Electronic Supplementary Information

Scalable Synthesis of Two-Dimensional Nano-Sheet Materials with Chlorophyll Extracts: Enhancing the Hydrogen Evolution Reaction

I-Wen Peter Chen,^a* Ming-You Shie,^b Ming-Ho Liu,^a Wei-Ming Huang,^a Wen-Tai Chen^a and Yu-Ting Chao^a

^aDepartment of Applied Science, National Taitung University, Taitung City, Taiwan ^b3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan

Figure S1. The UV-vis (black solid line) and fluorescence spectrum (red dot line; an excitation wavelength at 450 nm) of the chlorophyll extracts solution.

Figure S2. ATR-FTIR spectrum of the extracted chlorophyll (black line) and chlorophyll standard (red line).

Figure S3. (a) The TEM images of the synthesized PtNPs. (b) The PtNPs size distributions.

Figure S4. AFM image of the exfoliated (a) graphene, (b) MoS_2 and (c) h-BN transferred onto Si substrate.

Figure S5. Raman spectrum of chlorophyll extracts.

Figure S6. UV-vis spectrum of the exfoliated (a) graphene, (b) MoS_2 and (c) h-BN suspension.

Figure S7. Comparative stability of the suspension of the exfoliated graphene (bottle A), MoS_2 (bottle B), and h-BN (bottle C). (a) without and (b) with chlorophyll extracts.

Figure S8. Stability of the suspension of the commercial available chlorophyllassisted exfoliated graphene (left), MoS_2 (middle), and h-BN (right) suspensions.

Figure S9. (a) Photographs and (b) Fluorescence of chlorophyll extracts (bottle A), chlorophyll extracts + graphene (bottle B), chlorophyll extracts + MoS₂ (bottle C), and chlorophyll extracts + h-BN (bottle D). (c) The fluorescence spectra of chlorophyll extracts and chlorophyll extracts mixed with different 2D material solutions.

Figure S10. Stability of chlorophyll extracts-assisted exfoliated graphene in solvents. Stable homogeneous suspensions of chlorophyll-assisted exfoliated graphene in various solvents after five days, from left to right: tetrahydrofuran, ethyl acetate, ethanol, hexane, and toluene.

Figure S11. (a) Photograph of free-standing composite paper of graphene/SWCNT, $MoS_2/SWCNT$, and h-BN/SWCNT. (b) Raman mapping image of the four composite papers by extracting the frequency of the characteristic peak of each 2D material. The Raman 2D mapping area is $30 \times 30 \mu m$.

Figure S12. EIS spectra of the bulk MoS_2 (black square) and $MoS_2/PtNPs/SWCNT$ (pink triangle) at low frequency with -0.1 V vs RHE in 0.5 M H₂SO₄ electrolyte. Red dots indicate fitting curve of the bulk MoS_2 and $MoS_2/PtNPs/SWCNT$ paper.

Figure S13. Raman spectra of the $MoS_2/PtNPs/SWCNT$ paper were recorded a) before and b) after 100 h stability tests at a constant potential of -50 mV in 0.5 M H₂SO₄ solution.

Table S1. Summary of literature reported exchange current density of various HER catalysts.

Catalyst	Onset	Tafel	Exchange	Year	Journal	Ref.
	potential	slope	current			
	(mV)	(mV/dec)	density			
			(mA/cm^2)			
MoS ₂ /PtNPs/SWCNT	-11	38	7.1 x 10 ⁻¹	This work		
paper						
Chlorophyll extracts -	-58	46	1.4 x 10 ⁻¹	This v	vork	
assisted exfoliated						
MoS ₂ thin sheets						
P-doped 2H-MoS ₂	-103	49	N/A	2017	Adv.	1
					Funct.	
					Mater.	
Hydrothermal	~-75	59	2 x 10 ⁻¹	2017	Energy	2
synthesis stepped					Environ.	
edge-MoS ₂ on carbon					Sci.	
fiber						
Molybdenum	~-40	68	6.6 x 10 ⁻¹	2017	Nano Lett.	3
Disulfide-Black						
Phosphorus						
strained MoS ₂ with	~-140	60	2~4 x 10 ⁻²	2016	Nat.	4
S-vacancy					Mater.	
2H Basel plane of	N.A.	~ 50	7~16 x	2016	Nat.	5
monolayer MoS ₂			10-3		Mater.	
ground MoS ₂	~-240	76	9 x 10 ⁻²	2016	Nano Lett.	6
microflake						
in the 900 °C						
annealing						
MoS ₂ annealed under	~-300	147	N/A	2016	Nano Lett.	7
500 °C						
semiconductor phase	~-225	135	4 x 10 ⁻²	2016	Nat.	8
of MoS ₂ (S-MoS ₂)					Commun.	
Metallic-phase MoS ₂	~-150	41	1 x 10 ⁻¹	2016	Nat.	8
$(M-MoS_2)$					Commun.	
edge-terminated	-103	49	9.62 x 10⁻	2015	Nat.	9
MoS ₂			3		Commun.	
MoS ₂	-237	101	9.1 x 10 ⁻⁴	2015	Nat.	10

					Commun.	
MoS ₂ /CoSe ₂	-11	36	7.3 x 10 ⁻²	2015	Nat.	10
					Commun.	
Ni-Mo-S/C	~-140	85.3	4.89 x 10 ⁻	2015	Sci. Adv.	11
			2			
Defect-rich ultrathin	-120	50	8.91 x 10 ⁻	2013	Adv.	12
MoS ₂ nanosheets			3		Mater.	
Chlorophyll extracts -	-183	124	3.3 x 10 ⁻²	This work		
assisted exfoliated						
graphene thin sheets						
Chlorophyll extracts -	-179	159	6 x 10 ⁻²	This work		
assisted exfoliated h-						
BN thin sheets						

Reference:

(1) Huang, X.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J.; Activating Basal Planes and S-Terminated Edges of MoS₂ toward More Efficient Hydrogen Evolution. *Adv. Funct. Mater.* **2017**, *27*, 1604943.

(2) Hu, J.; Huang, B.; Zhang, C.; Wang, Z.; An, Y.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S.; Engineering Stepped Edge Surface Structures of MoS₂ Sheet Stacks to Accelerate the Hydrogen Evolution Reaction. *Energy Environ. Sci.* 2017, *10*, 593-603.
(3) He, R.; Hua, J.; Zhang, A.; Wang, C.; Peng, J.; Chen, W.; Zeng, J.; Molybdenum Disulfide-Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. *Nano Lett.* 2017, *17*, 4311-4316.
(4) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X.; Activating and Optimizing MoS₂ Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. *Nat. Mater.* 2016, *15*, 48-54.
(5) Voiry, D.; Fullon, R.; Yang, J.; Silva, C. d. C. C. e.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G.; Mohite, A. D.; Dong, L.; Er, D.;

Shenoy, V. B.; Asefa, T.; Chhowalla, M.; The Role of Electronic Coupling between Substrate and 2D MoS₂ Nanosheets in Electrocatalytic Production of Hydrogen. *Nat. Mater.* **2016**, *15*, 1003-1009.

(6) Kiriya, D.; Lobaccaro, P.; Nyein, H. Y. Y.; Taher, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C. M.; Zhao, P.; Gao, W.; Maboudian, R.; Ager, J. W.; Javey, A.; General Thermal Texturization Process of MoS₂ for Efficient Electrocatalytic Hydrogen Evolution Reaction. *Nano Lett.* **2016**, *16*, 4047-4053.

(7) Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M.; Defects Engineered Monolayer MoS₂ for Improved Hydrogen

Evolution Reaction. Nano Lett. 2016, 16, 1097-1103.

(8) Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui, J.; Chen, T.-p.; Pure and Stable Metallic Phase Molybdenum Disulfide Nanosheets for Hydrogen Evolution Reaction. *Nat. Commun.* **2016**, *7*, 10672.

(9) Gao, M.-R.; Chan, M. K. Y.; Sun, Y.; Edge-Terminated Molybdenum Disulfide with a 9.4-Å Interlayer Spacing for Electrochemical Hydrogen Production. *Nat. Commun.* **2015**, *6*, 7493.

(10) Gao, M.-R.; Liang, J.-X.; Zheng, Y.-R.; Xu, Y.-F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.-H.; An Efficient Molybdenum Disulfide/Cobalt Diselenide Hybrid Catalyst for Electrochemical Hydrogen Generation. *Nat. Commun.* **2015**, *6*, 5982.

(11) Miao, J.; Xiao, F.-X.; Yang, H. B.; Khoo, S. Y.; Chen, J.; Fan, Z.; Hsu, Y.-Y.; Chen, H. M.; Zhang, H.; Liu, B.; Hierarchical Ni-Mo-S Nanosheets on Carbon Fiber Cloth: A Flexible Electrode for Efficient Hydrogen Generation in Neutral Electrolyte. *Sci. Adv.* **2015**, *1*, e1500259.

(12) Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W. D.; Xie, Y.; Defect-Rich MoS₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. *Adv. Mater.* **2013**, *25*, 5807-5813.

Table S2. E	EDS analysis	of the MoS ₂	/PtNPs/SWCNT	paper.
				P P

Element	Atomic (%)	Weight (%)
Platinum	0.03	0.26
Molybdenum	7.04	32.18
Sulfur	12.89	19.69