Electronic Supplementary Material

Template-Free and Room Temperature Synthesis of Hierarchical Porous Zeolitic Imidazole

Framework Nanoparticles and Their Dye and CO₂ Adsorption

Hani Nasser Abdelhamid^{†,‡*}, Xiaodong Zou^{†*}

[†]Inorganic and Structural Chemistry and Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden

[‡] Department of Chemistry, Assuit University, 71515, Assuit, Egypt Email: <u>hany.abdelhameed@science.au.edu.eg; hani.nasser@mmk.su.se</u> (H.N. Abdelhamid); <u>xzou@mmk.su.se</u> (X. Zou)

Figure S1 XRD patterns of samples obtained at different Hmim: Zn ratios (NaOH, 0.2 mmol).

Figure S2 Pore size distribution of hierarchical porous ZIF-8 estimated from the N_2 sorption isotherms using NLDFT.

Figure S3 SEM images of ZIF-8 synthesized using a) 0.2 mmol and b) 1.0 mmol of NaOH (Hmim:Zn~35).

Figure S4 XRD of the synthesized materials using large scale synthesis.

Figure S5 TGA curve of ZIF-8 nanoparticles.

Figure S6 XRD patterns of 2D ZIF8-L synthesized using different amounts of NaOH (Hmim: $Zn \sim 8$).

Figure S7 TEM images of 2D ZIF-L using a) 0.01 mmol, b) 0.2 mmol, c) 1 mmol, and d) 2 mmol of NaOH (Hmim:Zn~8).

Figure S8 Chemical structures of the investigated dyes; a) methyl blue, b) rhodamine B, and c) methylene blue.

Figure S9 Photos showing time-dependent adsorption of a) RhB, and b) MB on ZIF-8 nanoparticles.

Figure S10 UV-vis absorption spectra for adsorption of a-b) RhB and c-d) MB (1000 mg/L) on ZIF-8 synthesised with a-c) 0 mmol and b-d) 0.02 mmol of NaOH.

Figure S11 UV-vis absorption spectra for MB adsorption on ZIF-8 synthesised with a) 0 mmol and b) 0.02 mmol of NaOH.

Figure S12 UV-vis absorption spectra for dyes MB, RhB and methylene blue on ZIF-8 synthesized using NaOH of a) 0 mmol, b) 0.02 mmol, c) 1 mmol, d) 2 mmol and e) 3 mmol, and the efficiency of MB adsorption.

Figure S13 SEM images of ZIF-8 using NaOH a-b) 0 mmol and c-d) 0.02 mmol before a-c) and after b-d) adsorption of MB.

Materials	Size	Synthesis	Porosity/surface	Dye	Efficiency%	Contact	Dof
	(nm)	condition	area			time	NEI.
ZIF-8	500 nm	Zn:Hmim: NH4OH 1:2:54	Nomesoporous structure and only microporous in ZIF-8, S _{BET} , and S _{Lan} area are 1007.4 and1322.9 m ² g ⁻¹ , respectively.	MB	99.5	30 min	1
ZIF-8- SLM	14.8- 15.3 nm	Zn:Hmim: MeOH 1:4:1, RT, 1h	ND	RhB and MB	88.3-99.1	10 h	2
ZIF-8 or ZIF-67	3.5– 4.5 μm	Zn ²⁺ : Hmim: NH ₃ : TEA: H ₂ O molar compositions of 1: 2: 32: (0-32): 157	Mesoporous volume is 0.04- $0.14 \text{ cm}^3 \text{ g}^{-1}$, S_{BET} is 395- $441 \text{ m}^2 \text{g}^{-1}$	RhB, anionic methyl orange and cationic methylene blue	30-89	2h	3
ZIF-8	50- 200	Zn:Hmim: NaOH 1:35:0-2.3	Pore size 10-60 nm, S_{BET} , and S_{Lan} area are 1320-1708 m ² g ⁻¹ and 1738-1837 m ² g ⁻¹ , respectively	MB	> 95	< 10 min	Here

Table S1. Comparison among different ZIF-8 materials reported for dye adsorption

Note: S_{BET}, BET surface area; S_{Lan}, Langmuir surface area; ND, not detected.

- 1 Y. Feng, Y. Li, M. Xu, S. Liu and J. Yao, *RSC Adv.*, 2016, **6**, 109608–109612.
- 2 M. Isanejad, M. Arzani, H. R. Mahdavi and T. Mohammadi, *J. Mol. Liq.*, 2017, **225**, 800–809.
- 3 Y. Li, K. Zhou, M. He and J. Yao, *Microporous Mesoporous Mater.*, 2016, 234, 287–292.