275587
Н	-3.8382087381	0.2516852343	-2.1967252776
С	0.0416842081	0.4137194754	3.1195824792
0	-1.1252862152	0.6158668681	3.3376396847
0	0.9784506948	0.2866909058	4.1006379211
С	-1.1973742646	2.7577826332	-1.8542955602
0	-2.051604225	1.9917613337	-2.2371063326
0	-1.3652631938	4.0723078841	-1.6863564243
С	-2.7261156193	4.4364140055	-1.4828119394
Н	-2.7221263866	5.5220873666	-1.3241810249
Н	-3.3397388437	4.1806845048	-2.3603289878
Н	-3.091513076	3.9062267936	-0.5902588923
С	0.4551821643	0.4226179581	5.4076679533
Н	1.3069564163	0.2971300972	6.0888519981
Н	-0.0029433022	1.4130149477	5.5550773876
Н	-0.3096697687	-0.3418614709	5.6153199407
0	-1.6987770861	2.5549417028	0.7270618688
С	-1.0147709763	3.5122866417	1.4444154018
Н	-0.9702821673	4.4896060087	0.9109963539
Н	-1.4562826719	3.7105007282	2.4495074923
Н	0.0498604301	3.2252814288	1.6294463955

E [a.u.] = -1605.175406 G [a.u.] = -1604.792309				
LSP	[a.u.] = -1005.50092	2		
Cha	rge = -1; Multiplicit	v = 1		
С	4.8535315671	1.5641093724	0.0570525401	
С	3.5270952045	1.1472169661	-0.0504682316	
С	2.961331351	0.2938535183	0.9037579616	
С	3.757175883	-0.1345637859	1.9890394232	
С	5.078988018	0.2966167515	2.0882775211	
С	5.6357502611	1.1444705163	1.130000578	
Н	5.2674659165	2.2355763462	-0.6988124684	
Н	2.8918502948	1.5091812446	-0.8593638081	
Н	5.659964065	-0.0564058702	2.94292113	
Н	6.6/43323228	1.4696496602	1.2225913299	
0	1.6692309718	-0.0889291291	0.8742278035	
C	1.1316465334	-0.641290/029	-0.3692822109	
Н	1.8/52040406	-0.50/1236306	-1.1725885809	
U U	0.8893494427	-2.1192500508	-0.2094984802	
П	-0.15/3204525	-2.30/1031/30	0.088//35302	
U U	-0.06952/34/3	0.24408078	-0./328/28083	
П	-0.3034912009	-0.139/93/111	-1.0032343721	
8	2 240712708	-2.0946206141	-1.3990082008	
č	2 94387788	-2 2608951198	2.580072502	
н	2.94567788	-2 7063068568	3 4246769277	
н	2.3740300247	-2 3074583023	1 6640305971	
н	3.8835870289	-2.8262863427	2.4298845763	
0	0 4462021566	1.5885719105	-1.0024553947	
č	-1.1407353887	0.325812923	0.3262139025	
Č	-2.2461012158	-0.5301863968	0.2638087205	
Č	-1.0431760943	1.2220264048	1.385908312	
C	-3.2321235346	-0.4847091821	1.2384355096	
Н	-2.3251140447	-1.2587007409	-0.5462465249	
С	-2.0362362028	1.2840147695	2.3656474816	
Н	-0.1761365382	1.8784563195	1.4530305114	
С	-3.1392611387	0.4332192522	2.2997767163	
Н	-1.9269912757	1.9953895568	3.1841456929	
0	-4.2958853872	-1.355448625	1.1793415894	
0	-4.1701533584	0.4157962892	3.198626946	
С	-4.0802778557	1.2838675076	4.2967604634	
Н	-4.9759631914	1.1052308467	4.9060163891	
Н	-3.1830026846	1.0817932281	4.9087765228	
Н	-4.061993607	2.3446703508	3.9859425463	
C	-5.4/05431265	-0.7/22984216	0.6583024218	
Н	-6.233081989	-1.5634377619	0.6300277123	
H	-5.8312294703	0.0531569488	1.296538/17	
П	-5.30/4041404	-0.3918234333	-0.300204555	
Č	-0.222858/505	2.3193084931	-1.8/498042/1	
0	0 2025004602	2.010//0109	-1.0621606000	
č	-0.03925004005	-2 8280402357	-2 3480760320	
0	-1 1032057470	-2.4833822283	-2.1525003785	
ŏ	0 3235165518	-3 476535015	-3 4934655154	
č	-0 738749562	-3 6899262005	-4 3995261582	
й	-0.2946277045	-4.1862826575	-5.2731048897	
Н	-1.5203249187	-4.3320040142	-3.9628989431	
Н	-1.2102841487	-2.7422581071	-4.7040250481	
C	-0.203927868	4.4098166015	-2.8872276088	
Н	0.3801223924	5.3361090576	-2.8247899213	
Н	-0.1649542405	4.0080012501	-3.911262803	
Н	-1.2557542733	4.606036313	-2.6312134303	

5.1067266215 5.9957438883 4.859643466

5.3031756158

TS-2

 $\begin{array}{l} {\rm E} \; [a.u.] = -1605.201871 \\ {\rm G} \; [a.u.] = -1604.816219 \\ {\rm E}_{\rm SP} \; [a.u.] = -1605.587231 \end{array}$

Charge = -1 ; Multiplicity = 1				
С	-2.0999711254	-2.762471807	2.3273100914	
С	-1.1869159807	-2.5974981858	1.280592962	
С	-1.6178842349	-2.2631945127	-0.0090572098	
С	-3.0143941419	-2.0830184913	-0.2130513078	
С	-3.9175177768	-2.2659459018	0.8272530763	
С	-3.4595221476	-2.6039539861	2.1090006597	
Н	-1.7274337608	-3.0143348439	3.3229247081	

С

H H H

M1b

0.0838505637

-0.55385692030.2396079484

1.0673857471

-1.9968336618

-1.90700247 -3.0584269018

-1.5423474306

Н	-0.1209365751	-2.7141734243	1.4706280123
Н	-4.9869255911	-2.1303172364	0.6624106251
Н	-4.1779887149	-2.7319006921	2.9213562918
0	-0.8204035556	-2.1065904234	-1.056369777
С	0.697526675	-1.4926441051	-0.8150315063
Н	1.2994250944	-2.393609719	-0.6349395501
С	0.9241576526	-1.0324423334	-2.250476317
Н	0.5300183331	-1.7651020472	-2.9641252944
Н	0.4974802843	-0.0403812001	-2.4400498212
С	0.883333333	-0.5551118247	0.2336415803
Ō	2.3439869577	-0.9976150289	-2.4705157379
Ō	-3.3706844367	-1.7288661824	-1.4890398895
С	-4.7378327286	-1.6099980975	-1.7624641448
Ĥ	-4.8202299265	-1.3601120727	-2.8290533245
Н	-5,2808770322	-2.5552641005	-1 5732360724
Н	-5.2155238015	-0.8057243915	-1.1717663646
0	1.583758166	-1.073682941	1 3839631224
Č	0.1663885894	0.660328913	0 4595797578
Č	-0.910615346	1 0367686844	-0 3908743137
č	0 4436184006	1 5264260328	1 5352372942
Č	-1.6160772387	2 2154145571	-0 207795967
й	-12246205628	0 3422858993	-1 1671627434
C	-0.2785469913	2 7066428166	1 7243988666
й	1 2338496728	1 2783550161	2 2438806037
C	-1 3017042231	3 0801324484	0.8608040154
н	-0.0183249706	3 34439684	2 5711192755
0	-2.6604494008	2 6098635812	-0 9983387789
ŏ	-2.0630433613	4 226162362	0.9638254458
č	-1 7677178356	5.0756658681	2 0293999693
н	-2 4680836937	5 9202357924	1 9612931001
н	-1.9017225127	4 5817505594	3 0119073104
н	-0.7323899652	5 466921023	1 9822020298
C	-2 965965893	1 7911708415	-2 0975696488
н	-3 8292898305	2 2560315081	-2 5938296651
н	-2 1244421169	1 7351443578	-2.8127074648
н	-3 2233900945	0.7615677008	-1 7957646152
C	2 8758228012	-0.8154271822	1 4631134831
õ	3 5817447733	-0.1809768621	0 7174388815
ŏ	3 3336642198	-1 4046096201	2 5948011458
č	2 0364831071	0 1833042645	-2.2046011430
õ	2.9304831971	1 2681177028	-2.29003034
0	4 2580120444	-0.0270622745	-2 2210521747
č	5 0073000700	1 1110253207	-1 8643615895
н	17188200878	1 /371805775	-0.8553485872
п п	6.0599572400	0.7072452592	-1 9757242665
н	1 8482751755	1 0353877468	-2 5760465049
C	4 7110500711	-1 1046250207	-2.3/03403048
ч	4./110309/11	-1.194023039/	2.0302/39800
н ц	5 2702207166	-1 5791771942	2.0020204261
п u	J.J20JJ0/400	-1.3/01//1043	2.00655062270
п	4.7303922084	-0.124444/048	2.90339033/9

M3

 $\begin{array}{l} E \ [a.u.] = -1183.903514 \\ G \ [a.u.] = -1183.632778 \\ E_{SP} \ [a.u.] = -1184.158208 \end{array}$

Cha	arge = 0; Multiplicit	y = 1	
С	1.9246728001	-0.7229104665	-1.6489165134
Η	2.4217708641	-1.6938561192	-1.7159783085
С	2.0232833659	0.1494882048	-2.8595044194
Н	1.5233749475	-0.3326800302	-3.7111048197
Η	1.592225724	1.1452581168	-2.7044868
С	1.2257825588	-0.47501621	-0.5385289196
0	3.3909857822	0.2593852303	-3.2956398117
0	1.0962065502	-1.5476848175	0.3545490605
С	0.4404383774	0.7210332303	-0.1617469771
С	-0.8505898998	0.5330847597	0.370392938
С	0.9486734207	2.0063475082	-0.2868680205
С	-1.6277469438	1.6174314723	0.7474343591
Н	-1.2295478082	-0.4822145291	0.4805175507
С	0.1672800216	3.105122891	0.08736816
Н	1.9598794903	2.1626486646	-0.6624011522
С	-1.1126024906	2.9303080422	0.6005912879
Н	0.5870351497	4.1049445681	-0.0158529389
0	-2.8789133812	1.5398276268	1.2611475164
0	-1.941625655	3.9232338342	0.9949901134
С	-1.4856402396	5.2492749481	0.8619705616
Η	-2.2986487844	5.8863759106	1.2294554113
Η	-0.5804107354	5.4339910852	1.4660271253
Η	-1.2734264531	5.5029432966	-0.1912637057
С	-3.4336046752	0.258002044	1.4361955506
Η	-4.4338346405	0.4150419688	1.856701175
Н	-3.525676465	-0.2829975191	0.477976849
Н	-2.8381428612	-0.3544559968	2.1358964349

С	1.6366096122	-1.3617478788	1.5761493718
0	2.3708735424	-0.4698771752	1.9002535967
0	1.2190977885	-2.3657500027	2.3467882647
С	4.1112415531	1.2349847836	-2.7448486921
0	3.7144053582	2.0916551917	-1.9920163145
0	5.362564075	1.1166392529	-3.1858579733
С	6.2621797993	2.1045025972	-2.6872120727
Η	6.320687122	2.0603887651	-1.5904312359
Η	7.2347734292	1.866174534	-3.1309311159
Η	5.9422127643	3.1123983657	-2.9872531732
С	1.741187181	-2.3401891673	3.6742885492
Η	1.3315281158	-3.2277366086	4.1683119753
Η	2.8394227325	-2.3812617571	3.6612161595
Н	1.4241739071	-1.4278036144	4.1990059534

TS-3

 $\begin{array}{l} \text{E} \; [a.u.] = -1299.003439 \\ \text{G} \; [a.u.] = -1298.697738 \\ \text{E}_{\text{SP}} \; [a.u.] = -1299.343161 \end{array}$

Cha	harge = -1 ; Multiplicity = 1			
С	1.808619114	1.0318982114	1.4194194719	
Н	2.1707676331	2.0370944116	1.6491772841	
С	2.708265082	-0.0923594493	1.8045787737	
Н	2.8935345933	-0.0900553676	2.8891796643	
Н	2.3261891504	-1.0741508723	1.5037906718	
С	0.5597158349	0.9427821472	0.9324018806	
0	4.0400751707	0.1067529548	1.2522731195	
0	-0.1639202734	2.1151740457	0.9269751289	
С	-0.1997891362	-0.2768310665	0.5724770791	
С	-1.5450292506	-0.3220931055	0.9603315851	
С	0.343072973	-1.3339428915	-0.1503359167	
С	-2.3530153139	-1.3957578836	0.6202525819	
Η	-1.9711889173	0.5502791218	1.4428379626	
С	-0.4508921574	-2.4434929285	-0.4565608793	
Н	1.3716841298	-1.2964086354	-0.507600077	
С	-1.7915497998	-2.4855392481	-0.0791006554	
Н	-0.0114094785	-3.2606750647	-1.0281394096	
0	-3.6789165652	-1.4616695037	0.8911982986	
0	-2.647143514	-3.5128643514	-0.3582855112	
С	-2.1545735626	-4.560327661	-1.1452624008	
Н	-2.9876402769	-5.2624803643	-1.2835644028	
Н	-1.8119037631	-4.2085501623	-2.1357244165	
Н	-1.3174292046	-5.0928877739	-0.6554537132	
С	-4.293823392	-0.2424341178	1.3015200754	
Н	-5.3722183614	-0.3922135722	1.1532702878	
Н	-4.1088539315	-0.0635784438	2.3784490888	
Н	-3.9183508023	0.6247144978	0.7141240292	
С	-0.5540483716	2.6055849619	-0.3066679607	
0	-0.1183516008	2.1897287402	-1.3516575152	
0	-1.0367460017	3.835464279	-0.0555819738	
С	4.3228012405	-0.5160734461	0.119887185	
0	3.6661116555	-1.3538252802	-0.4503103758	
0	5.5193979642	-0.0763170997	-0.302248572	
С	5.9552002345	-0.6605243177	-1.52239395	
Н	5.232515377	-0.4716607333	-2.3291772524	
Н	6.9153698389	-0.1833606468	-1.7512983141	
Н	6.0870327369	-1.7476675999	-1.4153703783	
С	-1.7998463512	4.3709669108	-1.1256666502	
Н	-1.9776747581	5.4264406226	-0.8753761438	
Н	-1.2483606601	4.2942033303	-2.076015137	
Н	-2.7302363794	3.7847913512	-1.175625256	
0	-2.7033460992	1.8065962536	-0.3999476305	
C	-2.866/410012	1.1247/33/38	-1.565/510514	
H	-3.5253952614	0.2138035266	-1.4739182603	
H	-3.3400986787	1.7276087541	-2.3982123183	
Н	-1.9073918649	0.7449600927	-2.004517046	

M3

 $\begin{array}{l} {\rm E} \; [{\rm a.u.}] = -1299.022607 \\ {\rm G} \; [{\rm a.u.}] = -1298.715763 \\ {\rm E_{SP}} \; [{\rm a.u.}] = -1299.366834 \end{array}$

Cha	arge = -1; Multiplic	ity = 1	
С	-1.6635489544	1.062150764	-1.379616871
Η	-2.1769941138	1.9836223004	-1.6664018381
С	-2.271039545	-0.2107880893	-1.8472666168
Η	-2.3493437707	-0.2536725134	-2.944973978
Η	-1.7402825623	-1.1005543976	-1.4868571909
С	-0.4743344	1.2155534552	-0.7532025579
0	-3.6785014559	-0.2965795729	-1.4452331035
0	0.0407676179	2.4404690447	-0.6421991927

С	0.3987102258	0.0800202098	-0.3246292684
С	1.7352048951	0.1096389731	-0.749886975
С	-0.0242631351	-0.9531332587	0.4980465123
С	2.6371075458	-0.8649607342	-0.357459173
Н	2.0553445864	0.9704743115	-1.3318424878
С	0.870700653	-1.9625596748	0.8743691575
Н	-1.0498224565	-0.9756082665	0.8625424398
С	2.1969647299	-1.9314399693	0.4560705629
Н	0.5141128885	-2.7624833154	1.5232692713
0	3.9648495126	-0.8603885721	-0.6775984533
0	3.1484363418	-2.8559710425	0.787073408
С	2.7620211287	-3.8860302325	1.6539306971
Н	3.6527084727	-4.5093059518	1.8101789369
Н	2.4180075758	-3.4982775469	2.6303393035
Н	1.9585162917	-4.5129839371	1.2245678603
С	4.4486308952	0.3059614839	-1.3009594264
Н	5.5402329937	0.1971339965	-1.3505269991
Н	4.05302466	0.4174344864	-2.3272202888
Н	4.1891691146	1.2136757455	-0.7291692914
С	0.5120222065	2.8524495172	0.7750939815
0	-0.1350078048	2.3480600169	1.7070401951
0	0.4231919436	4.2665085325	0.543882529
С	-3.9534893866	-0.9514031238	-0.3350933278
0	-3.2165128815	-1.6408685403	0.3303221615
0	-5.2564891622	-0.7575892507	-0.053717246
С	-5.6949295238	-1.4016082174	1.1323923699
Η	-5.1129150528	-1.0651856882	2.0026818178
Н	-6.7488041891	-1.1209972845	1.249443593
Η	-5.6009665343	-2.4953061292	1.0499697502
С	0.7298913745	4.9805435955	1.7021685772
Н	0.4717955059	6.0370945746	1.5223155001
Η	0.1547675563	4.6060114216	2.5686450691
Н	1.8096746678	4.9220475283	1.9532912049
0	1.9506548076	2.5798209706	0.7437583638
С	2.3999033997	1.8242903451	1.835301661
Н	3.4153642167	1.4688089084	1.5867743346
Н	2.4560964916	2.422894386	2.7669159773
Н	1.7521655595	0.9566182114	2.0399683705

TS-4

 $\begin{array}{l} \text{E} \; [a.u.] = -1299.021223 \\ \text{G} \; [a.u.] = -1298.715297 \\ \text{E}_{\text{SP}} \; [a.u.] = -1299.36281 \end{array}$

Cha	Charge = -1 ; Multiplicity = 1			
С	1.736252	0.995813	1.515065	
Н	2.093992	1.99478	1.779751	
С	2.6143	-0.132876	1.898597	
Н	2.863031	-0.123484	2.972233	
Н	2.211987	-1.118184	1.633703	
С	0.453274	0.952407	1.045913	
0	3.963637	0.003847	1.305561	
0	-0.28073	2.033726	1.018775	
С	-0.256741	-0.317079	0.657794	
С	-1.614815	-0.395298	1.006077	
С	0.297645	-1.347514	-0.092168	
С	-2.407381	-1.457577	0.607119	
Η	-2.033408	0.462418	1.52766	
С	-0.485277	-2.447531	-0.469678	
Н	1.337283	-1.301094	-0.41493	
С	-1.832183	-2.515656	-0.130188	
Η	-0.022855	-3.237932	-1.061287	
0	-3.749968	-1.54796	0.841512	
0	-2.682294	-3.529717	-0.477182	
С	-2.153944	-4.562349	-1.261577	
Н	-2.977208	-5.266039	-1.443955	
Η	-1.774003	-4.193072	-2.232237	
Н	-1.333005	-5.097273	-0.748417	
С	-4.372643	-0.37997	1.32618	
Н	-5.453729	-0.567948	1.27804	
Н	-4.092734	-0.169302	2.374392	
Н	-4.116614	0.502557	0.714763	
С	-0.901586	2.665407	-0.547502	
0	-0.034966	2.607664	-1.407564	
0	-1.264851	3.876784	0.062959	
С	4.204837	-0.617619	0.174841	
0	3.526539	-1.445293	-0.392068	
0	5.407058	-0.206845	-0.279973	
С	5.795075	-0.797862	-1.50915	
Η	5.058695	-0.589579	-2.29916	
Н	6.761489	-0.345433	-1.763647	
Н	5.902533	-1.889208	-1.411163	
С	-1.568423	4.845657	-0.90165	
Н	-1.753496	5.790028	-0.367047	

E [a G [E _{SP}	E [a.u.] = -651.8439394 G [a.u.] = -651.675224 $F_{SD} [a.u] = -651.9780577$			
Ch	Multiplicitz	. – 1		
Cha	2 2529629417	1 0050174916	0 5061596071	
с ц	2 4421005150	-1.90301/4810	-0.8286620661	
С	4 5000250255	-2.3393/9348	-0.42280029001	
п	4.3009239333	2.3720992389	-0.42288000003	
п	4./430/9/032	-5.40385/5050	-0.0/4/9820/0	
п	2.505/966950	-1./09/323403	-0.094814109	
Č	2.95/0/05558	-0.4823/1/248	-0.1401832099	
0	3.8451563901	0.241399339	0.2749434991	
C	1.5666/4/228	0.0395915466	-0.3019432352	
C	1.3321052172	1.360//20416	0.1283454945	
C	0.5153/01366	-0.6891569239	-0.8476585088	
С	0.0800600325	1.9371730943	0.0223338684	
Н	2.1792267836	1.9030334974	0.5452262877	
С	-0.7557592265	-0.1173628919	-0.9661648923	
Н	0.6541793661	-1.7099341053	-1.2012289666	
С	-0.9883122103	1.1849062175	-0.5369325055	
Η	-1.5642498698	-0.7043080002	-1.3996919384	
0	-0.2416344918	3.1915493744	0.4108055647	
0	-2.1716694263	1.8265075275	-0.6028726544	
С	-3.2698999521	1.1325182364	-1.1506599951	
Н	-4.1169300475	1.8268447288	-1.1087885025	
Н	-3.0869146491	0.8465014974	-2.2007751637	
Н	-3.5124384762	0.2287806075	-0.5653717471	
С	0.7835878231	3.9790870576	0.9742345055	
Н	0.3233150761	4.943351492	1.2196365048	
Н	1.1872406421	3.5230431118	1.8945967905	
Н	1.6105924614	4.1408554366	0.2616080744	

4.984675 -1.614618 4.584048 -1.477839

 4.984675
 -1.614618

 4.584048
 -1.477839

 1.945958
 -0.70956

 1.053009
 -1.79889

 0.525463
 -1.781509

 1.58904
 -2.758264

 0.314444
 -1.724858

TS-5

 $\begin{array}{l} \text{E} \ [\text{a.u.}] = -766.9163463 \\ \text{G} \ [\text{a.u.}] = -766.716208 \\ \text{E}_{\text{SP}} \ [\text{a.u.}] = -767.154704 \end{array}$

Cha	rge = 0 Multiplic	itv = 1	
C	2.71482	-0.36656	-1.38371
Н	2.18394	-1.13351	-1.96477
С	3.39988	0.59923	-2.00469
Н	3.53649	0.63416	-3.08982
Н	3.82399	1.42004	-1.41371
С	2.0255 0.25221	0.30047	
0	2.49802	1.30864	0.62829
С	0.58181	-0.10865	0.22782
С	-0.31088	0.94959	-0.01418
С	0.10727	-1.4018	0.37618
С	-1.67244	0.71133	-0.11135
Н	0.09823	1.95363	-0.1134
С	-1.26692	-1.64871	0.28733
Н	0.80254	-2.21372	0.57992
С	-2.16161	-0.61251	0.04137
Н	-1.63031	-2.66732	0.4164
0	-2.61589	1.65328	-0.34145
0	-3.50108	-0.74767	-0.0682
С	-4.04559	-2.03874	0.07898
Н	-5.12844	-1.92687	-0.0496
Н	-3.65963	-2.73359	-0.68711
Н	-3.84017	-2.45616	1.07994
С	-2.18191	2.98491	-0.4971
Н	-3.08595	3.57828	-0.6772
Н	-1.67745	3.35804	0.41094
Н	-1.49912	3.09331	-1.35764
0	2.83566	-1.11271	0.98481
Н	3.08337	-0.89342	-0.22187
С	3.78872	-0.77188	1.9699
Н	3.96543	0.31684	1.9699
Н	3.41976	-1.0804	2.96039
Н	4.73505	-1.29308	1.75929

Н -0.736842

 $\begin{array}{rrrr} H & -0.736842 \\ H & -2.479562 \\ O & -2.100879 \\ C & -2.081742 \\ H & -3.048103 \\ H & -1.967243 \\ H & -1.268463 \end{array}$

M4

M5

E [a.u.] = -766.9666954
G [a.u.] = -766.762786
E _{SP} [a.u.] = -767.1955756

$\begin{array}{ll} Charge = -1 \ Multiplicity = 1 \\ C & 3.41784 & -0.86374 \\ H & 3.10289 & -1.90737 \end{array}$ 0.06313 0.00676 C H 4.86566 -0.580.08809 5.42292 -1.10232-0.72656 Н 5.01073 0.51008 -0.03956 2.49309 2.7405 1.00563 0.17148 1.41279 -0.2006 С 0.09359 0 C 0.12073 0.06115 -0.01437 C C C 0.11042 0.87771 0.46974 -1.484880.1128 -1.26388 0.693 -0.04723 1.85676 Н 0.59383 -0.0371-1.69022 -2.3522 -0.6132 -2.71068 -0.91538 С 0.08039 1.12607 -1.79335 -1.29908 H C 0.18903 -0.00143 Н 0.1242 0 -2.18676 1.7029 -0.12037 0 C -3.16235 -3.71111 -0.70894-0.0379 -1.993240.0198 -4.80207 Н -1.86651 -0.01427 -2.62194 -2.52175 3.01122 3.6759 -0.83523 0.95404 -0.15766 -0.2106 Н -3.3976 -3.44237 -1.68027 -2.55369 Η C H Н -1.09133 3.2545 0.74472 Н -1.03873 3.18263 -1.04053 0 5.49966 -0.98935 1.32675 С 6.85817 -0.718721.31517 7.2874 7.39709 7.07983 2.27818 0.49932

-1.04185 -1.25555

0.36395

1.18172

TS-6

Η Н Н

 $\begin{array}{l} E \ [a.u.] = -1110.490152 \\ G \ [a.u.] = -1110.195236 \\ E_{SP} \ [a.u.] = -1110.790278 \end{array}$

Charge = -1 Multiplicity = 1

С	-1.82876	0.31227	-0.29935
С	-3.06303	1.1475	-0.21111
Η	-3.9653	0.51014	-0.28589
Η	-3.08784	1.66576	0.76687
С	-0.68835	0.78269	0.44492
0	-0.74391	1.56148	1.41257
С	0.68922	0.27771	0.05654
С	1.79106	0.99573	0.54698
С	0.91792	-0.84576	-0.72824
С	3.09118	0.62866	0.23501
Η	1.56162	1.84258	1.19351
С	2.22644	-1.23451	-1.03918
Η	0.07871	-1.45815	-1.05827
С	3.31689	-0.50439	-0.57678
Η	2.3791	-2.12817	-1.64482
0	4.21446	1.28406	0.66012
0	4.62774	-0.7965	-0.8364
С	4.88514	-1.92727	-1.62184
Η	5.97684	-1.99224	-1.72321
Η	4.5131	-2.85487	-1.14893
Η	4.43603	-1.84548	-2.62906
С	4.01603	2.39105	1.49949
Η	5.01511	2.78219	1.73473
Η	3.42358	3.18359	1.00786
Η	3.50556	2.11138	2.4386
0	-3.09826	2.12629	-1.26252
С	-4.2681	2.87314	-1.22447
Η	-4.24577	3.59303	-2.05867
Η	-5.17883	2.24255	-1.32993
Η	-4.37796	3.4427	-0.27558
Η	-1.5933	0.02454	-1.33015
С	-2.40762	-1.59599	0.41207
Ο	-3.6183	-1.51665	0.62584
0	-1.49371	-1.8186	1.42493
Ο	-1.91725	-2.37238	-0.64947
С	-2.81602	-2.45946	-1.72365
Η	-2.93569	-1.48616	-2.23578
Н	-2.38915	-3.18574	-2.43093
Н	-381007	-2.79299	-138674

С	-1.90487	-1.26935	2.65741
Η	-1.10522	-1.50154	3.37498
Н	-2.01861	-0.17584	2.58887
Н	-2.85666	-1.71226	2.99456

M6

 $\begin{array}{l} \text{E} \; [a.u.] = -1110.503019 \\ \text{G} \; [a.u.] = -1110.206575 \\ \text{E}_{\text{SP}} \; [a.u.] = -1110.804172 \end{array}$

Cha	rge = -1 Multiplicit	y = 1	
С	3.43705	-1.29618	-0.34375
С	4.83331	-0.85284	0.03422
Η	5.52486	-1.69882	-0.11653
Н	5.15612	-0.02426	-0.6216
С	2.50657	-0.10375	-0.44836
0	2.92467	1.03221	-0.60467
С	1.02368	-0.30942	-0.26462
С	0.24412	0.83301	-0.0228
С	0.41038	-1.55443	-0.32198
С	-1.12314	0.73824	0.18142
Η	0.76653	1.78912	-0.01031
С	-0.97141	-1.65791	-0.12726
Η	1.00274	-2.44126	-0.5647
С	-1.74466	-0.52991	0.13039
Η	-1.43624	-2.64203	-0.18808
0	-1.95454	1.79338	0.435
0	-3.09272	-0.53351	0.34279
С	-3.74932	-1.77046	0.27088
Η	-4.811	-1.56774	0.46433
Η	-3.64787	-2.2353	-0.72662
Н	-3.37652	-2.48383	1.02847
С	-1.3632	3.0658	0.47225
Н	-2.17263	3.77527	0.68992
Η	-0.59403	3.14134	1.26191
Н	-0.89681	3.33296	-0.49306
0	4.83538	-0.42638	1.39226
С	6.06847	0.09602	1.76435
Н	6.01135	0.38794	2.82461
Η	6.89077	-0.64247	1.6458
Η	6.34127	0.9911	1.16666
Η	3.0652 -1.94794	0.4619	
С	3.50459	-2.18042	-1.68469
0	4.65864	-2.47108	-2.10004
0	2.63191	-1.46588	-2.59349
0	2.63239	-3.40568	-1.39537
С	3.35662	-4.44838	-0.82788
Η	3.60024	-4.26902	0.24594
Η	2.74593	-5.36714	-0.8816
Н	4.30984	-4.60172	-1.36306
С	2.67052	-1.97908	-3.89393
Н	2.11075	-1.28249	-4.53852
Η	3.71058	-2.06889	-4.25123
Н	2.20061	-2.97998	-3.94948

TS-7

 $\begin{array}{l} {\rm E} \; [{\rm a.u.}] = -1110.498703 \\ {\rm G} \; [{\rm a.u.}] = -1110.200417 \\ {\rm E_{SP}} \; [{\rm a.u.}] = -1110.794888 \end{array}$

Che	rgo = _1 Multipli	aity = 1	
Cha	2 10690	0.21214	0 60274
c	-2.19089	0.21314	-0.09374
C	-3.22389	1.31006	-0.96222
Н	-4.18021	0.84668	-1.23331
Н	-3.36627	1.89921	-0.03893
С	-1.10335	0.64774	0.31044
0	-1.27775	1.63753	1.03241
С	0.32119	0.21026	0.02505
С	1.34515	1.06461	0.45293
С	0.65403	-0.95711	-0.6504
С	2.67954	0.77186	0.20494
Н	1.03191	1.95907	0.9912
С	1.99472	-1.26416	-0.90334
Н	-0.13614	-1.64683	-0.95006
С	3.01376	-0.41098	-0.487
Н	2.23296	-2.19094	-1.42607
0	3.73524	1.55622	0.58017
0	4.35014	-0.62129	-0.69272
С	4.71374	-1.78154	-1.38734
Н	5.80951	-1.76828	-1.4608
Н	4.40198	-2.70042	-0.85726
Н	4.2865	-1.8065	-240702
C	3.42817	2.73664	1.27464

Н	4.38743	3.23053	1.47975
Н	2.79326	3.41526	0.67701
Н	2.91325	2.53324	2.23055
0	-2.88691	2.16117	-2.0497
С	-1.74894	2.94705	-1.82372
Н	-1.68082	3.66683	-2.65493
Н	-1.80604	3.49453	-0.86449
Н	-0.81591	2.34992	-1.80233
Η	-1.74333	-0.07405	-1.65454
С	-2.86143	-1.02769	-0.07879
0	-4.00224	-1.02986	0.37905
0	-1.61696	-1.01039	1.32081
0	-2.35847	-2.1705	-0.7237
С	-2.73493	-3.36676	-0.08758
Η	-3.82789	-3.42201	0.04171
Η	-2.38738	-4.1936	-0.72506
Η	-2.25575	-3.43163	0.90472
С	-2.17189	-0.67236	2.53685
Η	-1.95906	0.39172	2.78801
Η	-3.27657	-0.78926	2.50973
Η	-1.77052	-1.30973	3.3536

M7

 $\begin{array}{l} E \; [a.u.] = -1110.509036 \\ G \; [a.u.] = -1110.21304 \\ E_{SP} \; [a.u.] = -1110.807961 \end{array}$

Charge = -1 Multiplicity = 1

С	2.25914	-0.2369	-0.85813
Η	2.08255	-0.94846	-1.67684
С	3.74463	0.19077	-0.92864
Η	4.30935	-0.57827	-1.47894
Η	3.79148	1.1366	-1.49547
С	1.2822 0.99019	-1.06794	
0	1.54553	2.05964	-0.39442
С	-0.18049	0.48346	-0.90136
С	-0.89028	0.95447	0.20759
С	-0.80192	-0.41029	-1.76233
С	-2.18246	0.52505	0.4745
Η	-0.35003	1.67909	0.8191
С	-2.11007	-0.84755	-1.51363
Η	-0.26756	-0.75863	-2.64751
С	-2.80553	-0.39425	-0.39675
Η	-2.57826	-1.54851	-2.20606
0	-2.93324	0.92878	1.54623
0	-4.0811	-0.7669	-0.0569
С	-4.711 -1.70357	-0.88266	
Η	-5.69631	-1.89662	-0.43674
Η	-4.85361	-1.32518	-1.91267
Η	-4.14957	-2.6551	-0.93821
С	-2.31571	1.82146	2.43624
Η	-3.04511	2.01191	3.23555
Η	-1.39531	1.39613	2.87521
Η	-2.05175	2.77681	1.94851
0	4.40004	0.30024	0.31901
С	4.20939	1.5546	0.94438
Η	3.16136	1.88963	0.85313
Η	4.50802	1.43631	1.99846
Η	4.86267	2.32306	0.47888
С	1.99676	-1.0345	0.39435
0	1.98733	-2.24533	0.4632
0	1.75951	-0.26512	1.47545
С	1.46242	-0.97286	2.66138
Η	1.31774	-0.20966	3.43686
Η	0.54514	-1.57089	2.54459
Η	2.28583	-1.64867	2.93999
0	1.46889	1.14308	-2.57141
С	0.95548	2.35473	-3.03073
Η	1.41129	2.57585	-4.01195
Η	-0.14943	2.32349	-3.1636
Η	1.18855	3.16447	-2.31648

TS-8

 $\begin{array}{l} \text{E} \; [a.u.] = -1110.49772 \\ \text{G} \; [a.u.] = -1110.202863 \\ \text{E}_{\text{SP}} \; [a.u.] = -1110.802058 \end{array}$

Charge = -1 Multiplicity = 1

		-	
С	2.18193	0.22725	-0.48183
Η	3.10278	0.81544	-0.41412
С	2.34355	-1.21214	-0.16024
Η	2.70284	-1.30814	0.88422
Н	1.36835	-1.73344	-0.23281

0	1.7878	0.30304	2.26134
С	-0.15479	0.78438	0.93985
С	-0.75808	-0.42995	1.2883
С	-0.88445	1.7286	0.231
С	-2.05489	-0.7228	0.89572
Н	-0.15091	-1.12508	1.86684
С	-2.20139	1.45016	-0.15159
Η	-0.41284	2.6665	-0.05465
С	-2.79254	0.23096	0.16159
Η	-2.75435	2.19908	-0.71936
0	-2.70598	-1.8934	1.16794
0	-4.06401	-0.1406	-0.18728
С	-4.77465	0.73285	-1.01862
Н	-5.73766	0.24727	-1.22675
Н	-4.96596	1.70925	-0.53489
Н	-4.24825	0.91542	-1.97388
С	-1.95118	-2.90292	1.78623
Н	-2.61264	-3.77645	1.86299
Н	-1.05878	-3.1713	1.19294
Н	-1.6194	-2.61238	2.79956
0	3.27774	-1.88014	-1.02975
С	3.42444	-3.21643	-0.68467
Н	2.46761	-3.78043	-0.75526
Н	4.14776	-3.67618	-1.37763
Н	3.80133	-3.35049	0.35388
С	1.37497	0.63609	-1.59619
0	1.38428	1.71711	-2.17471
0	0.43283	-0.31533	-1.95181
С	-0.46782	0.08768	-2.95292
Н	-1.21118	-0.71836	-3.03917
Η	-0.97273	1.03054	-2.69085
Н	0.03685	0.2339	-3.92421
0	1.61416	2.3267	1.21187
С	2.87768	2.65669	1.7215
Н	2.99023	3.74356	1.59928
Н	2.97372	2.37916	2.78377
Н	3.68405	2.14683	1.16377

0.9823

1.35876

3a

С

С

С

С

С

H

H H

0

0

С

Η

H H

С

H

Н

Н

С

0

0

С

Н

Н

Н

 $\begin{array}{l} E \; [a.u.] = -688.991895 \\ G \; [a.u.] = -688.823222 \\ E_{SP} \; [a.u.] = -689.1384311 \\ \\ Charge = 0; \; Multiplicity = 1 \\ C \;\; 0.7144255579 \;\; 2.2' \end{array}$

1.4126417875

0.7229020236

-0.6968317092

-1.3779783468-0.6731846346

2.5001269361

-2.4669235919

-1.2002041913

-1.2778480293

-2.6866081128

-2.9455887511

-3.113118719 -3.1115188104

2.6990018243

2.9531542822

3.1288928073

3.1293860798

1.4219631381

0.8773166157 2.7619448424

3.5022784845

4.5578817097

3.2724602331

3.270445351

1.2919772033

2.2912523201	-0.0009690461
1.0702196577	-0.0007234795
-0.1317143271	-0.0002765126
-0.1238343175	-0.0000716669
1.0902582491	-0.0002808124
2.2959647777	-0.0007422152
1.0914875938	-0.0009201921
1.1101575644	-0.0000529367
3.2497388949	-0.0009074633
-1.360220256	-0.000013287
-1.3413307761	0.0004099713
-1.3985554921	-0.0008241304
-2.4636670936	-0.0013720515
-0.9217625163	0.8984024625
-0.9211870668	-0.9004991979
-1.4250192997	-0.0003704077
-2.4912721731	-0.0001293052
-0.9498852753	-0.899361363
-0.9493653399	0.8981081287
3.5974013739	-0.0014305836
4.6774890849	-0.0017720216
3.4554878413	-0.0011729572
4.6720412928	-0.001245359
4.3782172467	0.0001240488
5.2698329806	-0.8947575253
5.2711651957	0.8908417829

TS-9

 $\begin{array}{l} \text{E} \; [\text{a.u.}] = -1377.311456 \\ \text{G} \; [\text{a.u.}] = -1376.96636 \\ \text{E}_{\text{SP}} \; [\text{a.u.}] = -1377.653012 \end{array}$

Cha	arge = –1; Multıp	plicity = 1	
С	-5.52237	0.0679	-1.9271
С	-4.24408	-0.35341	-1.554
С	-3.83225	-0.36442	-0.20299
С	-4.77942	0.12087	0.75757

C 1.2774

С	-6.05708	0.52116	0.38039
С	-6.43717	0.49543	-0.97121
Н	-5.80396	0.05562	-2.9844
Н	-3.49628	-0.68343	-2.27856
Н	-6.77346	0.87256	1.12549
Н	-7.44251	0.8152	-1.25565
0	-2.65522	-0.76102	0.18441
С	-1.20555	0.37143	-0.61046
Н	-1.95569	1.11751	-0.88036
С	-0.72443	0.38203	0.81667
Н	-1.49589	0.75072	1.49789
Н	-0.40946	-0.61828	1.13241
С	-0.3293	-0.02595	-1.74139
Н	-0.19967	0.799	-2.49271
0	0.41017	1.29172	0.89906
0	-4.3124	0.14758	2.05026
С	-5.18721	0.59763	3.03878
Н	-4.63824	0.55041	3.98959
Н	-5.51618	1.64182	2.86928
Н	-6.09184	-0.03638	3.11896
0	-1.23253	-0.99913	-2.05068
С	1.05909	-0.53418	-1.37916
С	2.19872	0.27223	-1.44295
С	1.19383	-1.84118	-0.92498
С	3.42932	-0.19283	-1.00312
Н	2.13555	1.30577	-1.79131
С	2.42209	-2.32063	-0.46678
Н	0.29274	-2.45742	-0.92084
С	3.54238	-1.49145	-0.47605
Н	2.48636	-3.33572	-0.07425
0	4.51694	0.65555	-1.00955
0	4.77757	-1.8324	0.01403
С	4.86182	-3.02676	0.7487
H	5.8839 -3.07279	1.14757	
Н	4.14254	-3.03688	1.58601
Н	4.68564	-3.91609	0.11651
C	5.50882	0.30862	-1.95274
H	6.29865	1.06985	-1.8/8/3
H	5.94007	-0.68371	-1.7412
Н	5.09902	0.31434	-2.97928
C	1.4//41	0.86004	1.55527
0	1.60492	-0.1//22	2.16117
C	2.42498	1.80/95	1.40104
с П	3.00808	1.43380	2.05384
п u	4.26001	2.30403	2.01109
п	3.33000	1.1320	1 49201
п	4.10033	0.000/8	1.48301

MMC

E [a.u.] = -303.65836996 G [a.u.] = -303.633228 $E_{SP}[a.u.] = -303.81911238$

Charge = -1; Multiplicity = 1

C	0.0003165909	0.0986938132	0.0354847962
0	-0.0008579944	-0.0820267186	1.2646073542
0	0.0002664247	1.1094370659	-0.6707195809
0	0.0000080758	-1.120199363	-0.7640480139
С	-0.0007734554	-2.2999226757	-0.0233283766
Η	-0.885871603	-2.3965711604	0.6361792809
Н	-0.0008990276	-3.140621755	-0.743480886
Η	0.883789989	-2.3973322062	0.6367794261

DMC

 $\begin{array}{l} E \; [a.u.] = -343.521334 \\ G \; [a.u.] = -343.455881 \\ E_{SP} \; [a.u.] = -343.6056438 \end{array}$

Cha	arge = 0; Multiplicit	y = 1	
С	-0.0466694862	1.7610133752	0.2249446763
0	1.1431915721	1.6363233391	0.0730722627
0	-0.6966460067	2.9102774696	0.4117353513
С	0.1404317403	4.0644532801	0.4232753851
Н	-0.5320299726	4.9138193357	0.584287979
Η	0.8796904711	4.0028379465	1.2345076405
Н	0.6704610473	4.1719551055	-0.5337039202
0	-0.9430271465	0.7737954823	0.2355262093
С	-0.3887433513	-0.5261863614	0.046394486
Η	0.3290187458	-0.7644489628	0.844107219
Н	-1.2388002719	-1.2160019367	0.0797143127
Н	0.1222414128	-0.5955887676	-0.9244173236

Formaldehyde (FA)

E[a.u.] = -114.4687442	
G [a.u.] = -114.463678	
$E_{SP}[a.u.] = -114.5018821$	

Ch	arge = 0; Multiplici	ty = 1	
0	0.0994633333	1.0827003942	-0.6494304743
С	1.0995797342	1.4650995789	-1.1918942641
Н	1.7971926997	0.7676545438	-1.7167906177
Н	1.3955861752	2.5424986467	-1.2060732734

Methanol (MeOH)

E [a.u.] = -115.6872615 G[a.u.] = -115.08/2015G[a.u.] = -115.658462 $E_{SP}[a.u.] = -115.7266544$

Charge

0 С

н

Н

Н

Н

= 0; Multiplicit	y = 1	
.0013579627	1.1494312637	
	1 45101(151	

inge 0, withinplicity	1	
-0.0013579627	1.1494312637	-0.6170425745
1.330145292	1.451316151	-0.9596080745
2.0200003071	1.4036186882	-0.0953329807
1.729982506	0.7951481068	-1.7561928906
1.3425203644	2.4825847617	-1.3397438706
-0.0196175467	0.2460795787	-0.2854507291

Methanolate

$\begin{array}{l} \text{E} \; [a.u.] = -115.0400258 \\ \text{G} \; [a.u.] = -115.027059 \\ \text{E}_{\text{SP}} \; [a.u.] = -115.1724325 \end{array}$

-1. Multiplicity

Charge = -1 ; Multiplicity = 1				
0	-0.0119416269	1.0755238896	-0.7120948882	
С	1.2126659765	1.4258391436	-0.9665300804	
Н	1.9995857154	1.3550897726	-0.1018606678	
Н	1.7918707418	0.8456227037	-1.8030538786	
Н	1.4119538291	2.5246119303	-1.3199194652	

11

 $\begin{array}{l} E \; [a.u.] = -421.29245611 \\ G \; [a.u.] = -421.200784 \\ E_{SP} \; [a.u.] = -421.45239422 \end{array}$

Cha	arge = -1; Multiplic	ty = 1	
С	-3.971061819	-3.522317575	-1.0818866767
С	-2.935857669	-2.9070182505	-0.3787440579
С	-2.9984696916	-1.5553437681	0.1112188571
С	-4.265875991	-0.8955455654	-0.2074637265
С	-5.2867227639	-1.5170293081	-0.9065394734
С	-5.1579360708	-2.8488363835	-1.3591158917
Η	-3.8434971558	-4.5578163802	-1.4213949312
Η	-2.0076538401	-3.4482926929	-0.1674515275
Η	-6.2156417158	-0.9802820482	-1.1198932163
Η	-5.9734559129	-3.32436514	-1.9096730033
0	-2.0804198335	-0.9812396712	0.745411042
0	-4.3362198425	0.4059683945	0.2601308966
С	-5.5038310086	1.108977692	0.0026165696
Н	-5.3793946957	2.1104155561	0.4429521028
Η	-5.7055178173	1.2250582574	-1.083219395
Н	-6.4002221724	0.6349598831	0.4553374314

2a

E [a.u.] = -461.16415614 G [a.u.] = -461.031057 $E_{SP}[a.u.] = -461.2606828$

Ch	Charge = 0; Multiplicity = 1					
С	-4.0102853057	-3.5297434208	-1.1613541191			
С	-2.9064248088	-2.8490227592	-0.6287842431			
С	-3.0262912696	-1.528543408	-0.2116019133			
С	-4.2763993145	-0.87051498	-0.3283009605			
С	-5.3636723232	-1.5557006682	-0.8577936169			
С	-5.2304800474	-2.8875481374	-1.2749311444			
Η	-3.8962963671	-4.5657856554	-1.4832877137			
Н	-1.9505845644	-3.3653012492	-0.5444840275			
Η	-6.32968517	-1.0605960878	-0.9525465079			
Н	-6.0954037548	-3.4083670884	-1.6880665284			
0	-2.0270187893	-0.779740504	0.3154100314			
0	-4.2948032419	0.41392727 0.10373	377146			
С	-5.5111207482	1.1155384065	0.0159599791			

Н	-5.3122430897	2.1179873484	0.4135454079
Н	-5.8591020286	1.2041205517	-1.0283754795
Н	-6.3040955554	0.638990671	0.6189427895
С	-0.7631149337	-1.3817771642	0.4547981048
Н	-0.1100212654	-0.6176346609	0.8929506268
Н	-0.7971678819	-2.2562826036	1.1281095694
Н	-0.3484341505	-1.6953383606	-0.5194614193

11-Cs

 $\begin{array}{l} E \; [a.u.] = -441.4865854 \\ G \; [a.u.] = -441.396953 \\ E_{SP} \; [a.u.] = -441.6126241 \end{array}$

Cha	Charge = 0; Multiplicity = 1				
С	-1.73999	-0.74641	-0.00002		
С	-1.38807	0.60054	-0.00009		
С	-0.03784	1.05075	-0.00007		
С	0.93565	-0.01664	0.00007		
С	0.58345	-1.35802	0.00016		
С	-0.76593	-1.74102	0.0001		
Н	-2.79827	-1.02367	-0.00005		
Н	-2.15574	1.3789	-0.00019		
Н	1.34874	-2.13683	0.00026		
Н	-1.03326	-2.79862	0.00016		
0	0.29541	2.28741	-0.00007		
0	2.26866	0.41836	0.00012		
С	3.26062	-0.56821	0.		
Н	4.23226	-0.0476	-0.00008		
Н	3.21097	-1.21377	0.8961		
Н	3.21077	-1.21373	-0.89611		
Cs	2.80989	3.33337	0.00042		

Cs(DMC)

 $\begin{array}{l} {\rm E} \; [a.u.] = -363.5757014 \\ {\rm G} \; [a.u.] = -363.51729 \\ {\rm E}_{\rm SP} \; [a.u.] = -363.7130839 \end{array}$

Charge = 1; Multiplicity = 1				
0	-0.59122	-1.33189	0.04279	
С	-0.44704	-0.02768	-0.07324	
0	0.49461	0.54376	-0.584	
0	-1.46106	0.66881	0.43999	
Cs	0.45199	3.52415	-0.48462	
С	-2.56256	-0.03454	1.04494	
Н	-3.26382	0.74437	1.36085	
Н	-3.03893	-0.70345	0.3172	
Н	-2.21821	-0.6115	1.9128	
С	0.47743	-2.13387	-0.49123	
Н	0.56342	-1.97385	-1.57348	
Н	1.42352	-1.87581	0.00105	
Н	0.19604	-3.16815	-0.27358	

M8-Cs

E [a.u.] = -441.6927223

G [a.u.] = -441.594039 E_{SP} [a.u.] = -441.8250543

```
Charge = 0 Multiplicity = 1
```

C H	0.28593 0.60031	-0.86071 -1.80704	0.66621 1.1099
С	1.22358	0.27976	0.61471
Н	0.697	1.24207	0.63313
Н	1.95571	0.2607	1.44477
0	2.04489	0.38455	-0.61981
С	3.03706	-0.60011	-0.65698
Н	2.6102	-1.62551	-0.62507
Н	3.61248	-0.47966	-1.58968
Н	3.74185	-0.51205	0.19414
С	-1.0845	-0.75709	0.40697
0	-1.98278	-1.59919	0.47131
0	-1.44319	0.53308	-0.1217
С	-2.83111	0.73556	-0.24838
Н	-2.97223	1.80047	-0.48547
Н	-3.2741	0.11944	-1.05504
Н	-3.37209	0.48305	0.6758
Cs	-0.07524	-0.56093	-2.59088

CsOMe

 $\begin{array}{l} E \; [a.u.] = -135.2455828 \\ G \; [a.u.] = -135.238188 \\ E_{SP} \; [a.u.] = -135.3287795 \end{array}$

Charge = 0 Multiplicity = 1				
0	1.17909	-0.71294	0.00013	
Cs	2.49739	1.58673	0.00549	
С	2.03154	-1.74523	-0.0002	
Η	1.5715	-2.77481	-0.00241	
Н	2.75637	-1.80258	-0.89161	
Н	2.75379	-1.80526	0.89312	

CsMMC

 $\begin{array}{l} E \; [a.u.] = -323.85830037 \\ G \; [a.u.] = -323.836347 \\ E_{SP} \; [a.u.] = -323.9718611 \end{array}$

$\begin{array}{ll} \text{Charge} = \ 0 \ \text{Multiplicity} = 1 \\ \text{C} & -0.85521 & -0. \\ \text{O} & -0.01017 & -0. \end{array}$ -0.14508 -0.18332 -0.51729 0.66955 -2.08356 -0.40198 0 0.02096 -0.02812 0 0.12172 -1.46053 -1.4685-1.66241-1.46864-2.7153-1.00955С 0.98061 -0.05815H 1.29362 H 1.1739 H 1.58107 -1.09753 0.19422 0.59683 Cs -2.0166 -0.73036 2.73038

.....

8. References

- (1) C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood, *Angew. Chem. Int. Ed.*, 2015, **127**, 260–264.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.; Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O, Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (3) (a) J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615–6620;
 (b) J. D. Chai, M and Head-Gordon, *J. Chem. Phys.*, 2008, 128, 084106; (c) A. D. Becke, *J. Chem. Phys.* 1997, 107, 8554–8560.
- (4) P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpály, *Chem. Phys. Lett.* 1982, **89**, 418–422.
- (5) (a) T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023; (b) D. E. Woon and T. H. Dunning, J. Chem. Phys. 1993, 98, 1358–1371.
- (6) (a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650–654; (b) A. D. Mc Lean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648; (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294–301.
- (7)(a) S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129; (b) S. Miertuš and J. Tomasi, Chem. Phys., 1982, 65, 239-245; (c) J. L. Pascual-ahuir, E. Silla, and I. Tuñon, J. Comput. Chem., 1994, 15, 1127-1138; (d) M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327-335; (e) V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys., 1997, 107, 3210-3221; (f) E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041; (g) B. Mennucci, E. Cancès and J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506-10517; (h) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151-5158; (i) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404–417; (j) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett., 1998, 286, 253-260; (k) R. Cammi, B. Mennucci and J. Tomasi, J. Phys. Chem. A, 1999, 103, 9100-9108; (1) J. Tomasi, B. Mennucci and E. Cancès, THEOCHEM, 1999, 464, 211-226; (m) R. Cammi, B. Mennucci and J. Tomasi, J. Phys. Chem. A, 2000, 104, 5631-5637; (n) M. Cossi and V. Barone, J. Chem. Phys., 2000, 112, 2427–2435; (o) M. Cossiand V and Barone, J. Chem. Phys., 2001, 115, 4708–4717; (p) M. Cossi, G. Scalmani, N. Rega and V. J. Barone, Chem.

Phys., 2002, **117**, 43–54; (q) M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.*, 2003, **24**, 669–681.

- M. A. Rivas, S. M. Pereira, N. Banerji and T. P. Iglesias, *J. Chem. Thermodyn.*, 2004, 36, 183–191.
- (9) A. Rodríguez, J. Canosa and J. Tojo, J. Chem. Eng. Data, 2001, 46, 1476–1486.
- (10) (a) S. Bauer, H. Sorek, V. D. Mitchell, A. B. Ibańez and D. E. Wemmer, *J. Agric. Food Chem.* 2012, **60**, 8203–8212; (b) J. L. Wen, S. L. Sun, B. L. Xue and R. C. Sun, *Materials*, 2013, **6**, 359–391.
- (11) (a) D. S. Argyropoulos, *Res. Chem. Intermed.*, 1995, 21, 373–395; (b) M. Balakshin, and E. Capanema, *J. Wood Chem. Technol.*, 2015, 35, 220–237; (c) Y. Pu, S. Cao and A. Ragauskas, *J. Energy Environ. Sci.*, 2011, 4, 3154–3166; (d) S. Constant, H. L. J. Wienk, A. E. Frissen, P. de. Peinder, R. Boelens, D. S. van Es, R. J. H. Grisel, B. M. Weckhuysen, W. J. J. Huijgen, R. J. A. Gosselink and P. C. A. Bruijnincx, *Green Chem.*, 2016, 18, 2651–2665.
- (12) C. W. Lahive, P. J. Deuss, C. S. Lancefield, Z. Sun, D. B. Cordes, C. M. Young, F. Tran, A. M. Z. Slawin, P. C. J. Lamer, J. G. de Vries, N. J. Westwood and K. Barta, J. Am. Chem. Soc., 2016, 138, 8900–8911.
- (13) (a) J. Buendia, J. Mottweiler and C. Bolm, *Chem. Eur. J.*, 2011, 17, 13877–13882;
 (b) T. Kleine, J. Buendia and C. Bolm, *Green Chem.*, 2013, 15, 160–166.
- (14) S. Dabral, J. Mottweiler, T. Rinesch and C. Bolm, *Green Chem.*, 2015, 17, 4908–4917.
- (15) R. H. A. M. Janssen, R. J. J. C. Lousberg, P. Wijkens, C. Kruk and H. G. Theuns, *Photochemistry*, 1989, 28, 2833–2839.
- (16) Y. Yamamoto, Adv. Synth. Catal., 2010, 352, 478–492.
- (17) P. Kuzmic, Anal. Biochem., 1996, 237, 260–273.
- (18) A. Bianco, C. Cavarischia and M. Guiso, Eur. J. Org. Chem., 2004, 2894–2898.
- (19) H. Stetter and J. Nienhaus, *Chem. Ber.*, 1978, **111**, 2825–2832.