Supporting Information

Concise Synthesis of Ketoallyl Sulfones through an Iron-Catalyzed Sequential

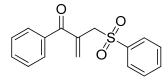
Four-Component Assembly

Fuhong Xiao*, Chao Liu, Dahan Wang, Huawen Huang, Guo-Jun Deng*

^{*a*} Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Fax: (+86)0731-58292251; Tel: (+86)0731-58298280; E-mail: <u>fhxiao@xtu.edu.cn</u>; <u>gjdeng@xtu.edu.cn</u>

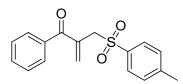
Table of Contents

1. General information	2
 General procedure for β-acyl allylic sulfones synthesis Characterization data of products Copies of ¹H and ¹³C NMR spectra for all products 	2 2-23


General information

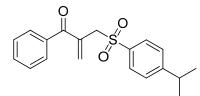
All reactions were carried out under an atmosphere of air. Column chromatography was performed using silica gel 48-75 µm. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at the Institute of Chemistry, Chinese Academy of Sciences. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. Most reagents were obtained from commercial suppliers and used without further purification.

General procedure (3aa)


A 10 mL oven-dried reaction vessel was charged with $K_2S_2O_8$ (189.2 mg, 7 mmol), sodium dodecyl (5.8 mg, 0.02 mmol), FeCl₃ (4 mg, 0.02mmol), acetophenone (**1a**, 23.4 µL, 0.2 mmol), sulfatesodium benzenesulfinate (**2a**, 82 mg, 0.5mmol), and DMA (1.2 mL) under air. The sealed reaction vessel was stirred at 110 °C for 14 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated sodium chloride solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3aa** as white solid (49.8 mg, 87% yield), mp = 99-101 °C.

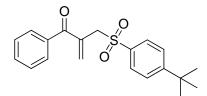
phenyl-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3aa)

¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.67-7.50 (m, 6H), 7.43 (t, *J* = 7.6 Hz, 2H), 6.29 (s, 1H), 6.05 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 138.8, 136.2, 135.7, 134.1, 133.9, 132.6, 129.6, 129.2, 128.36, 128.3, 57.7. HRMS calcd. for: C16H14O3SNa⁺(M+Na)⁺309.05559, found 309.05591


1-phenyl-2-(tosylmethyl)prop-2-en-1-one (3ab)

The reaction was conducted with sodium acetophenone (1a, 23.4 µL, 0.2 mmol), and 4-methylbenzenesulfinate

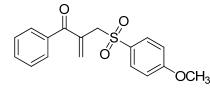
(**2b**, 89 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ab** as yellow oil. (43.2 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.68-7.65 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 6.25 (s, 1H), 6.02 (s, 1H), 4.35 (s, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 144.9, 136.1, 135.8, 135.7, 133.9, 132.6, 129.8, 129.6, 128.3, 128.2, 57.7, 21.6. HRMS calcd. for: C₁₇H₁₇O₃S⁺ [M+H]⁺ 301.08929, found 301.08908.


2-(((4-isopropylphenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3ac)

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-isopropylbenzenesulfinate (**2c**, 103.1 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ac** as white solid. (32.8 mg, 50% yield), mp = 92-95 °C

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.65-7.63 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 6.28 (s, 1H), 6.02 (s, 1H), 4.36 (s, 2H), 2.96-2.89 (m, 1H), 1.19 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 155.6, 136.1, 136.0, 135.8, 133.7, 132.6, 129.6, 128.5, 128.2, 127.3, 57.7, 34.2, 23.5. HRMS calcd. for: C₁₉H₂₁O₃S⁺ [M+H]⁺ 329.12059, found 329.12064.

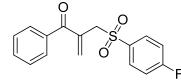
2-(((4-(tert-butyl)phenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3ad)



The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-(tert-butyl)benzenesulfinate (**2d**, 110.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ad** as white solid. (37.6 mg, 55% yield), mp = 141-143 °C.

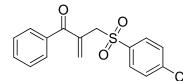
¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.5 Hz, 2H), 7.65-7.63 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.49 (d, J =

8.5 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 6.28 (s, 1H), 6.01 (s, 1H), 4.37 (s, 2H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 157.9, 136.0, 135.7, 135.6, 133.7, 129.7, 128.3, 128.2, 126.2, 57.7, 35.2, 30.9. HRMS calcd. for: C₂₀H₂₃O₃S⁺ [M+H]⁺ 343.13624, found 343.13632.

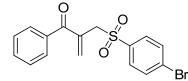

2-(((4-methoxyphenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3ae)

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-methoxybenzenesulfinate (**2e**, 97.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to yield the desired product **3ae** as yellow oil. (35.1 mg, 47% yield).

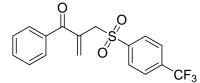
¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 2H), 7.68-7.66 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.27 (s, 1H), 6.03 (s, 1H), 4.34 (s, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 163.9, 136.2, 136.0, 133.9, 132.6, 130.5, 130.4, 129.6, 128.3, 114.4, 58.0, 55.6. HRMS calcd. for: C₁₇H₁₇O₄S [M+H]⁺ 317.08421, found 317.08420.


2-(((4-fluorophenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3af)

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-fluorobenzenesulfinate (**2f**, 91.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3af** as yellow oil. (44.5 mg, 73% yield).


¹H NMR (400 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.67-7.75 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 8.6 Hz, 2H), 6.33 (s, 1H), 6.08 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 165.9 (d, *J* = 255.31 Hz), 136.0, 135.5, 134.9 (d, *J* = 3.10 Hz), 134.4, 132.7, 131.3 (d, *J* = 9.58 Hz), 129.5, 128.3, 116.5 (d, *J* = 22.53 Hz), 57.84. HRMS calcd. for: C₁₆H₁₃FO₃SNa⁺ [M+Na]⁺ 327.04616, found 327.04535.

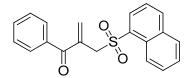
2-(((4-chlorophenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3ag)


The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-chlorobenzenesulfinate (**2g**, 91.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ag** as yellow oil. (60.9 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 2H), 7.67-7.65 (m, 2H), 7.56-7.55 (m, 1H), 7.50-7.42 (m, 4H), 6.30 (s, 1H), 6.06 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 140.6, 137.2, 136.0, 135.3, 134.3, 132.7, 129.8, 129.48, 129.45, 128.3, 57.73. HRMS calcd. for: C₁₆H₁₃ClO₃SNa⁺ [M+Na]⁺ 343.01661,found 343.01630.32.

2-(((4-bromophenyl)sulfonyl)methyl)-1-phenylprop-2-en-1-one (3ah)

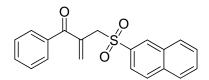
The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-bromobenzenesulfinate (**2h**, 139.6 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ah** as yellow oil. (70.8 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.67-7.64 (m, 4H), 7.58-7.54 (m, 1H), 7.46-7.42 m, 2H), 6.29 (s, 1H), 6.06 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 137.8, 135.95, 135.3, 134.3, 132.7, 132.4, 129.8, 129.5, 129.3, 128.3, 57.72. HRMS calcd. for: C₁₆H₁₃BrO₃SNa⁺ [M+Na]⁺ 386.96610,found386.96637.

1-phenyl-2-(((4-(trifluoromethyl)phenyl)sulfonyl)methyl)prop-2-en-1-one (3ai)

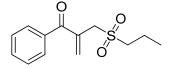


The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium 4-(trifluoromethyl)benzenesulfinate (**2i**, 116.0 mg, 0.5 mmol). The residue was purified by column

chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **3ai** as white solid. (55.0 mg, 78% yield), mp = 99–102 °C.

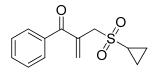

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.66-7.64 (m, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 6.35 (s, 1H), 6.10 (s, 1H), 4.40 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 142.4, 135.9, 135.1, 134.5, 132.9, 129.5, 129.1, 128.4, 126.3 (q, *J* = 3.64 Hz), 57.76. HRMS calcd. for: C₁₇H₁₃F₃O₃SNa⁺ [M+Na]⁺ 377.04297, found 377.04233.

2-((naphthalen-1-ylsulfonyl)methyl)-1-phenylprop-2-en-1-one (3aj)

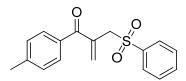

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium naphthalene-1-sulfinate (**2j**, 107.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3aj** as white solid. (35.6 mg, 53% yield), mp = 113–116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 8.7 Hz, 1H), 8.30-8.27 (m, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.79-7.75 (m, 1H), 7.68-7.62 (m, 3H), 7.57-7.52 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 6.18 (s, 1H), 5.99 (s, 1H), 4.55 (d, *J* = 0.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 136.2, 135.6, 135.5, 134.1, 133.9, 133.8, 132.6, 131.0, 129.7, 129.2, 129.0, 128.9, 128.3, 127.2, 124.1, 57.48. HRMS calcd. for: C₂₀H₁₆O₃SNa⁺ [M+Na]⁺ 359.07124, found 359.07190.

2-((naphthalen-2-ylsulfonyl)methyl)-1-phenylprop-2-en-1-one (3ak)

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium naphthalene-2-sulfinate (**2k**, 107.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ak** as yellow solid. (38.3 mg, 57% yield), mp = 117–120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.99-7.87 (m, 4H), 7.67-7.58 (m, 4H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 2H), 6.28 (s, 1H), 6.03 (s, 1H), 4.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 136.1, 135.7, 135.3, 133.8, 132.6, 132.0, 130.3, 129.6, 129.6, 129.3, 128.2, 128.0, 127.7, 122.8, 57.86. HRMS calcd. for: $C_{20}H_{17}O_3S^+$ [M+H]⁺ 337.08929, found 337.08911.

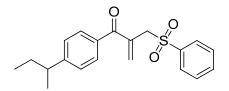

1-phenyl-2-((propylsulfonyl)methyl)prop-2-en-1-one (3al)

The reaction was conducted with acetophenone (**1a**, 23.4 μ L, 0.2 mmol) and sodium propane-1-sulfinate (**2l**, 65.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ai** as yellow oil. (12.1 mg, 24% yield).


¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 6.43 (s, 1H), 6.13 (s, 1H), 4.20 (s, 2H), 3.01-2.98 (m, 2H), 1.96-1.90 (m, 2H), 1.08 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 136.3, 135.7, 134.6, 132.9, 129.7, 128.5, 55.2, 54.9, 15.8, 13.1. HRMS calcd. for: C₁₃H₁₇O₃S⁺ [M+H]⁺ 253.08929, found 253.08966.

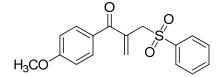
2-((cyclopropylsulfonyl)methyl)-1-phenylprop-2-en-1-one (3am)

The reaction was conducted with acetophenone (**1a**, 23.4 µL, 0.2 mmol) and sodium cyclopropanesulfinate (**2m**, 65.0 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3am** as white solid (15.5 mg, 31% yield). mp = 131–134 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.79 (m, 2H), 7.61-7.57 (m, 1H), 7.50-7.46 (m, 2H), 6.40 (s, 1H), 6.12 (s, 1H), 4.30 (m, 2H), 2.46-2.40 (m, 1H), 1.27-1.23 (m, 2H), 1.03-0.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 136.4, 135.9, 134.3, 132.8, 129.7, 128.5, 55.8, 30.2, 5.2. HRMS calcd. for: C₁₃H₁₅O₃S⁺ [M+H]⁺ 251.07364, found 251.07408.


2-((phenylsulfonyl)methyl)-1-(p-tolyl)prop-2-en-1-one(3ba)

The reaction was conducted with 1-(p-tolyl)ethanone (1b, 37 µL,, 0.2 mmol) and sodium benzenesulfinate (2a,

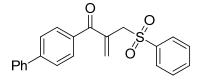
82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ba** as white solid (51.9 mg, 87% yield), mp = 133-135 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.91-7.89 (m, 2H), 7.59-7.57 (m, 3H), 7.52-7.48 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.23 (s, 1H), 6.01 (s, 1H), 4.36 (s, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 194.4, 143.7, 138.9, 135.8, 134.0, 133.6, 133.5, 123.0, 129.3, 129.1, 128.5, 58.0, 21.7. HRMS calcd. for: C₁₇H₁₇O₃S⁺ [M+H]⁺ 301.08929, found 301.08929.


1-(4-(sec-butyl)phenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3ca)

The reaction was conducted with 1-(4-(sec-butyl)phenyl)ethanone (1c, 37 μ L,, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product 3ca as white solid (55.1 mg, 80% yield), mp = 91-93 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.92-7.89 (m, 2H), 7.61-7.57 (m, 3H), 7.52 – 7.48 (m, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.22 (s, 1H), 6.02 (s, 1H), 4.37 (d, *J* = 0.5 Hz, 2H), 2.53 (d, *J* = 7.2 Hz, 2H), 1.89 (dt, *J* = 13.5, 6.8 Hz, 1H), 0.91 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 147.2, 138.7, 135.6, 133.8, 133.6, 133.4, 129.7, 129.1, 129.0, 128.3, 57.8, 45.3, 30.0, 22.3. HRMS calcd. for: C₂₀H₂₃O₃S⁺ [M+H]⁺ 343.13624, found 343.13625

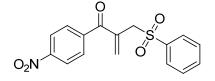
1-(4-methoxyphenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3da)



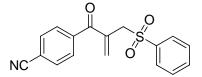
The reaction was conducted with 1-(4-methoxyphenyl)ethanone (1d, 31 mg,, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column matography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product 3da as white solid (50.6 mg, 81% yield), mp = 93-95 °C.

¹H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.4 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 6.16 (s, 1H), 5.96 (s, 1H), 4.36 (s, 2H), 3.87 (d, J = 0.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

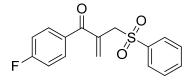
193.2, 163.4, 138.8, 135.6, 133.8, 132.3, 132.1, 129.1, 128.5, 128.2, 113.5, 58.2, 55.4. HRMS calcd. for: $C_{17}H_{17}O_4S^+$ [M+H]⁺ 317.08421, found 317.08405.


1-([1,1'-biphenyl]-4-yl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3ea)

The reaction was conducted with 1-([1,1'-biphenyl]-4-yl)ethanone (1e, 39.2 mg,, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ea** as white solid (55.4 mg, 76% yield), mp = 117-120 °C.

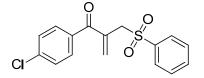

¹H NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 5.2, 3.3 Hz, 2H), 7.80-7.71 (m, 2H), 7.67-7.57 (m, 5H), 7.54-7.38 (m, 5H), 6.27 (s, 1H), 6.08 (s, 1H), 4.39 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 145.4, 139.7, 138.8, 135.7, 134.7, 133.9, 133.6, 130.2, 129.2, 128.9, 128.3, 128.2, 127.2, 126.9, 57.8. HRMS calcd. for: C₂₂H₁₈O₃S⁺ [M+H]⁺ 363.10494, found 363.10483.

1-(4-nitrophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3fa)


The reaction was conducted with 1-(4-nitrophenyl)ethanone (**1f**, 33 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to yield the desired product **3fa** as Yellow solid (36.1 mg, 54% yield), mp = 172-175 °C. ¹H NMR (400 MHz, CDCl3) δ 8.33-8.27 (m, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.86-7.80 (m, 2H), 7.66 (dd, J = 11.5, 4.3 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 2H), 6.38 (s, 1H), 6.02 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 150.0, 141.5, 138.8, 135.5, 135.0, 134.1, 130.4, 129.3, 128.2, 123.5, 57.4. HRMS calcd. for: C₁₆H₁₃NO₅SNa⁺ [M+Na]⁺ 354.04066, found 354.04080.

4-(2-((phenylsulfonyl)methyl)acryloyl)benzonitrile(3ga)

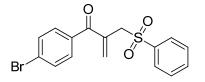
The reaction was conducted with 4-acetylbenzonitrile (**1g**, 33 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to yield the desired product **3ga** as Yellow solid (36.1 mg, 54% yield), mp = 156-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 2H), 7.80-7.73 (m, 4H), 7.68-7.63 (m, 1H), 7.56 (t, J = 7.8 Hz, 2H), 6.34 (s, 1H), 6.00 (s, 1H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 139.8, 138.8, 135.4, 134.7, 134.1, 132.1, 129.9, 129.3, 128.2, 117.8, 115.9, 57.5. HRMS calcd. for: C₁₇H₁₃NO₃SNa⁺ [M+Na]⁺ 334.05084, found 334.05081.


1-(4-fluorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3ha)

The reaction was conducted with 1-(4-fluorophenyl)ethanone (**1h**, 24 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ha** as White solid (50 mg, 82% yield), mp = 108-111 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95-7.88 (m, 2H), 7.78-7.69 (m, 2H), 7.65-7.58 (m, 1H), 7.56-7.49 (m, 2H), 7.12 (dd, *J* = 9.5, 7.8 Hz, 2H), 6.24 (s, 1H), 5.99 (s, 1H), 4.36 (d, *J* = 0.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 193.2, 165.4 (d, *J* = 253.09 Hz), 138.7, 135.5, 133.9, 133.4, 132.24365 (d, *J* = 9.13 Hz), 132.2436, 129.2, 128.2, 115.5 (d, *J* = 21.81 Hz), 57.92. HRMS calcd. for: C₁₆H₁₄FO₃S⁺ [M+H]⁺ 305.06422, found 305.06445.

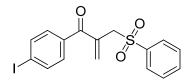
1-(4-chlorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ia)



The reaction was conducted with 1-(4-chlorophenyl)ethanone (1i, 26 μ L, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel

(petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ia** as White solid (44.0 mg, 69% yield), mp = 124-127 °C.

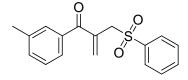
¹H NMR (400 MHz, CDCl₃) δ 7.92-7.89 (m, 2H), 7.66-7.61 (m, 3H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.43-7.41 (m, 2H), 6.28 (s, 1H), 6.00 (s, 1H), 4.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 139.2, 138.8, 135.5, 134.4, 134.0, 133.8, 131.0, 129.2, 128.7, 128.3, 57.8. HRMS calcd. for: for: C₁₆H₁₄ClO₃S⁺ [M+H]⁺ 321.03467, found 321.03497.


1-(4-bromophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ja)

The reaction was conducted with 1-(4-bromophenyl)ethanone (**1j**, 39.8 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ja** as White solid (56.9 mg, 78% yield), mp = 130-132 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.7 Hz, 2H), 7.64-7.51 (m, 7H), 6.28 (s, 1H), 6.00 (s, 1H), 4.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 138.83, 138.79, 135.51, 135.48, 134.8, 134.02, 134.00, 133.9, 133.8, 131.7, 131.1, 129.3, 128.3, 127.8, 77.3, 77.0, 76.6, 57.8. HRMS calcd. for: C₁₆H₁₄BrO₃S⁺ [M+H]⁺ 364.98415, found 364.98410.

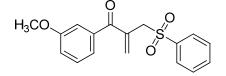
1-(4-iodophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ka)



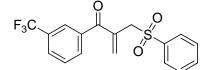
The reaction was conducted with 1-(4-iodophenyl)ethanone (1k, 49.2 mg, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product 3ka as White solid (26.1 mg, 31% yield), mp = 103-106 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.91-7.89 (m, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 6.28 (s, 1H), 6.00 (s, 1H), 4.35 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ

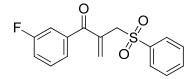
193.5, 139.2, 138.8, 135.5, 134.4, 134.0, 133.8, 131.1, 129.3, 128.7, 128.3, 57.8. HRMS calcd. for: $C_{16}H_{14}IO_{3}S^{+}$ [M+H]⁺ 412.97028, found 412.97052.


2-((phenylsulfonyl)methyl)-1-(m-tolyl)prop-2-en-1-one (3la)

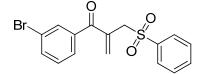
The reaction was conducted with 1-(m-tolyl)ethanone (**11**, 27 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3la** as Yellow oil. (50 mg, 83% yield).


¹H NMR (400 MHz, CDCl₃) δ 7.94-7.86 (m, 2H), 7.63-7.57 (m, 1H), 7.55-7.48 (m, 2H), 7.46-7.40 (m, 2H), 7.37-7.28 (m, 2H), 6.27 (s, 1H), 6.03 (s, 1H), 4.37 (d, J = 0.6 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 138.8, 138.1, 136.1, 135.7, 134.1, 133.9, 133.3, 129.9, 129.1, 128.3, 128.0, 126.8, 57.6, 21.2. HRMS calcd. for: C₁₇H₁₆O₃SNa⁺ [M+Na]⁺ 323.07124, found 323.07123.

1-(3-methoxyphenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ma)

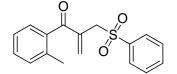

The reaction was conducted with 1-(3-methoxyphenyl)ethanone (**1m**, 27.5 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1) to yield the desired product **3ma** as Yellow oil. (50 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.63-7.59 (m, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.9 Hz, 1H), 7.23-7.21 (m, 1H), 7.17-7.16 (m, 1H), 7.09-7.07 (m, 1H), 6.25 (s, 1H), 6.05 (s, 1H), 4.37 (s, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 159.4, 138.7, 137.4, 135.6, 134.2, 133.9, 129.18, 129.15, 128.31, 122.2, 118.9, 114.0, 57.6, 55.4. HRMS calcd. for: C₁₇H₁₇O₄S⁺ [M+H]⁺ 317.08421, found 317.08441.

2-((phenylsulfonyl)methyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one(3na)

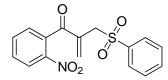

The reaction was conducted with 1-(3-(trifluoromethyl)phenyl)ethanone (**1n**, 30.5 µL, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1) to yield the desired product **3na** as Yellow oil. (50 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.88-7.87 (m, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.64-7.52 (m, 4H), 6.30 (s, 1H), 5.99 (s, 1H), 4.39 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 138.6, 136.8, 135.5, 134.4, 134.1, 132.7, 129.3, 129.1, 129.0, 128.3, 126.2 (q, *J* = 3.80 Hz), 124.9, 122.2, 57.6. HRMS calcd. for: C₁₇H₁₄F₃O₃S⁺ [M+H]⁺ 355.06103, found 355.06116.

1-(3-fluorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3oa)

The reaction was conducted with 1-(3-fluorophenyl)ethanone (**10**, 24.5 µL, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1) to yield the desired product **30a** as Yellow oil. (48 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.47-7.41 (m, 2H), 7.35-7.32 (m, 1H), 7.28-7.23 (m, 1H), 6.29 (s, 1H), 6.04 (s, 1H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 162.3 (d, *J* = 246.93 Hz), 138.7, 138.1 (d, *J* = 6.46 Hz), 135.1, 134.3, 134.0, 130.0 (d, *J* = 7.66 Hz), 129.2, 128.3, 125.3 (d, *J* = 2.95 Hz), 119.7 (d, *J* = 21.20 Hz), 116.3 (d, *J* = 22.59 Hz), 57.6. HRMS calcd. for: calcd for C₁₆H₁₃FO₃SNa⁺ [M+Na]⁺ 327.04616, found 327.04616.

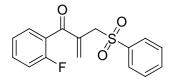

1-(3-bromophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one(3pa)

The reaction was conducted with 1-(3-bromophenyl)ethanone (1p, 26.5 μ L, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel


(petroleum ether/ethyl acetate = 9:1) to yield the desired product **3pa** as White oil. (51.7 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.74-7.73 (m, 1H), 7.69-7.52 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 6.29 (s, 1H), 6.02 (s, 1H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 138.6, 137.9, 135.5, 135.4, 134.4, 134.0, 132.2, 129.9, 129.2, 128.3, 128.1, 122.5, 57.5. HRMS calcd. for: C₁₆H₁₄BrO₃S⁺ [M+H]⁺ 364.98415, found 364.98428;

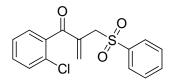
2-((phenylsulfonyl)methyl)-1-(o-tolyl)prop-2-en-1-one (3qa)

The reaction was conducted with 1-(o-tolyl)ethanone (**1q**, 26.1 µL, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3qa** as White solid. (47.2 mg, 79% yield). mp = 148-151 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.67-7.63 (m, 1H), 7.58-7.55 (m, 2H), 7.35-7.31 (m, 1H), 7.22-7.12 (m, 3H), 6.41 (s, 1H), 6.00 (s, 1H), 4.37 (s, 2H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 138.9, 137.0, 136.8, 136.71, 136.68, 133.9, 131.0, 130.4, 129.2, 128.5, 128.2, 125.0, 55.5, 19.5. HRMS calcd. for: C₁₇H₁₇O₃S⁺ [M+H]⁺ 301.08929, found 301.08908.


1-(2-nitrophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ra)

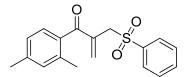
The reaction was conducted with 1-(2-nitrophenyl)ethanone (**1r**, 26.6 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **3ra** as White solid (43.1 mg, 65% yield). mp = 137-140 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16 (m, 1H), 7.98-7.96 (m, 2H), 7.75-7.58 (m, 5H), 7.28-7.26 (m, 1H), 6.45 (s, 1H), 5.87 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.06, 146.32, 138.72, 136.16, 135.78, 134.53, 134.10, 134.00, 130.78, 129.17, 128.76, 128.46, 124.49, 77.32, 77.00, 76.68, 55.10. HRMS calcd. for: C₁₆H₁₃NO₅S⁺ [M+H]⁺ 332.05872, found 332.05869.


1-(2-fluorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3sa)

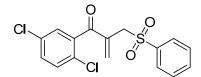
The reaction was conducted with 1-(2-fluorophenyl)ethanone (**1s**, 24 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1) to yield the desired product **3s** as yellow solid. (37.0 mg, 61% yield). mp = 92 - 96 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 7.50-7.45 (m, 1H), 7.31-7.27 (m, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.13-7.08 (m, 1H), 6.40 (s, 1H), 6.11-6.10 (m, 1H), 4.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 159.6 (d, J = 251.18 Hz),136.6, 136.5 (d, J = 12.20 Hz), 136.4, 133.9, 133.1 (d, J = 8.28 Hz), 130.4 (d, J = 2.72 Hz), 129.1, 128.6, 125.3 (d, J = 14.76 Hz), 124.2 (d, J = 3.60 Hz), 116.2 (d, J = 21.44 Hz), 55.94. HRMS calcd. for: C₁₆H₁₄FO₃S⁺ [M+H]⁺ 305.06422, found 305.06430.


1-(2-chlorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ta)

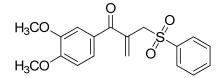
The reaction was conducted with 1-(2-chlorophenyl)ethanone (1t, 26 μ L, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ta** as white solid (53.7 mg, 84% yield). mp = 115-118 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95-7.92 (m, 2H), 7.68-7.64 (m, 1H), 7.59-7.55 (m, 2H), 7.38-7.37 (m, 2H), 7.31-7.27 (m, 1H), 7.12-7.10 (m, 1H), 6.50 (s, 1H), 6.03 (s, 1H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 138.6, 137.8, 136.8, 136.1, 133.9, 131.2, 131.0, 130.0, 129.1, 128.9, 128.5, 126.45, 55.0. HRMS calcd. for: C₁₆H₁₄ClO₃S⁺ [M+H]⁺ 321.03467, found 321.03442.


1-(2,4-dimethylphenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ua)

The reaction was conducted with 1-(2,4-dimethylphenyl)ethanone (**1u**, 30 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3ua** as white solid (50.4 mg, 81% yield). mp = 146-149 °C.

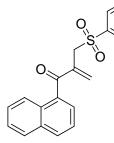
¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 2H), 7.07 (d, *J* = 7.7 Hz, 1H), 7.02-6.97 (m, 2H), 6.37-6.36 (s, 1H), 5.99 (s, 1H), 4.36 (s, 2H), 2.33 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 140.8, 138.9, 137.1, 137.1, 136.0, 133.9, 133.8, 131.9, 129.1, 128.9, 128.5, 125.6, 55.8, 21.3, 19.6. HRMS calcd. for: C₁₈H₁₉O₃S⁺ [M+H]⁺ 315.10494, found 315.10519.


1-(2,5-dichlorophenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3va)

The reaction was conducted with 1-(2,5-dichlorophenyl)ethanone (**1v**, 37.8 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3va** as yellow solid. (53.0 mg, 75% yield). mp = 124-127 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 2H), 7.34-7.33 (m, 2H), 7.01 (d, *J* = 2.2 Hz, 1H), 6.56 (s, 1H), 6.05 (s, 1H), 4.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 138.6, 138.19, 138.17, 135.9, 134.1, 132.8, 131.3, 131.2, 129.3, 129.2, 128.7, 128.6, 54.94. HRMS calcd. for: C₁₆H₁₃Cl₂O₃S⁺ [M+H]⁺ 354.99570, found 354.99600.

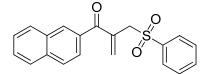
1-(3,4-dimethoxyphenyl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3wa)



The reaction was conducted with 1-(3,4-dimethoxyphenyl)ethanone (1w, 30 µL, 0.2 mmol) and sodium

benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to yield the desired product **3wa** as white solid (50.5 mg, 75% yield). mp = 135-138 °C.

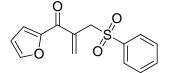
¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.40 (dd, J = 8.3, 1.0 Hz, 1H), 7.31 (s, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.15 (s, 1H), 5.98 (s, 1H), 4.37 (s, 2H), 3.95 (s, 3H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 153.2, 148.8, 138.7, 135.4, 133.8, 132.2, 129.1, 128.6, 128.2, 125.0, 111.6, 109.6, 58.4, 56.0, 55.9. HRMS calcd. for: C₁₈H₁₉O₅S⁺ [M+H]⁺ 347.09477, found 347.09488


1-(naphthalen-1-yl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3xa)

The reaction was conducted with 1-(naphthalen-1-yl)ethanone (1x, 30.4 μ L, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product 3xa as white solid. (55.8 mg, 84% yield). mp = 127-130 °C.

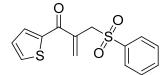
¹H NMR (400 MHz, CDCl₃) δ 7.99-7.93 (m, 3H), 7.88-7.85 (m, 1H), 7.77-7.75 (m, 1H), 7.69 -7.65 (m, 1H), 7.60-7.56 (m, 2H), 7.53-7.43 (m, 4H), 6.42 (s, 1H), 6.06 (s, 1H), 4.47 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 138.8, 137.4, 137.0, 134.5, 133.9, 133.5, 131.4, 130.6, 129.2, 128.5, 128.3, 127.4, 127.3, 126.5, 125.1, 124.1, 55.78. HRMS calcd. for: C₂₀H₁₇O₃S⁺ [M+H]⁺ 337.08929, found 337.08929.

1-(naphthalen-2-yl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3ya)



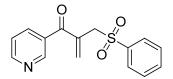
The reaction was conducted with 1-(naphthalen-2-yl)ethanone (1y, 34.0 mg, 0.2 mmol) and sodium benzenesulfinate (2a, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product 3ya as white solid. (52.8 mg, 79% yield). mp

= 94-95 °C.

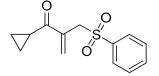

¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.95-7.92 (m, 3H), 7.87 (d, J = 8.4 Hz, 2H), 7.75-7.72 (m, 1H), 7.62-7.54 (m, 3H), 7.50 (t, J = 7.5 Hz, 2H), 6.32 (s, 1H), 6.10 (s, 1H), 4.43 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 138.7, 135.7, 135.2, 134.0, 133.9, 133.2, 132.0, 131.3, 129.3, 129.2, 128.4, 128.3, 128.3, 127.7, 126.9, 125.2, 57.80. HRMS calcd. for: C₂₀H₁₇O₃S⁺ [M+H]⁺ 337.08929, found 337.08929.

1-(furan-2-yl)-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3za)

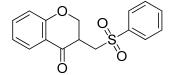
The reaction was conducted with 1-(furan-2-yl)ethanone (**1z**, 20.0 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **3za** as white solid (36.5 mg, 66% yield). mp = 153-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.84 (m, 2H), 7.63 (m, 1H), 7.60-7.56 (m, 1H), 7.49-7.45 (m, 2H), 7.14 (d, *J* = 3.6 Hz, 1H), 6.55-6.53 (m, 1H), 6.42 (s, 1H), 6.17 (s, 1H), 4.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 151.1, 147.3, 138.4, 135.3, 133.9, 132.4, 129.0, 128.5, 120.5, 112.2, 57.87. HRMS calcd. for: C₁₄H₁₂O₄SNa⁺ [M+Na]⁺ 299.03485, found 299.03500.


2-((phenylsulfonyl)methyl)-1-(thiophen-2-yl)prop-2-en-1-one (3aaa)

The reaction was conducted with 1-(thiophen-2-yl)ethanone (**1aa**, 21.6 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1) to yield the desired product **3aaa** as white solid (45.7 mg, 78% yield). mp = 124-127 °C.


¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 4.9 Hz, 1H), 7.63-7.62 (m, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.13 (t, J = 4.3 Hz, 1H), 6.21 (m, 1H), 6.10 (m, 1H), 4.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 141.7, 138.3, 135.9, 134.7, 134.6, 133.9, 131.5, 129.1, 128.4, 127.9, 58.3. HRMS calcd. for: calcd for C₁₄H₁₃O₃S₂⁺ [M+H]⁺ 293.03006, found 293.03040.

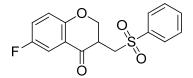
2-((phenylsulfonyl)methyl)-1-(pyridin-3-yl)prop-2-en-1-one (3aba)


The reaction was conducted with 1-(pyridin-3-yl)ethanone (**1ab**, 22.0 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to yield the desired product **3aba** as yellow oil (20.2 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.79-8.78 (m, 1H), 8.01-7.99 (m, 1H), 7.93-7.90 (m, 2H), 7.66-7.62 (m, 1H), 7.57-7.53 (m, 2H), 7.44-7.40 (m, 1H), 6.33 (s, 1H), 6.05 (s, 1H), 4.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 153.1, 150.3, 138.5, 137.0, 135.7, 134.6, 134.1, 131.8, 129.3, 128.3, 123.3, 57.39. HRMS calcd. for: C₁₅H₁₄NO₃S⁺ [M+H]⁺ 288.06889, found 288.06894.

1-cyclopropyl-2-((phenylsulfonyl)methyl)prop-2-en-1-one (3aca)

The reaction was conducted with 1-cyclopropylethanone (**1ac**, 20.0 µL, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **3aca** as white solid (41.9 mg, 35% yield), mp = 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.52 (s, 1H), 6.27 (s, 1H), 4.20 (s, 2H), 2.32-2.26 (m, 1H), 0.87-0.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 138.5, 137.3, 133.7, 131.5, 128.9, 128.6, 56.2, 15.8, 11.7. HRMS calcd. for: C₁₃H₁₄O₃S⁺ [M+H]⁺ 251.07364, found 251.07402.

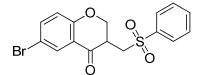
3-((phenylsulfonyl)methyl)chroman-4-one (5aa)



The reaction was conducted with 1-(2-hydroxyphenyl)ethanone (**4a**, 24.0 μ L, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **5aa** as white solid. (42.7 mg, 71% yield), mp

= 108–111 °C.

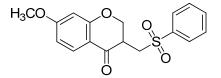
¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.4 Hz, 2H), 7.84-7.82 (m, 1H), 7.69 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.6 Hz, 2H), 7.52-7.48 (m, 1H), 7.04-6.99 (m, 2H), 5.02-4.09 (m, 1H), 4.35 (t, J = 11.8 Hz, 1H), 4.01-4.00 (m, 1H), 3.45-3.38 (m, 1H), 3.04-2.98 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 161.6, 138.7, 136.5, 134.2, 129.5, 127.9, 127.5, 121.7, 119.9, 118.0, 69.5, 51.6, 40.7. HRMS calcd. for: C₁₆H₁₄O₄SNa⁺ [M+Na]⁺ 325.05050, found 325.05023.


6-fluoro-3-((phenylsulfonyl)methyl)chroman-4-one (5ba)

The reaction was conducted with 1-(5-fluoro-2-hydroxyphenyl)ethanone (**4b**, 31.0 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **5ba** as white solid. (33.5 mg, 55% yield), mp = 141-144 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.96 (m, 2H), 7.72 - 7.70 (m, 1H), 7.63 – 7.60 (m, 2H), 7.49 – 7.46 (m, 1H), 7.26-7.21 (m, 1H), 7.01 - 6.98 (m, 1H), 5.03 - 4.99 (m, 1H), 4.34 (t, *J* = 11.9 Hz, 1H), 3.98 - 3.94 (m, 1H), 3.46 - 3.39 (m, 1H), 3.04 - 2.98 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 160.6, 139.2, 138.9, 134.3, 129.9, 129.6, 128.0, 121.2, 120.1, 114.5, 51.6, 40.6. HRMS calcd. for: C₁₆H₁₄FO₄S⁺ [M+H]⁺ 321.05913, found 321.05902.

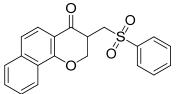
6-bromo-3-((phenylsulfonyl)methyl)chroman-4-one (5ca)



The reaction was conducted with 1-(5-bromo-2-hydroxyphenyl)ethanone (**4c**, 43.0 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **5ca** as white solid. (29.2 mg, 39% yield), mp = 178-181 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.98-7.93 (m, 3H), 7.70 (t, J = 7.4 Hz, 1H), 7.63-7.56 (m, 3H), 6.91 (d, J = 8.9

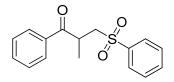
Hz, 1H), 5.06-5.02 (m, 1H), 4.34 (t, J = 11.9 Hz, 1H), 3.98-3.93 (m, 1H), 3.47-3.39 (m, 1H), 3.03-2.97 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 160.5, 139.2, 138.8, 134.3, 129.9, 129.6, 127.9, 121.1, 120.1, 114.4, 69.7, 51.6, 40.6. HRMS calcd. for: C₁₆H₁₄BrO₄S⁺ [M+H]⁺ **380.97907**, found **380.97949**.


7-methoxy-3-((phenylsulfonyl)methyl)chroman-4-one (5da)

The reaction was conducted with 1-(2-hydroxy-4-methoxyphenyl)ethanone (**4d**, 33.2 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to yield the desired product **5da** as white solid. (40.6 mg, 61% yield), mp = 241 - 244 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.98-7.96 (m, 2H), 7.77 (d, J = 8.9 Hz, 1H), 7.71-7.67 (m, 1H), 7.60 (t, J = 7.6 Hz, 2H), 6.59-6.57 (m, 1H), 6.43 (d, J = 2.4 Hz, 1H), 5.02-4.98 (m, 1H), 4.35 (t, J = 11.6 Hz, 1H), 4.01-3.97 (m, 1H), 3.84 (s, 3H), 3.39-3.32 (m, 1H), 3.02-2.96 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 166.4, 163.7, 138.9, 134.1, 129.5, 129.3, 128.0, 113.8, 110.6, 100.7, 69.9, 55.7, 51.9, 40.4. HRMS calcd. for: C₁₇H₁₇O₅S⁺ [M+H]⁺ 333.07912, found 333.07956.

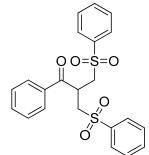
3-((phenylsulfonyl)methyl)-2*H*-benzo[*h*]chromen-4(3*H*)-one (5ea)



The reaction was conducted with 1-(1-hydroxynaphthalen-2-yl)ethanone (**4e**, 37.0 mg, 0.2 mmol) and sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to yield the desired product **5ea** as yellow solid. (24.9 mg, 61% yield), mp = 164-167 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.3 Hz, 1H), 8.01-8.00 (m, 2H), 7.78 (d, J = 8.7 Hz, 2H), 7.72-7.54 (m, 5H), 7.40 (d, J = 8.7 Hz, 1H), 5.31-5.27 (m, 1H), 4.56 (t, J = 11.8 Hz, 1H), 4.07-4.03 (m, 1H), 3.55-3.48 (m, 1H), 3.11-3.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 160.2, 138.9, 137.6, 134.2, 130.1, 129.6, 128.0,

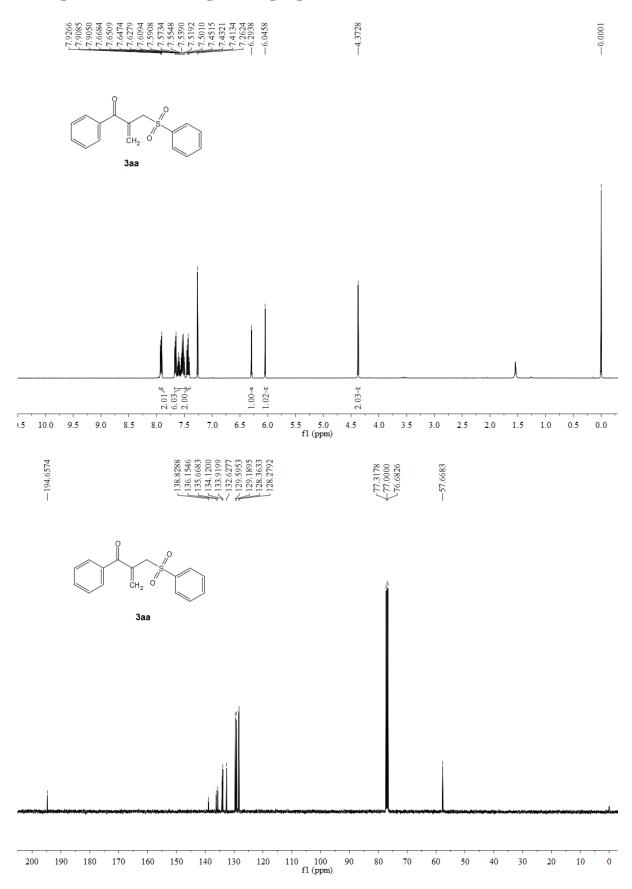
127.8, 126.5, 124.6, 123.5, 121.8, 121.5, 114.5, 70.3, 52.0, 40.2. HRMS calcd. for: $C_{20}H_{16}O_4SNa [M+Na]^+$ 375.06615, found 375.06622.

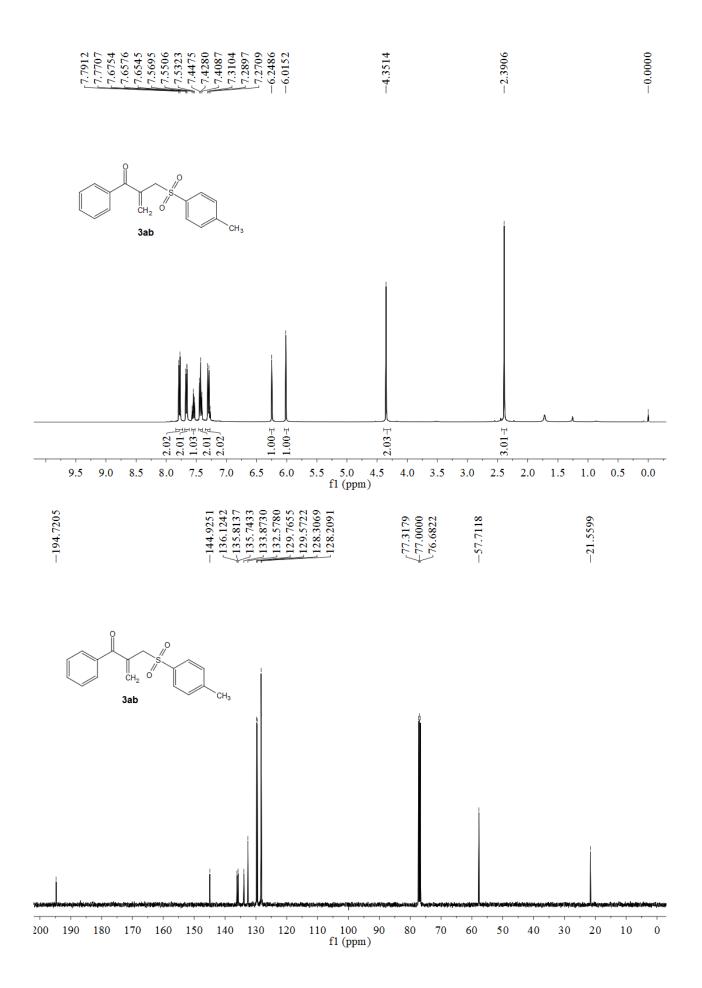

2-methyl-1-phenyl-3-(phenylsulfonyl)propan-1-one (7a)

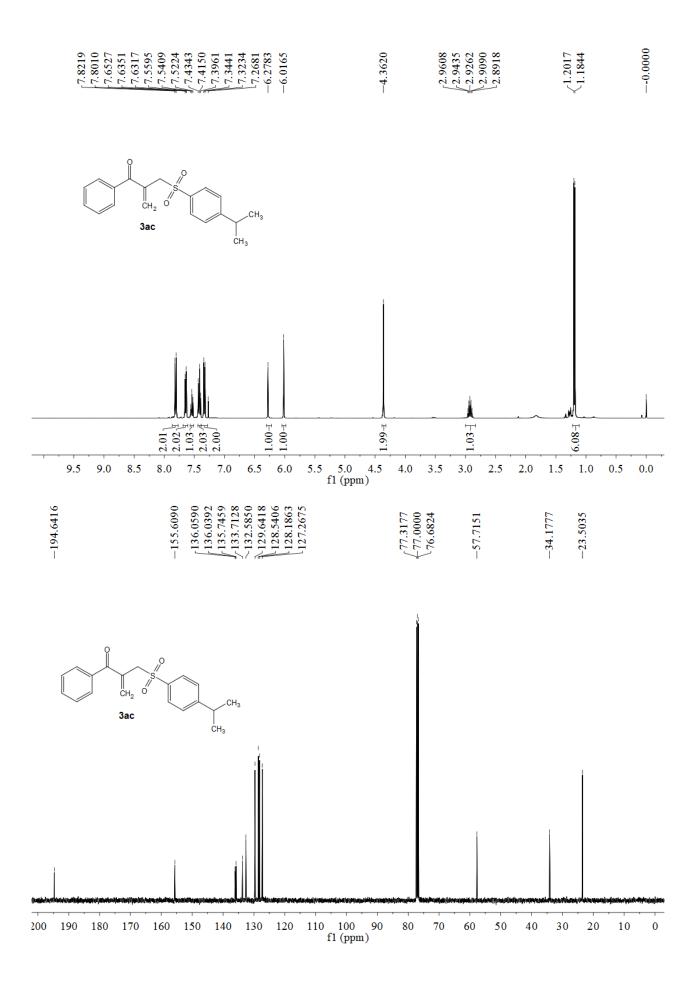
A 10 mL oven-dried reaction vessel was charged with 1-phenyl-2-((phenylsulfonyl)methyl)prop-2-en-1-one (**3aa**) (57.2 mg, 0.2 mmol), Sodium borohydride (3.8 mg, 0.1 mmol), NMP (1.0 mL) and trifluoroacetic acid (14.9 μ L, 0.2mmol) under air. The sealed reaction vessel was stirred at rt for 1.0 h. Then, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated sodium chloride solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to yield the desired product **7a** as yellow solid (31.7 mg, 55% yield).

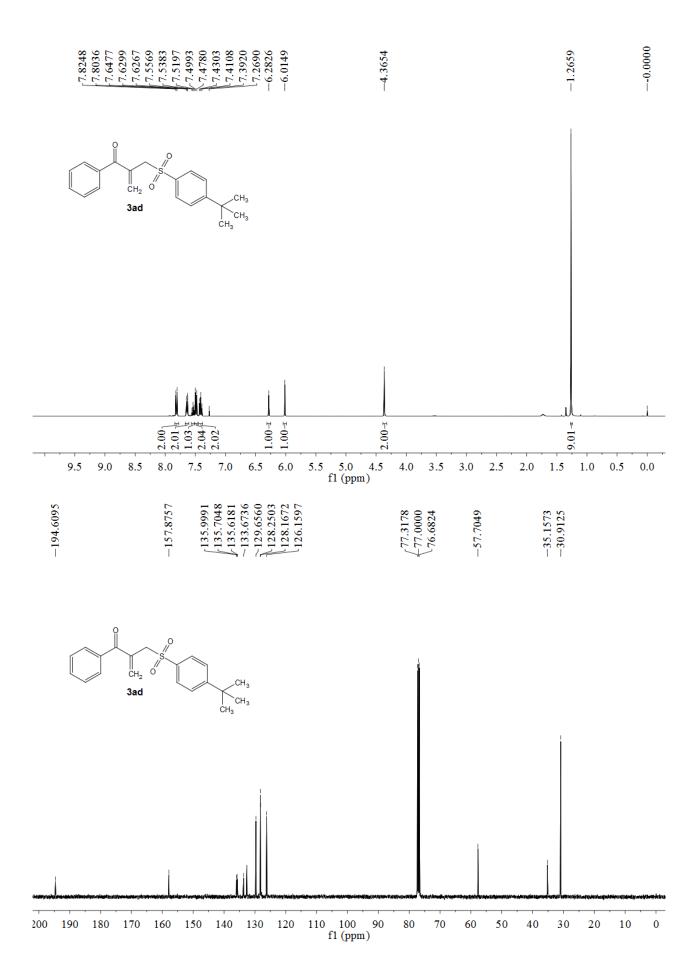
¹H NMR (400 MHz, CDCl₃) δ 7.92-7.86 (m, 4H), 7.92-7.86 (m, 2H), 7.52-7.46(m, 4H), 4.21-4.17(m, 1H), 3.94-3.87(m, 1H), 3.21-3.16(m, 1H), 1.35 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 139.4, 134.8, 133.8, 133.6, 129.3, 128.8, 128.5, 127.9, 58.5, 35.5, 18.7.

1-phenyl-3-(phenylsulfonyl)-2-((phenylsulfonyl)methyl)propan-1-one (8a)

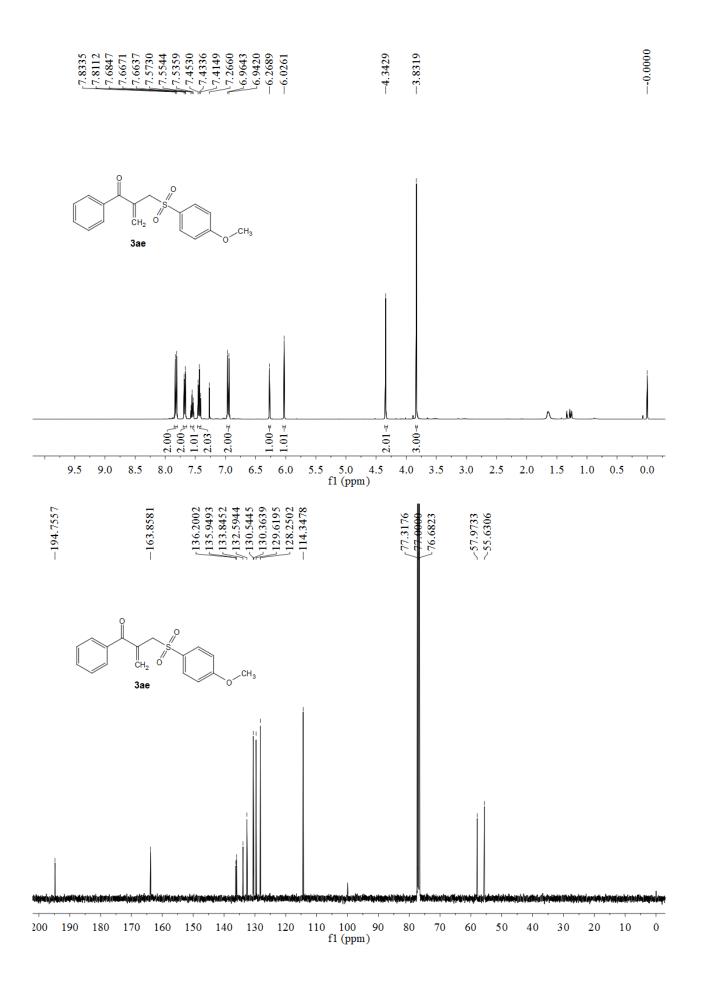


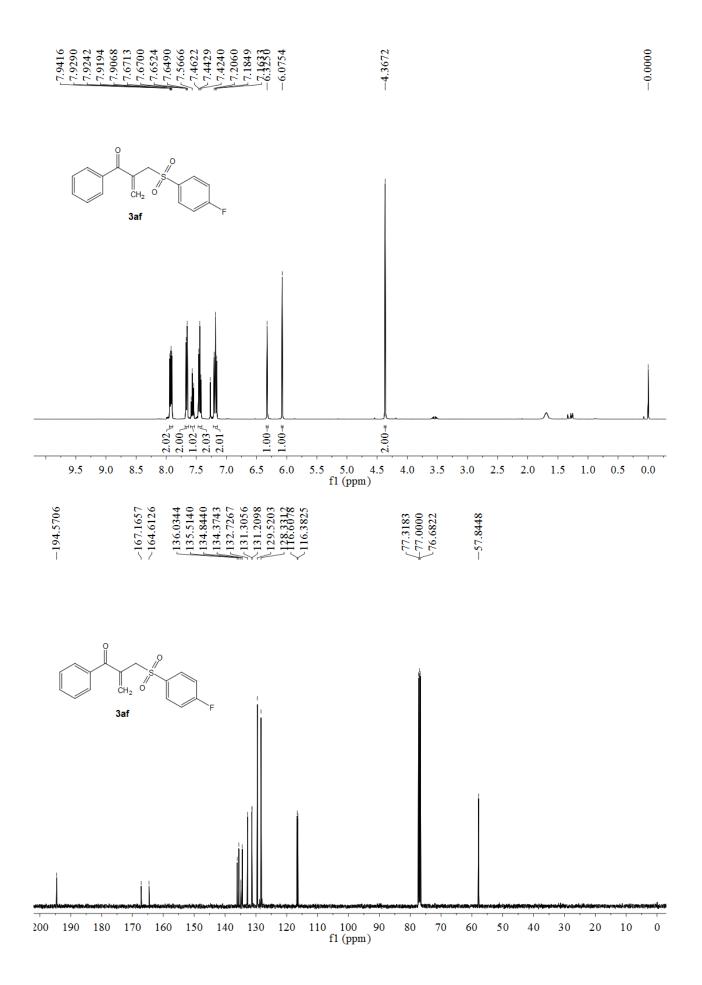

A 10 mL oven-dried reaction vessel was charged with 1-phenyl-2-((phenylsulfonyl)methyl)prop-2-en-1-one (**3aa**) (28.6 mg, 0.2 mmol), benzenesulfonohydrazide (17.2 mg, 0.1 mmol) and H_2O (0.5 mL) under air. The sealed reaction vessel was stirred at 65 °C for 10 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (5 mL) and washed with saturated sodium chloride solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over

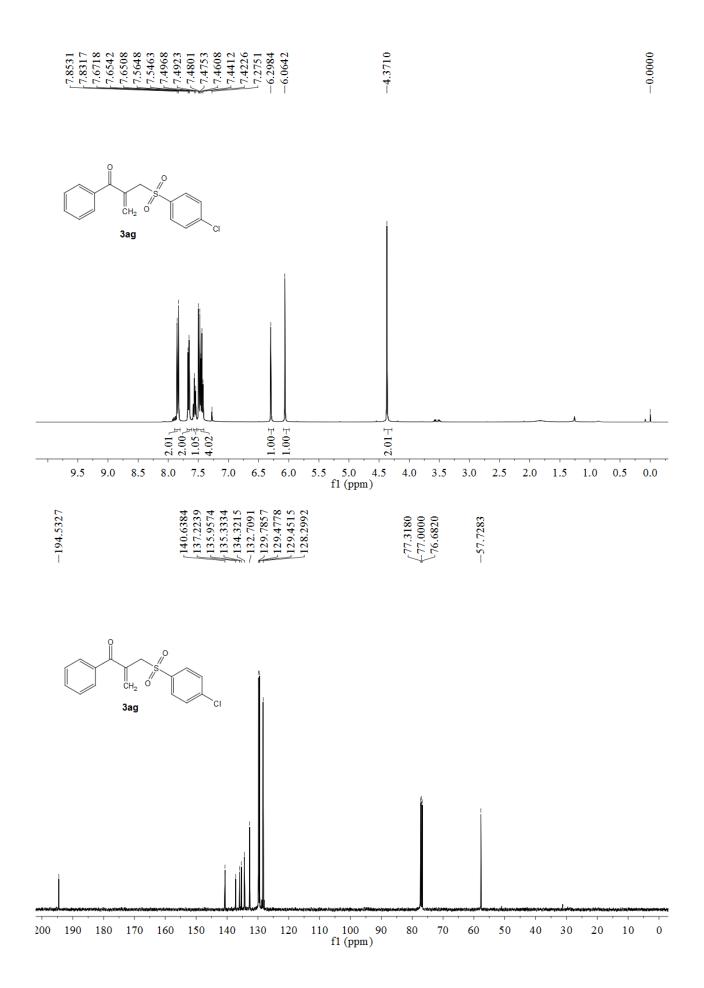

magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7.5:1) to yield the desired product **8a** as white solid (30.0 mg, 70% yield).

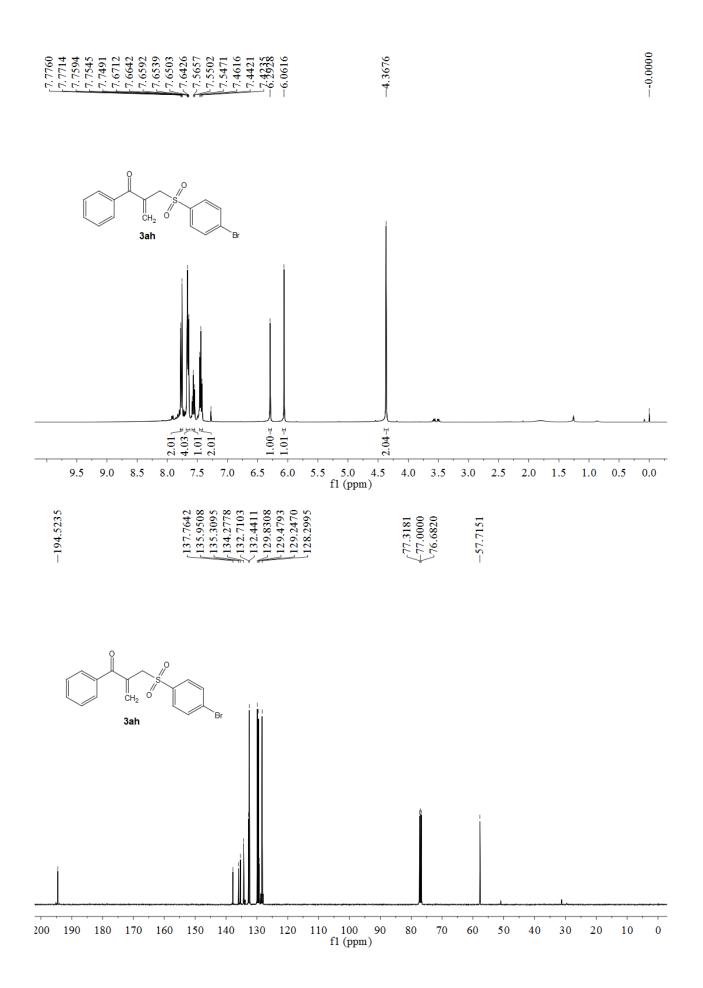

¹H NMR (400 MHz, CDCl₃) δ 7.86-7.83 (m, 4H), 7.73-7.70 (m, 2H), 7.60-7.55 (m, 7H), 7.38-7.34 (m, 2H), 4.38-4.35 (m, 1H), 3.70-3.65 (m, 2H), 3.56-3.51 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 138.2, 134.23, 134.19, 133.8, 129.5, 129.0, 128.4, 128.3, 55.2, 35.2.

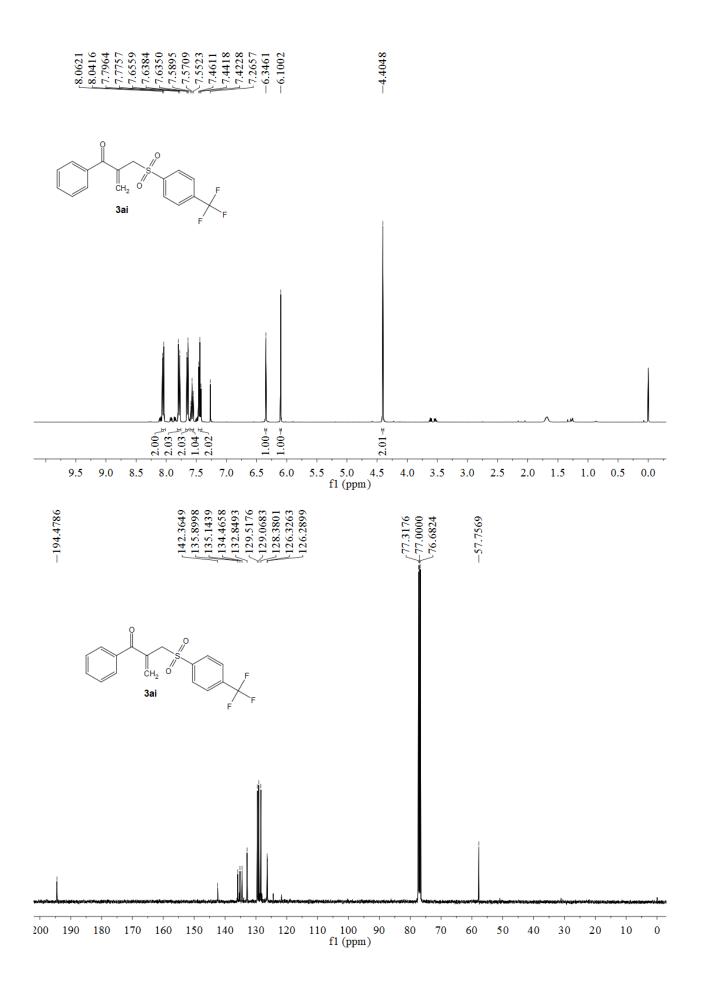
NMR Spectra for the compounds prepared

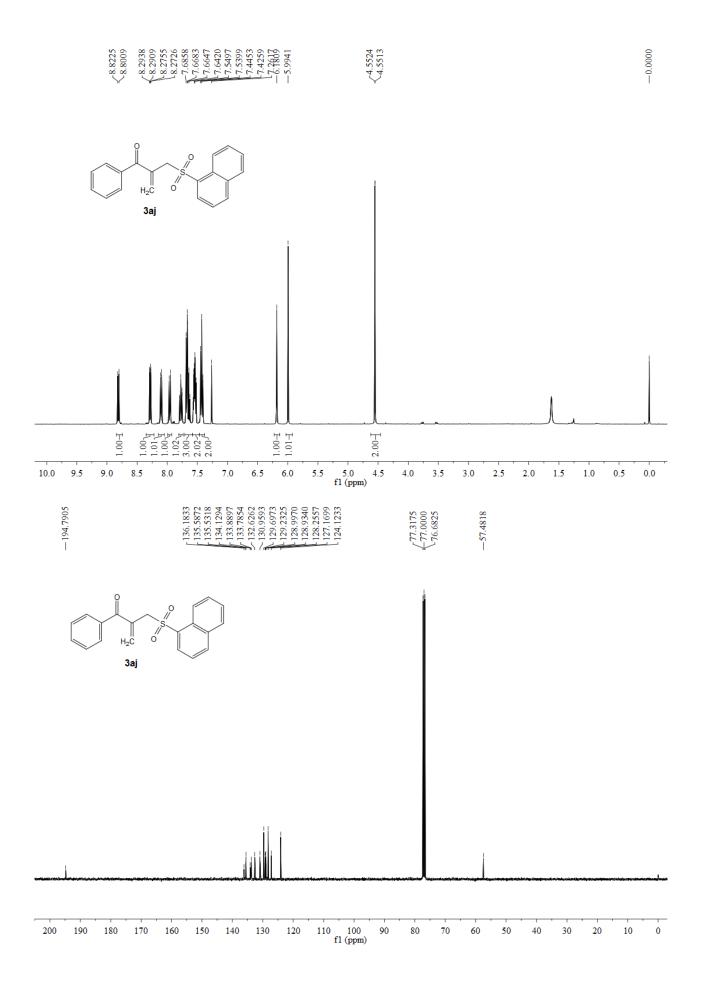


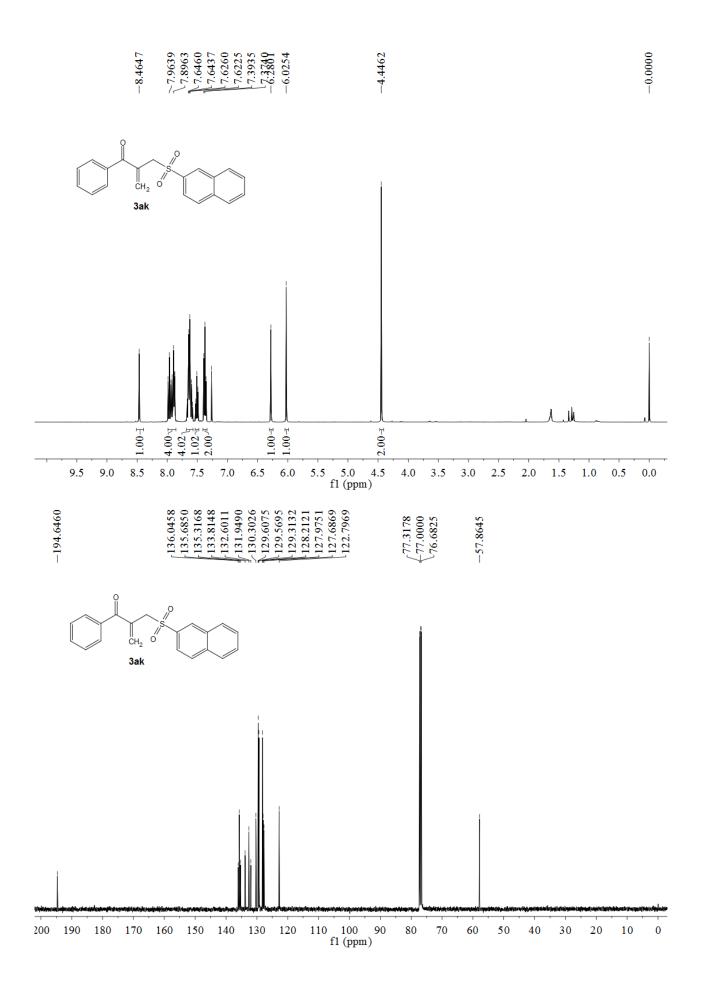




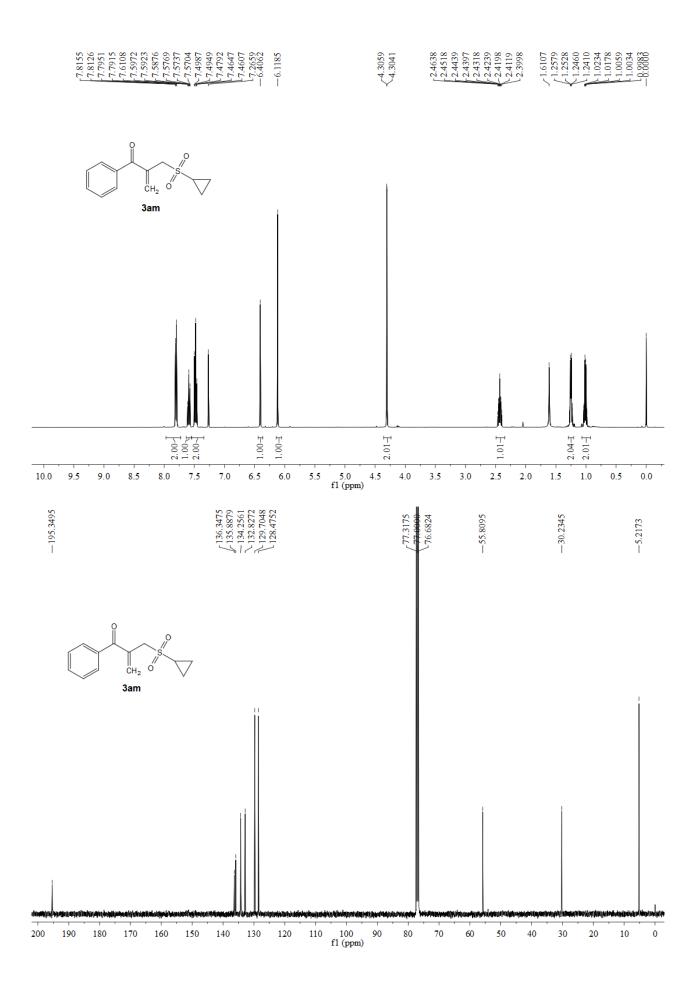


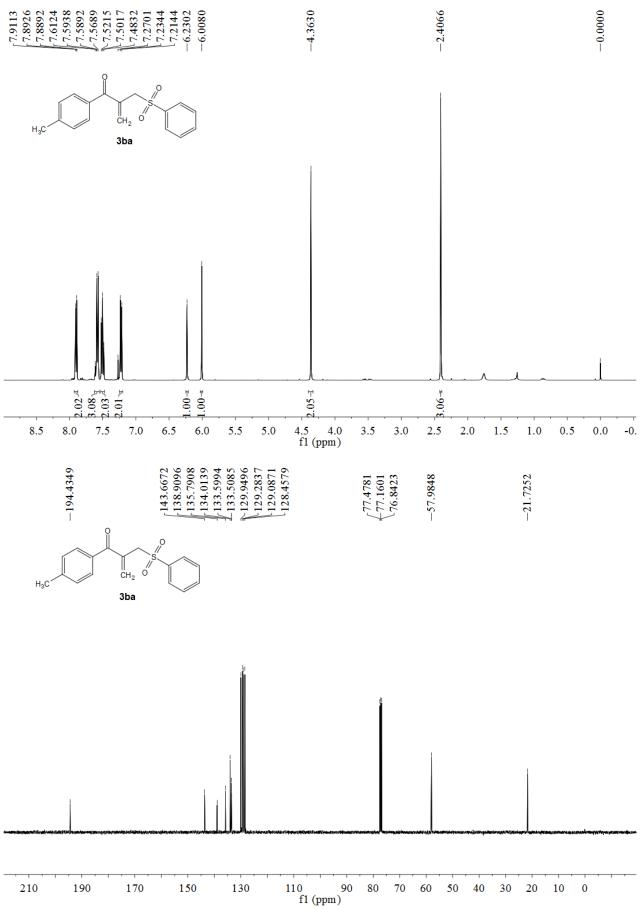

S27

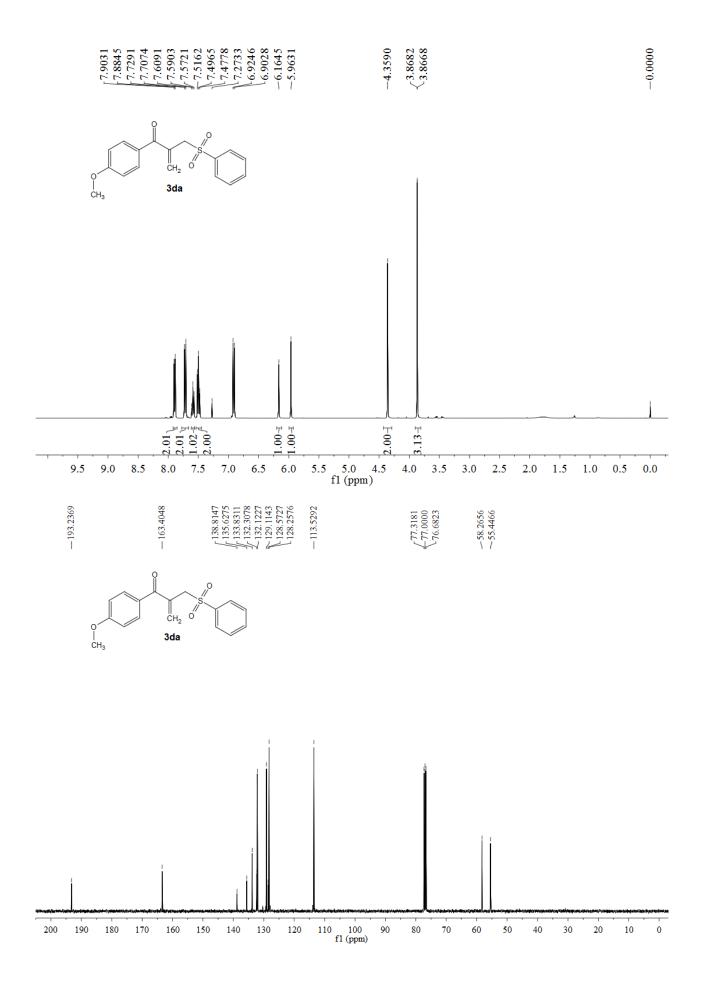


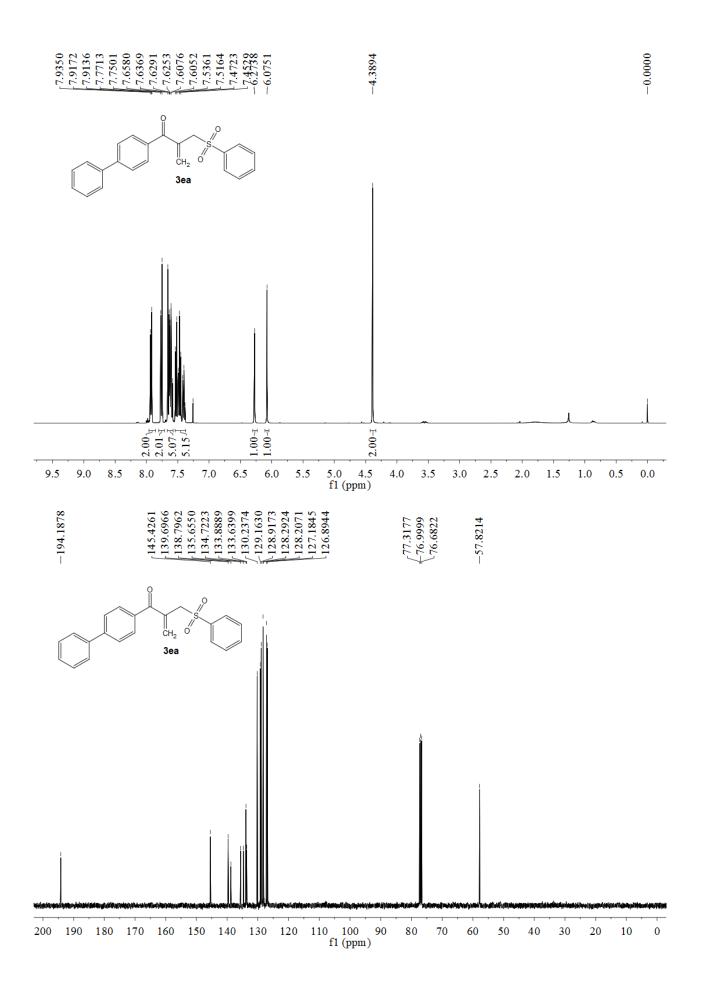


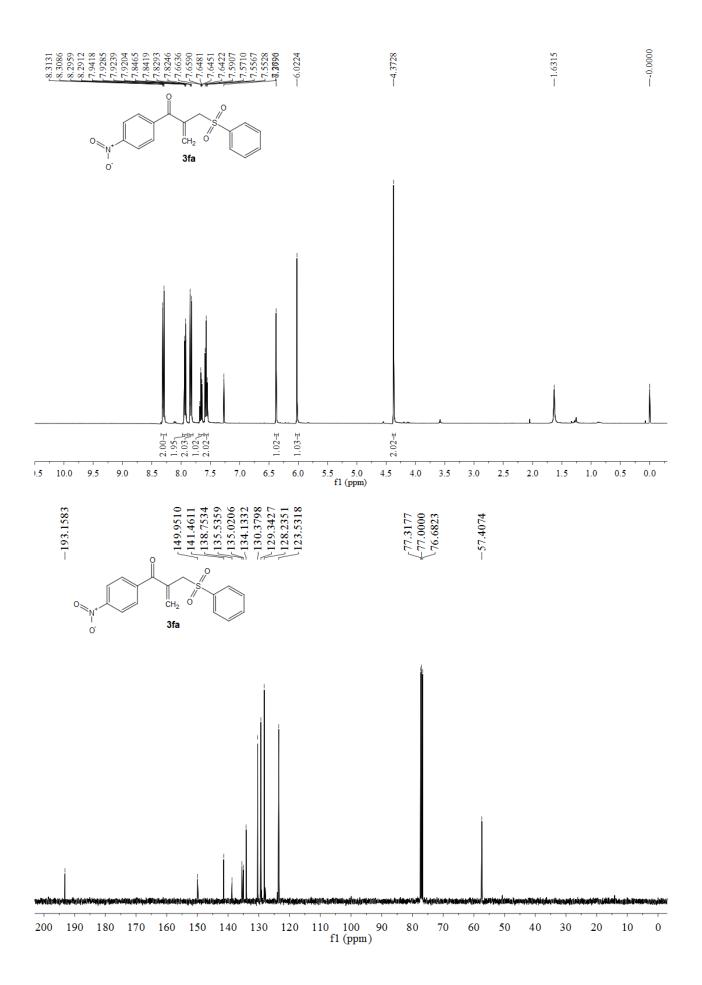


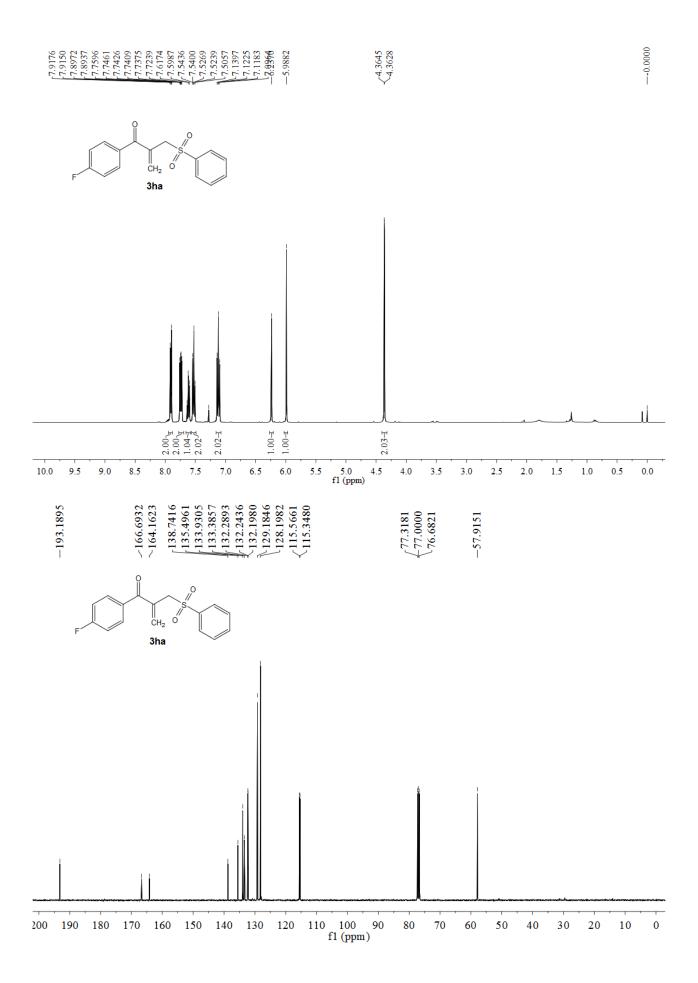


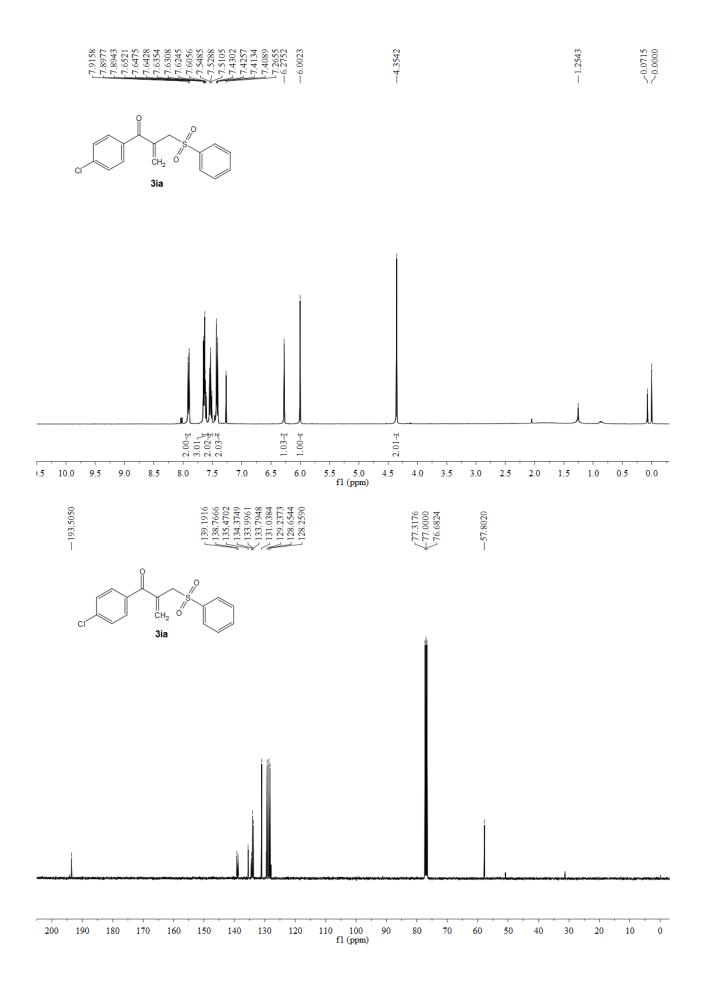


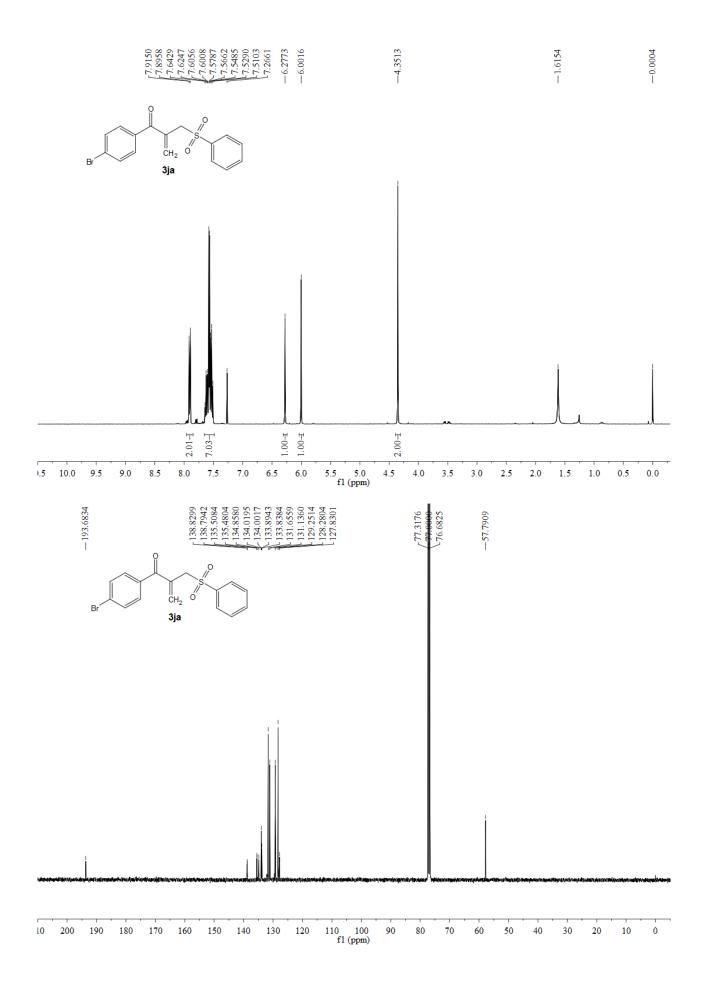


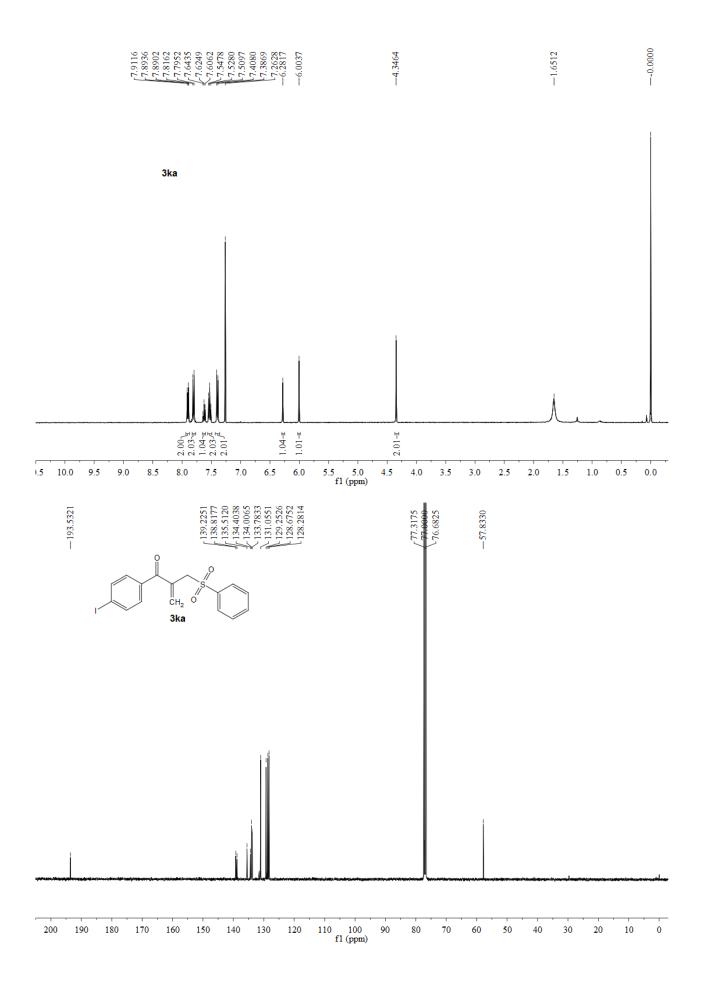

S35

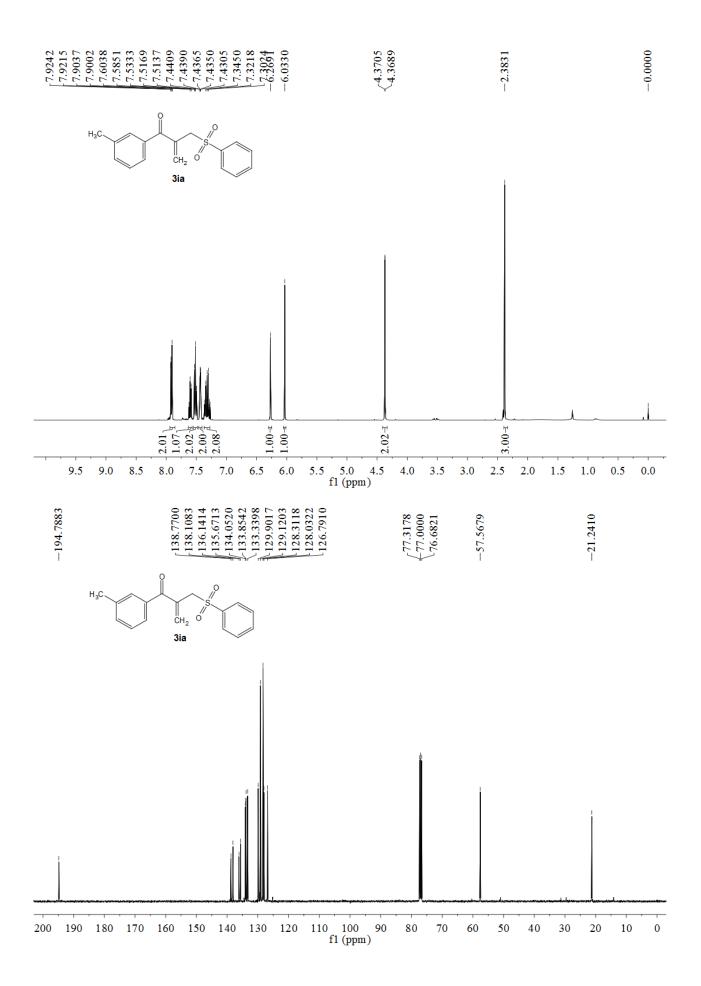


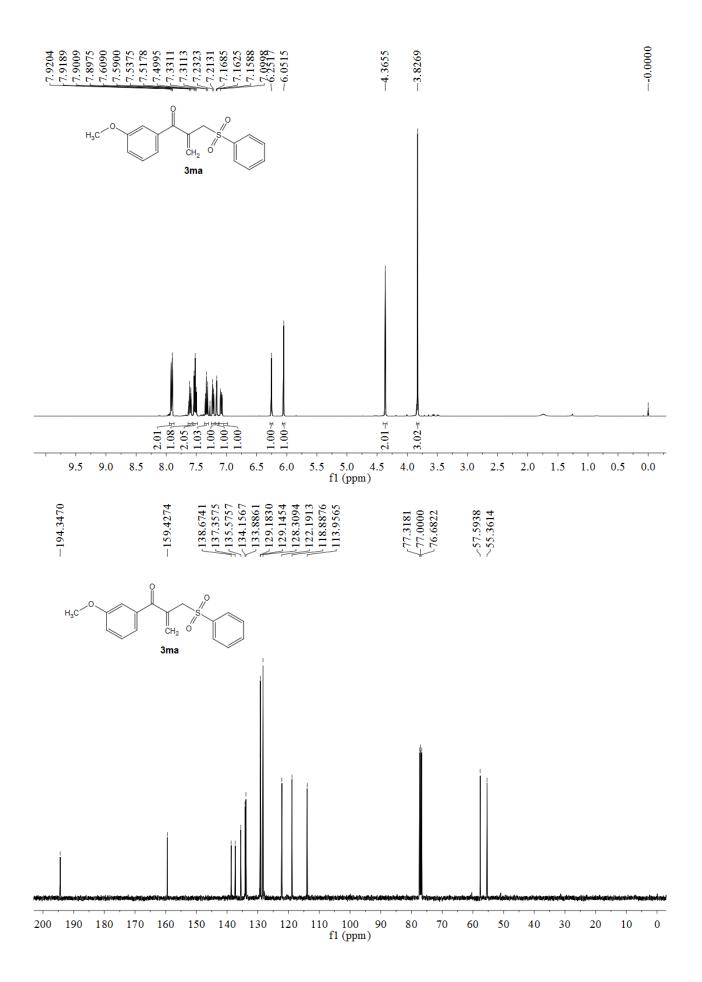


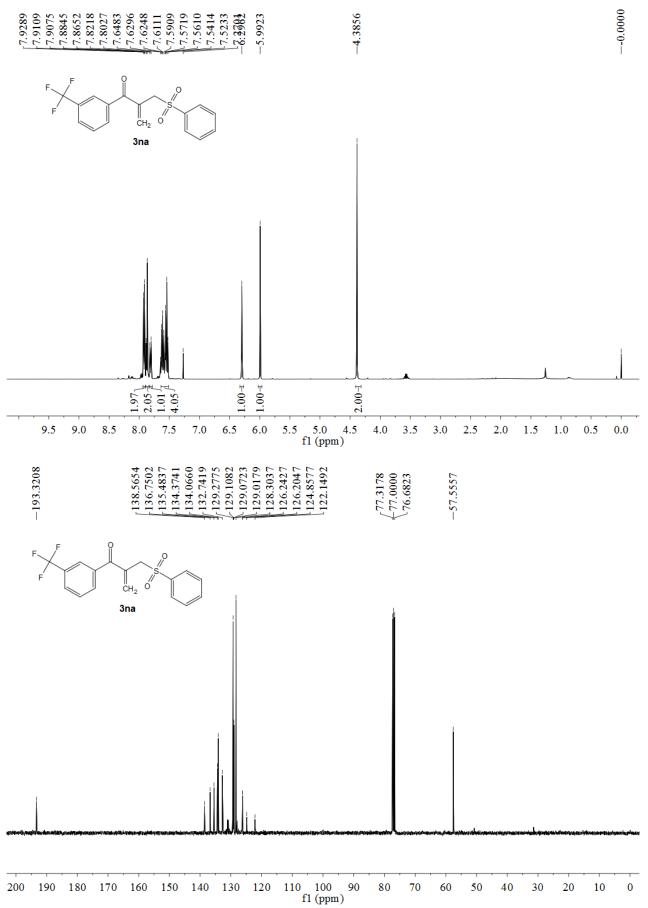


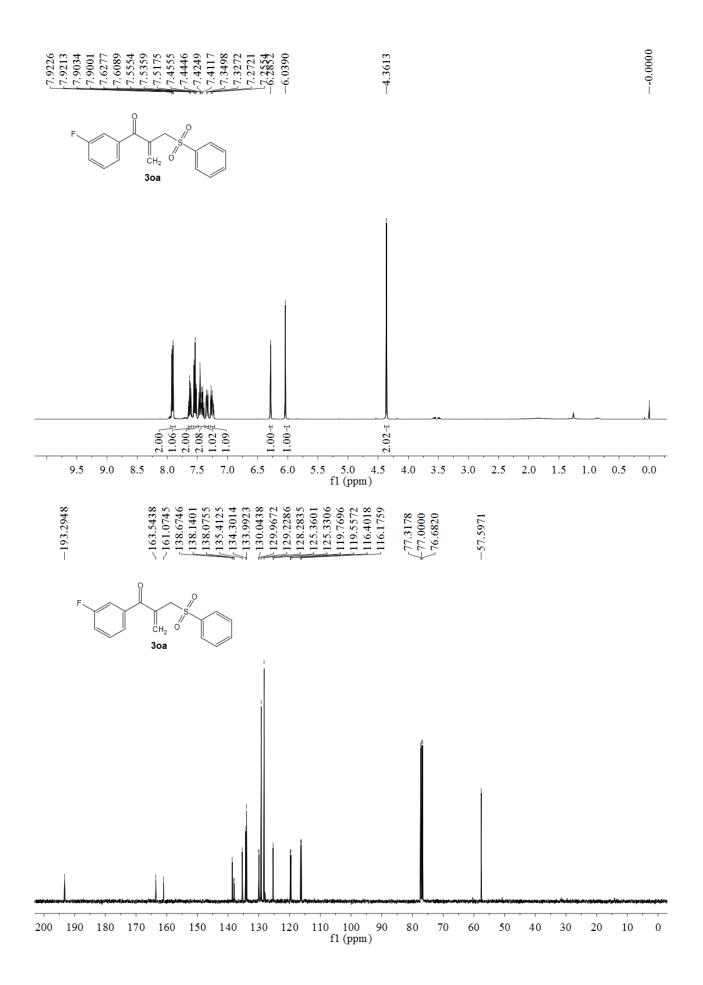


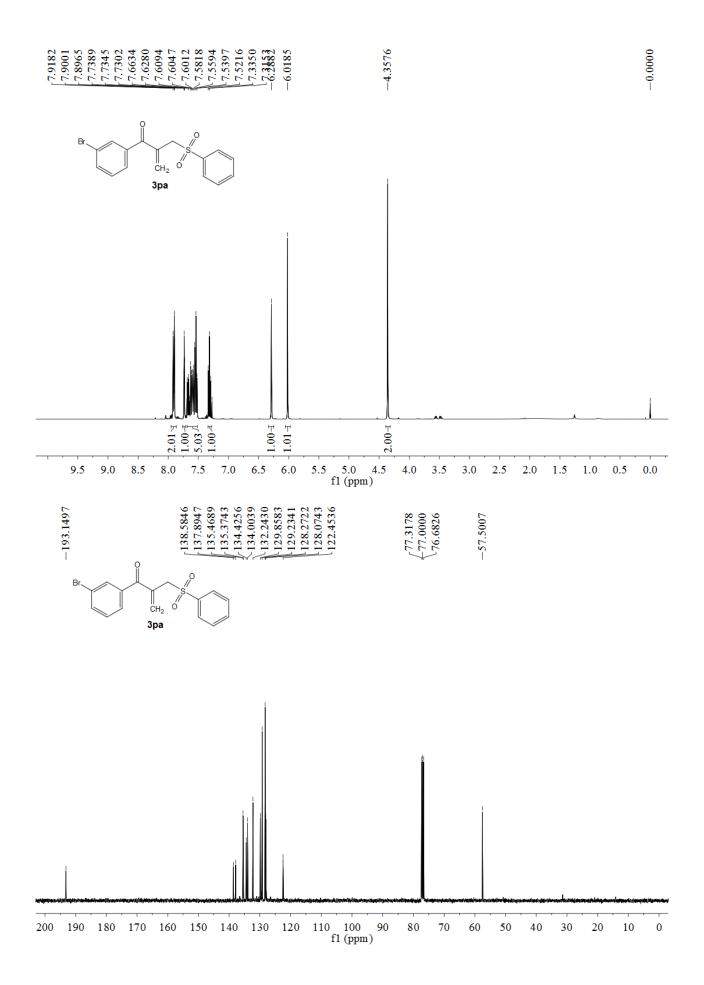


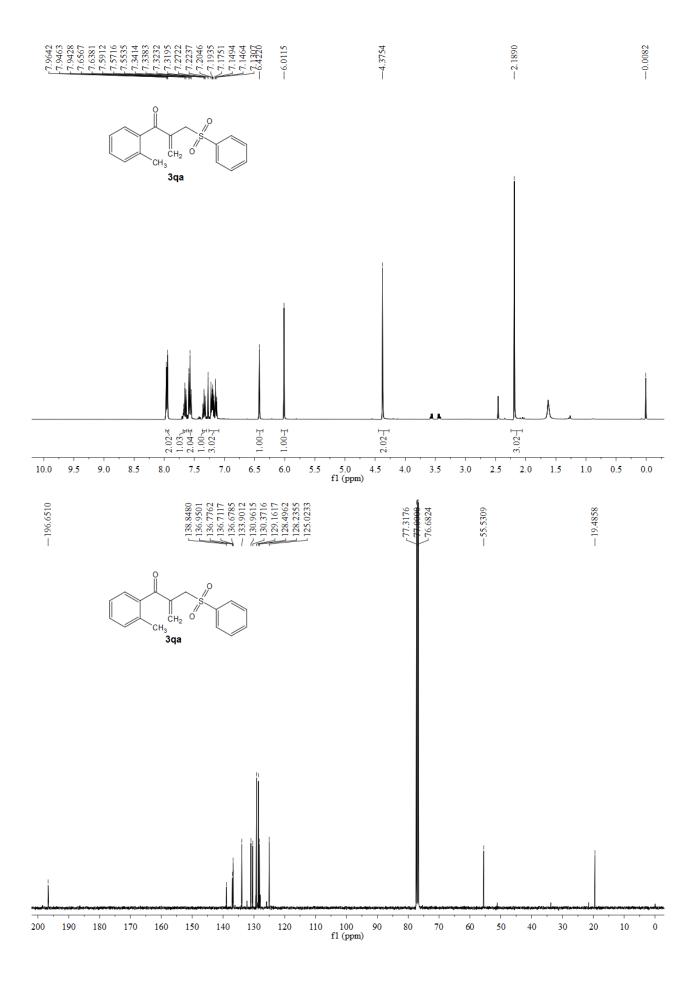


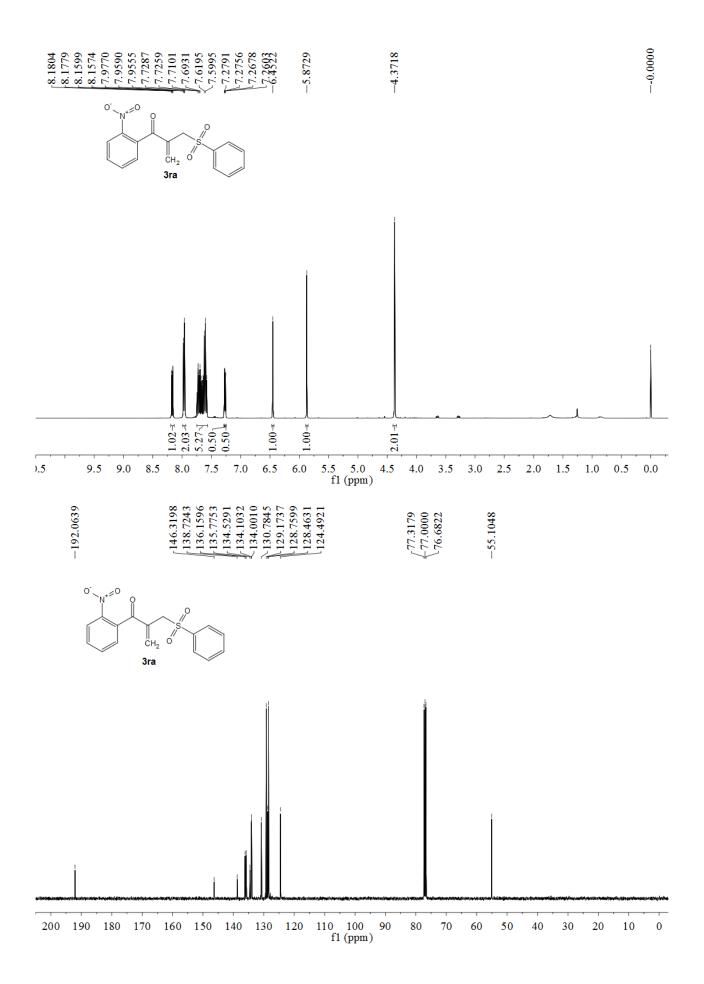


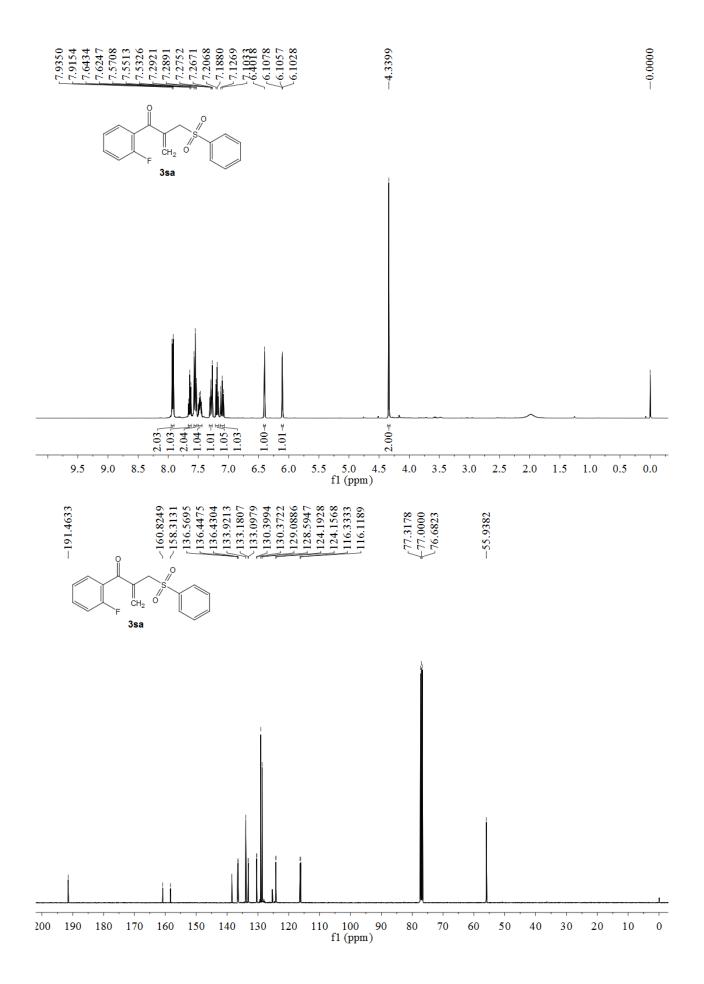


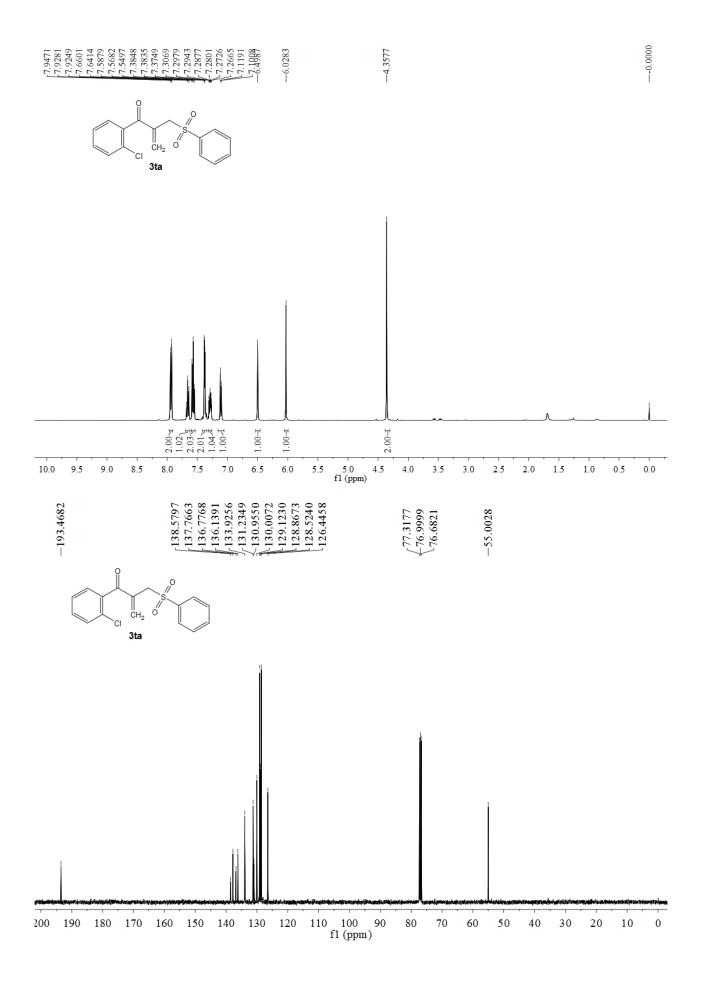


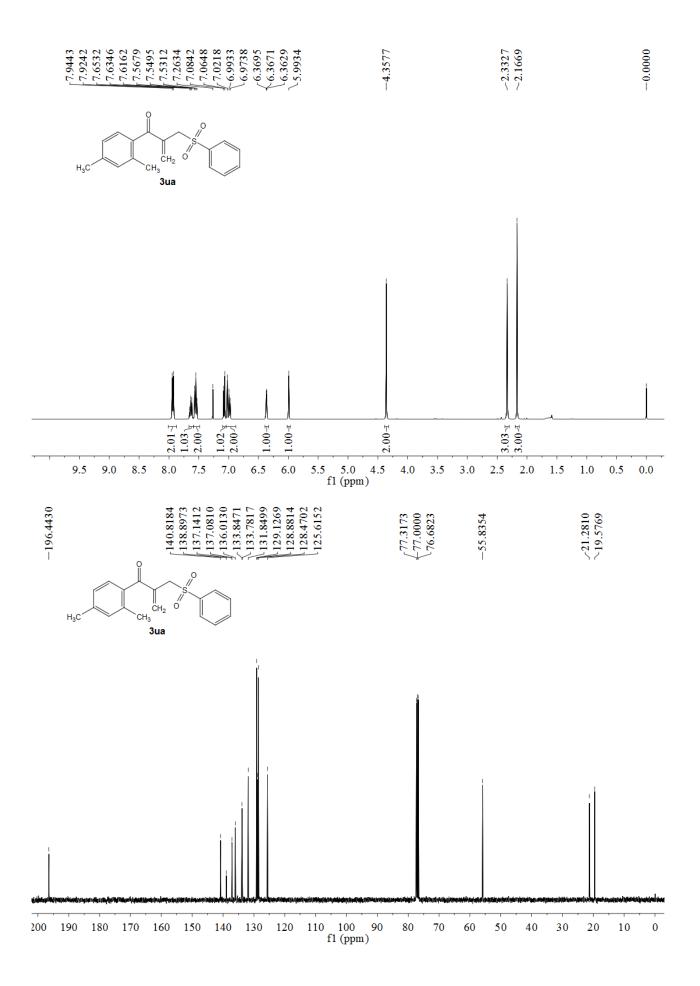


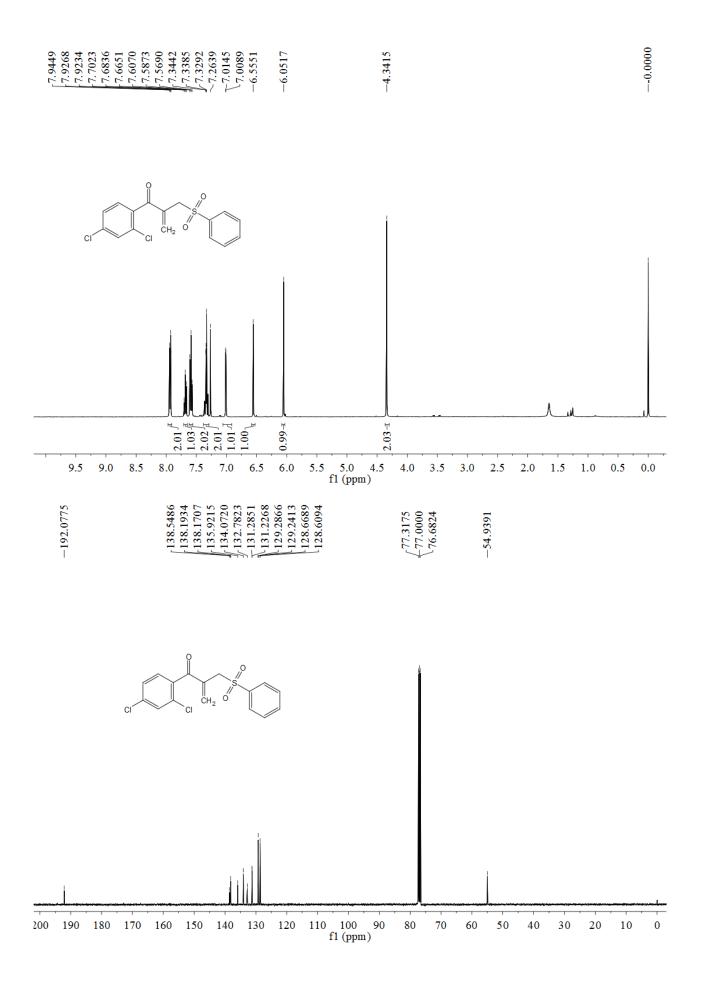

S47

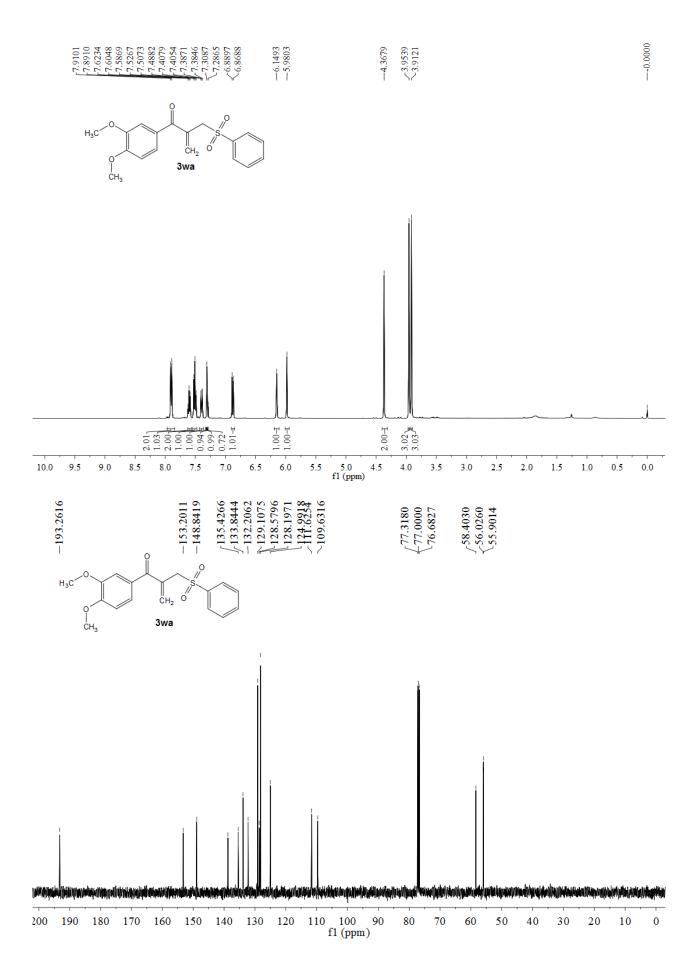


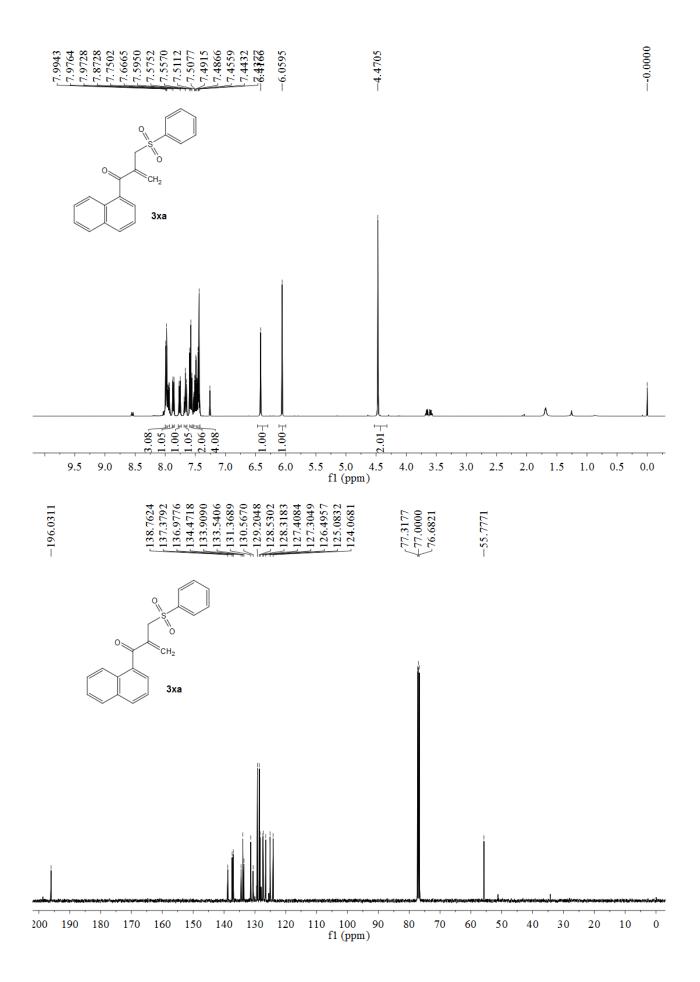


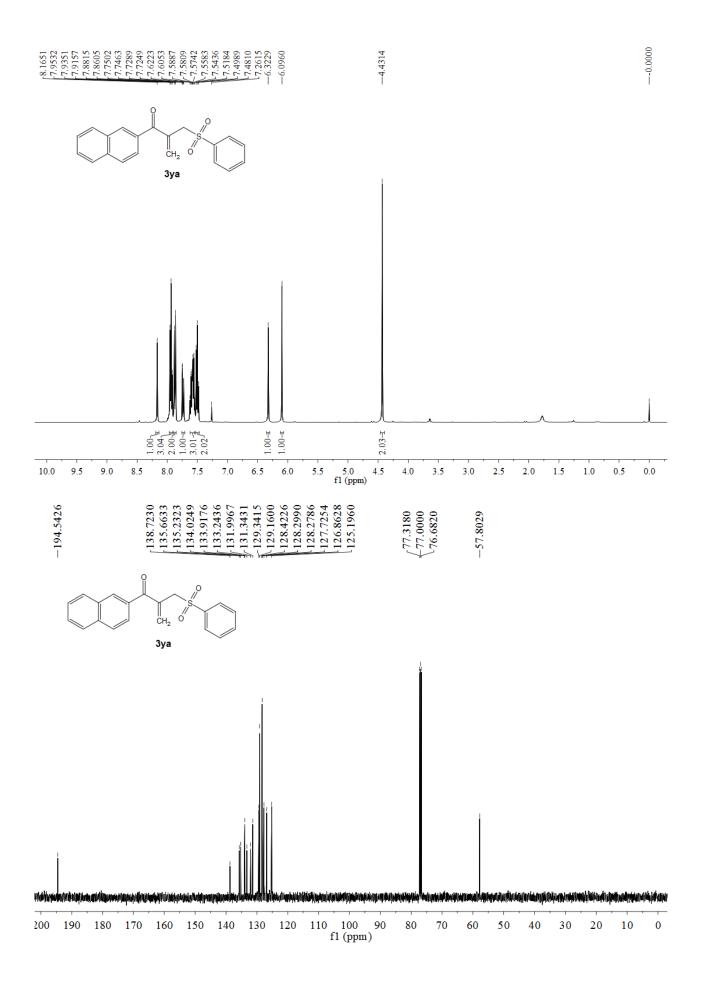


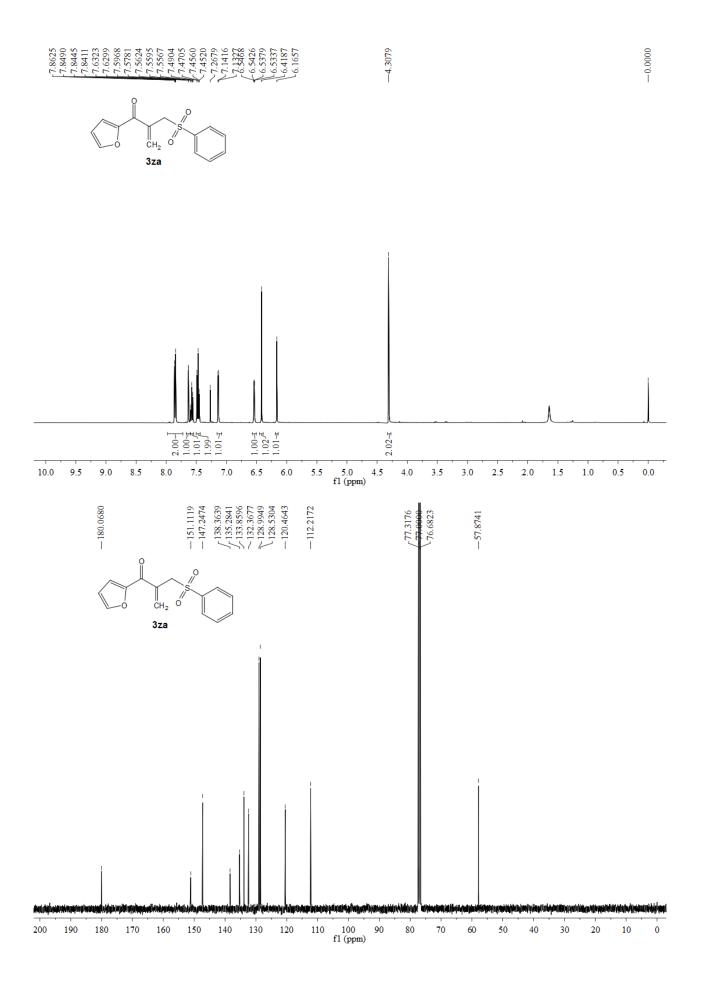


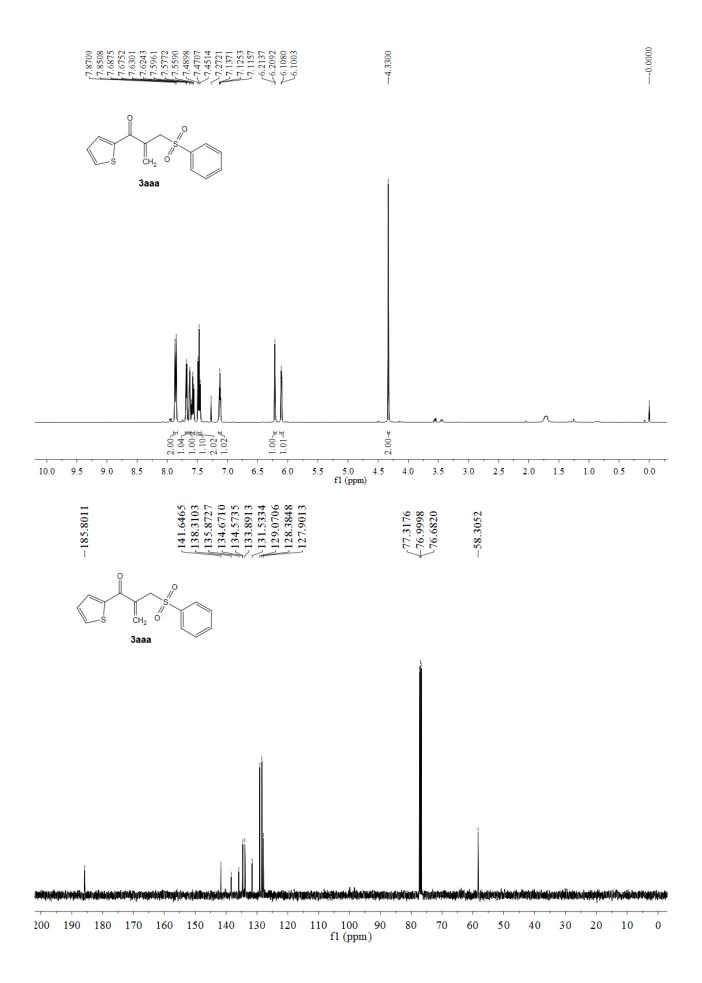


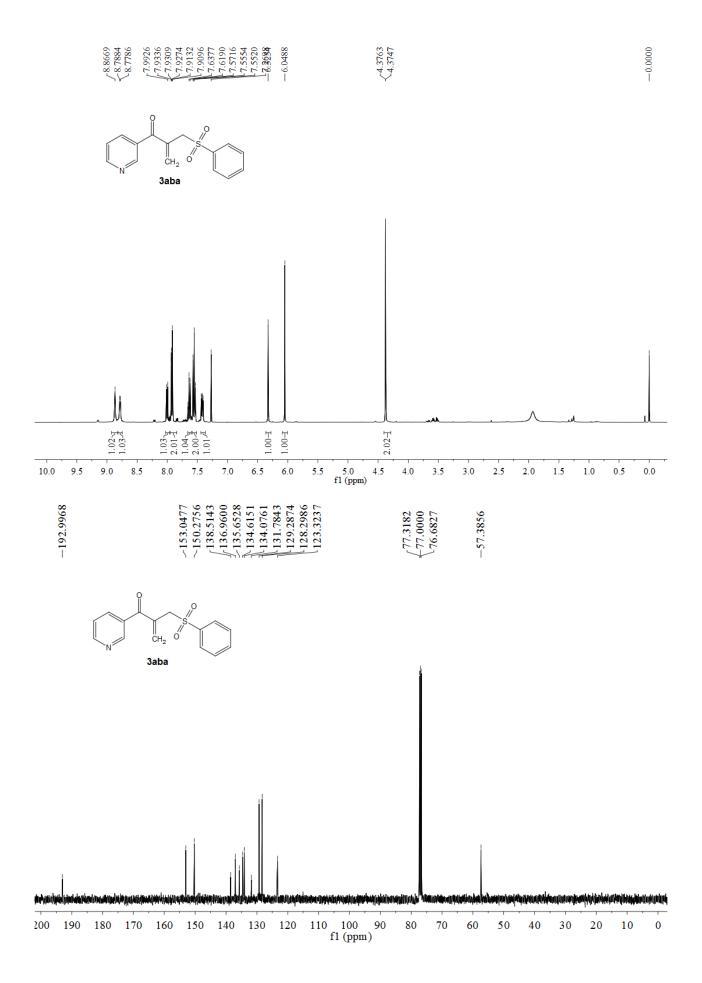


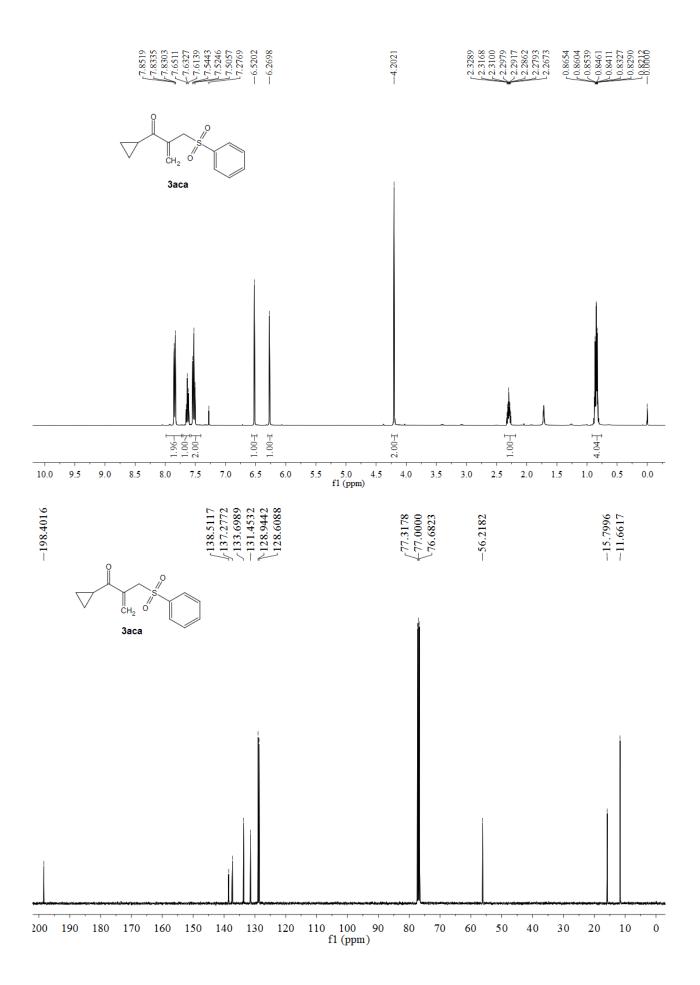


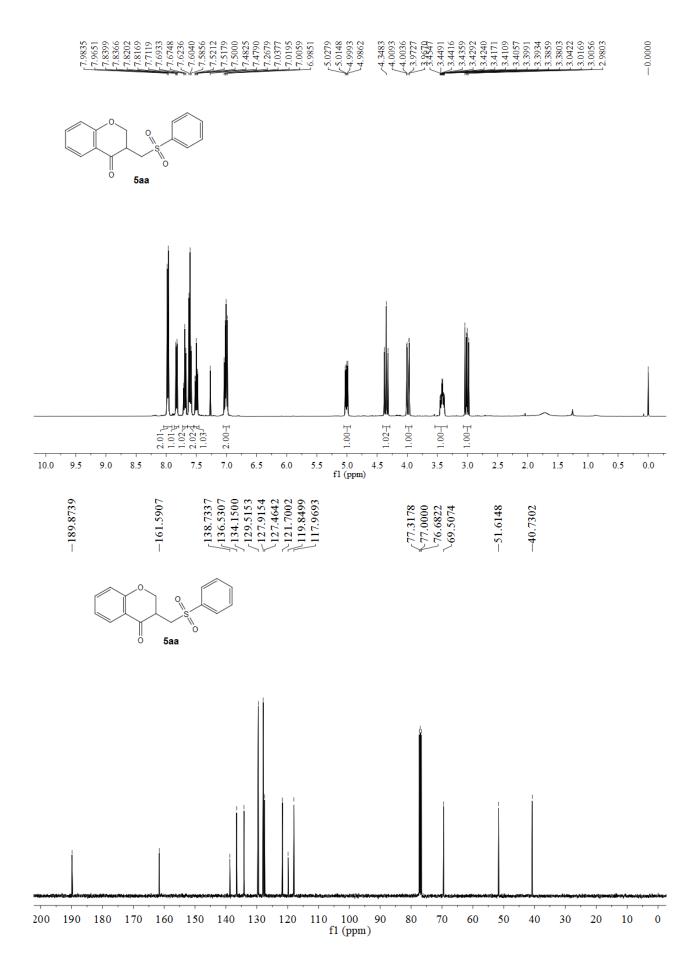


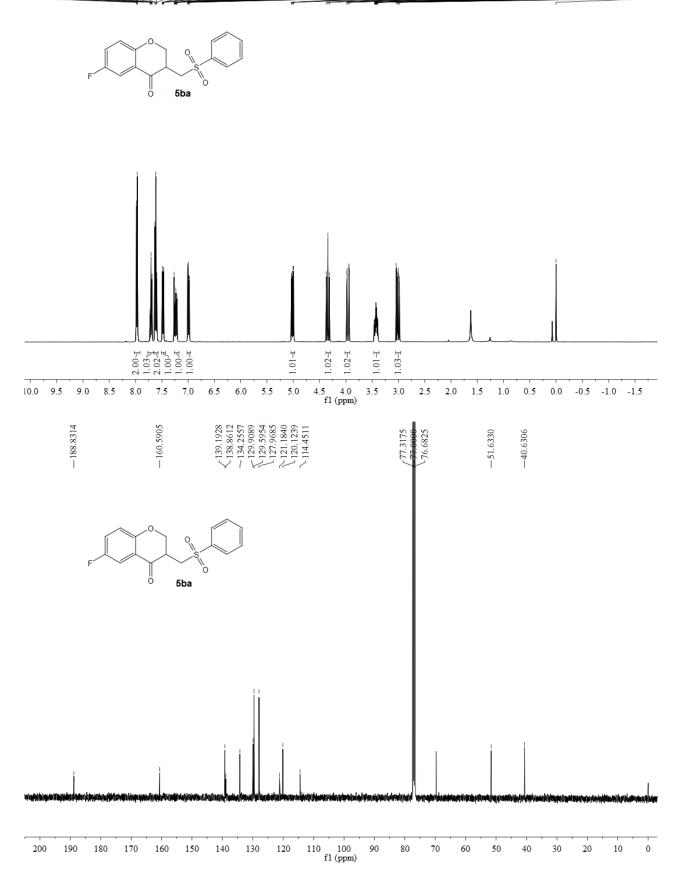


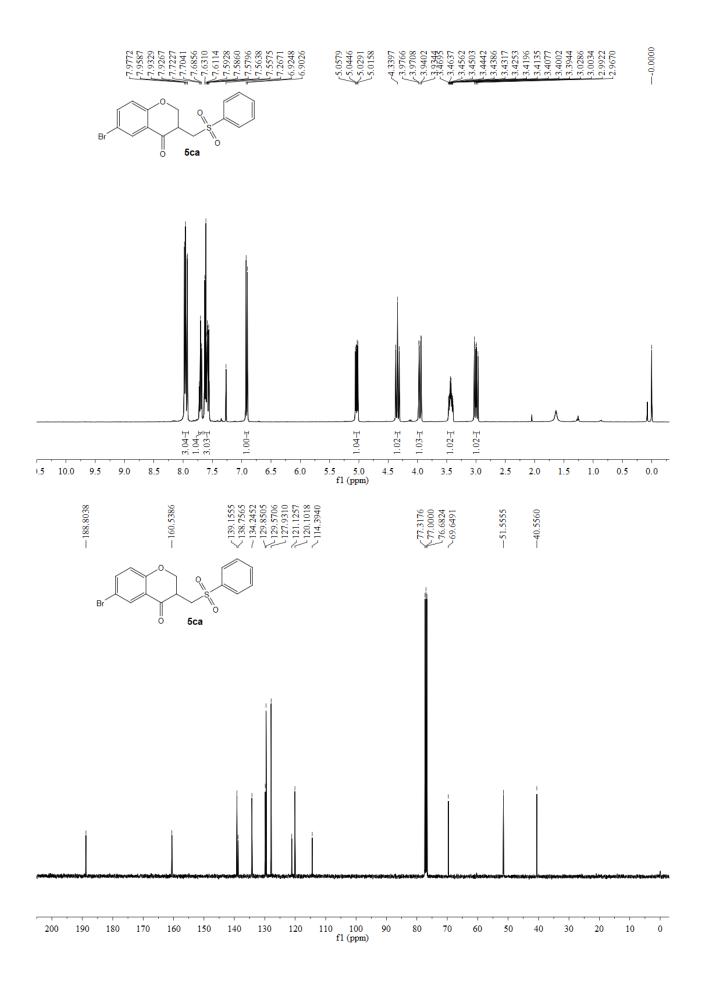


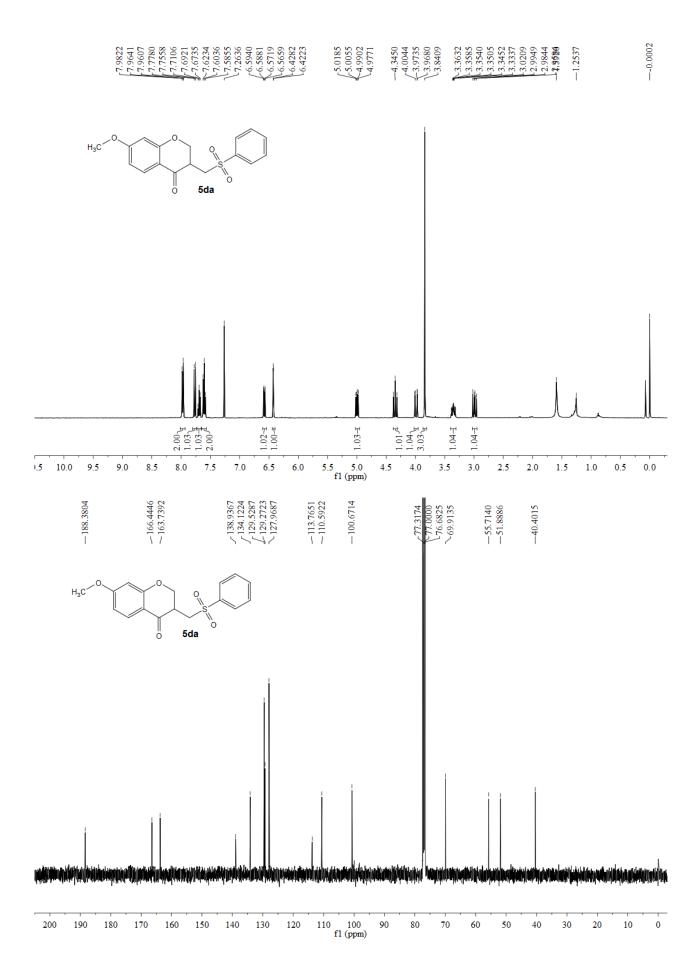


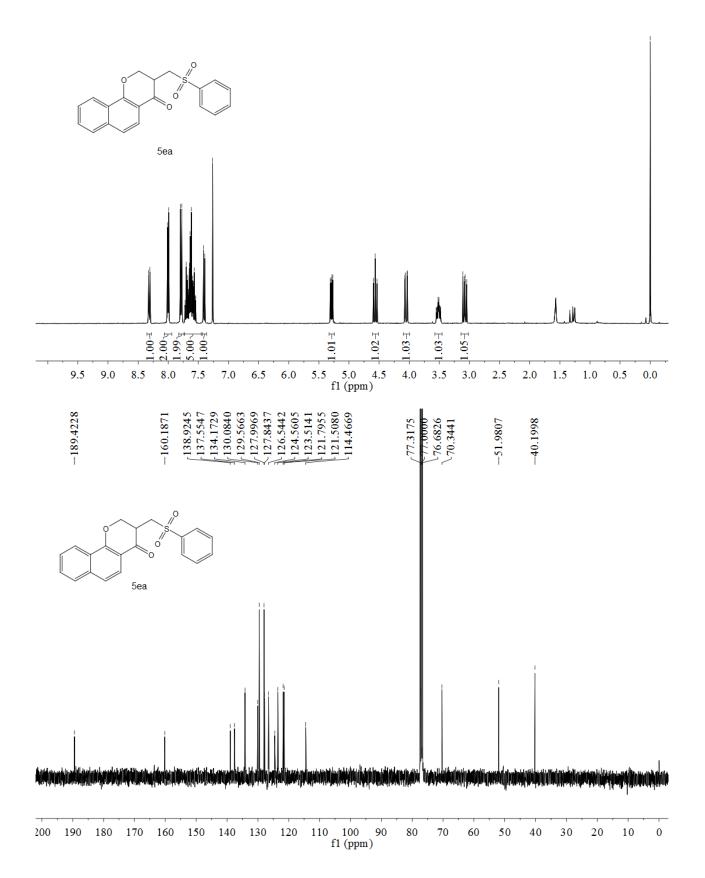

S59










7, 7, 9836 7, 7, 9619 7, 7, 9619 7, 7, 9619 7, 7, 7011 7, 7, 7011 7, 7, 7013 7, 7, 7013 7, 7, 7013 7, 7, 7013 7, 7, 5872 7, 7, 5872 7, 7, 5872 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 5873 7, 7, 2303 7, 7, 2303 7, 7, 2303 7, 23755 6, 9930 7, 2303 7, 23755 6, 9930 7, 2303 7, 23755 6, 9930 7, 23755 6, 9930 7, 23755 6, 9930 7, 23755 6, 9930 7, 23755 6, 9339 1, 2, 23755 6, 9339 4, 34111 5, 3, 24335 5, 3, 24335 5, 3, 24335 5, 3, 243355 5, 3, 243355 5, 3, 2433555 5, 3, 2435555

