Supplementary information:

Elucidating transfer hydrogenation mechanisms in non-catalytic lignin depolymerization

Florent P. Bouxin^a, Henri Strub^b, Tanmoy Dutta^{a,c}, Julie Aguilhon^b, Trevor J. Morgan^d, Florence Mignardon^a, Murthy Konda^a, Seema Singh^{a,c}, Blake Simmons^a, Anthe George^{a,c}

^a Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^b Biofuel division, Total, La Défense 6, 2 Pl. Jean Millier, 92078 Paris, France

^c Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551, USA

^d Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA

Lignin sources	Solvent	Cat.	Temp, K.	Reaction time, h	Oils yields wt%	Solids yields wt%	Composition and observation	Ref.
Hydrolytic Eucalyptus	Water	No Cat. Sodium formate	543	0.5	44 ^a	n.d.	Main products were guaiacol, syringol C:H:O (67.2/6.3/26.3) 400-800g/mol	1
Various Lignin	Water or Ethanol	No Cat	633-663	4-18	48-76	2-9	Alkylation of the lignin oil in presence of ethanol as solvent increased the oil yields by 5 to 10 %	2
Lignin dimer models	Ethanol	No Cat	653	24	48-83 ^b	n.d.	More realistic lignin model led to lower oil yield (48wt%) due to secondary reaction	3
Various Lignin	Water	No Cat Rh/Al ₂ O ₃ Ru/ Al ₂ O ₃ Pd/ Al ₂ O ₃	613	6	58.2 90.0 81.0 81.7	22.4 5.1 4.8 2.8	Catalyzed reaction showed lower char formation and higher oils yields	4
Alkali Lignin	Water	No Cat Pd/ Al ₂ O ₃	538 and 623	1 and 5	18.0° 16.6	5.1° 12.8	No catalyzed conditions gave higher diethylether extract and more than two-fold lesser solid fraction	5
Hardwood Alcell	Isopropanol	No Cat Ru/C	673	4	18.2 71.2	46.0 ^d 1.0	Oil C/H/O: 79.9/8.9/11.2 Oil C/H/O: 80.8/10.2/8.9 The presence of catalyst reduced the solid formation and increase the deoxygenation of the oil Aldo condensation of the isopropanol virtually increased the oil yields.	
Low sulfonated Akali Lignin	Water	No Cat Pd/C	538	6	33.1 ° 25.7	1.1 22.9	Higher char formation in presence of Pd/C cat. Formic acid alone prevented the lignin repolymerization Pd/C does not affect the products distribution Longer reaction time affected products distribution, increasing the catechol yield while decreasing the guaiacol yield	7

Table S.1. State of art of the transfer hydrogenation of lignin

^a: Mass of extract in Chloroform/Ethanol (v/v: 3/1), ^b: Yields of GC quantified products, ^c : In percent of the total feed (including the Formic acid), ^d: Acetone insoluble fraction, ^e : Ether extractable fraction.

Table S.2. List of reference products used for the calibration

[Coefficient response defined as $\alpha = (\text{Area}_{\text{product}(i)}/\text{Area}_{\text{IS}})/(\text{mass}_{\text{products}(i)}/\text{mass}_{\text{IS}})$ with IS = 1,3,5-tri tert-butylbenzene]

	IUPAC Name	CAS number
Anisole	methoxybenzene	100-66-3
2-methylanisole	1-methoxy-2-methylbenzene	578-58-5
4-methylanisole	1-methoxy-4-methylbenzene	104-93-8
Phenol	Phenol	108-95-2
4-ethyanisole	1-ethyl-4-methoxybenzene	1515-95-3
2-cresol	2-methylphenol	95-48-7
1,2-dimethoxybenzene	1,2-dimethoxybenzene	91-16-7
4-cresol	4-methylphenol	106-44-5
guaiacol	2-methoxyphenol	90-05-1
4-ethylphenol	4-ethylphenol	123-07-9
4-methylguaiacol	2-methoxy-4-methylphenol	93-51-6
Cyclohexane-1,2-diol	(cis/trans)-1,2,-cyclohexanediol	1792-81-0 (cis) 1460-57-7 (trans)
1,2,3-trimethoxybenzene	1,2,3-trimethoxybenzene	634-36-6
catechol	1,2-dihydroxybenzene	120-80-9
4-propylphenol	4-propylphenol	645-56-7
4-methylcatechol	1,2-dihydroxy-4-methylbenzene	452-86-8
3-methylcatechol	1,2-dihydroxy-3-methylbenzene	488-17-5
4-ethylguaiacol	4-ethyl-2-methoxyphenol	2785-89-9
syringol	2,6-dimethoxyphenol	91-10-1
4-ethylcatechol	1,2-dihydroxy-4-ethylbenzene	1124-39-6
methyl-ethylguaiacol	methyl-ethyl-2-methoxyphenol	n.a.
4-propylguaiacol	4-propyl-2-methoxyphenol	2785-87-7
3-methoxycatechol	1,2-dihydroxy-3-methoxybenzene	934-00-9
4-methylsyringol	2,6-dimethoxy-4-methylphenol	6638-05-7
ethyl-methylcatechol	Ethyl-methyl-1,2-dihydroxybenzene	n.a.
4-propylcatechol	1,2-dihydroxy-4-propylbenzene	2525-02-2
pyrogallol	1,2,3 trihydroxybenzene	87-66-1
5-methyl-3-methoxycatechol	1,2-dihydroxy-5-methyl-3- methoxybenzene	n.a.
4-ethylsyringol	2,6-dimethoxy-4-ethylphenol	14059-92-8
2-phenol-ethanol	4-(2-hydroxyethyl)phenol	501-94-0
5-ethyl-3-methoxycatechol	1,2-dihydroxy-5-ethyl-3- methoxybenzene	n.a.
4-propylsyringol	2,6-dimethoxy-4-propylphenol	6766-82-1
5-propyl-3-methoxycatechol	1,2-dihydroxy-5-propyl-3- methoxybenzene	n.a.
alpha-methylvanillyl alcohol	4-hydroxy-3-methoxy-a-methylbenzyl alcohol	2480-86-6
acetoguaiacol	4-hydroxy-3-methoxyacetophenone	498-02-2

Table S.3. List of the products with IUPAC names and CAS numbers

Fig. S.1. 2D HSQC NMR spectra of Sugarcane bagasse (a) and Lignin oil after reaction up to 270° C (b) and 4h at 300° C (c)

[A, β-ether (β-O-4') unit; B, phenylcoumaran (β-5') unit; C, resinol (β-β') unit; pCA, *p*-coumarate unit; FA, Ferrulate unit;

G, guaiacyl unit; S, syringyl unit; S', benzyl-oxidized S unit; H, p-hydroxyphenyl unit.]

Fig. S.2. Deuterium incorporation on the ethylguaiacol as function of the H/D exchange of D_2O and transfer hydrogenation of d-formic acid [TH : Transfer hydrogenation; Reaction pathways: HCOOH for FA/H₂O; DCOOH for *d*-FA/H₂O; HCOOD for FA/D₂O and DCOOD for *d*-FA/D₂O]