Electrochemical Synthesis of Methyl Sulfoxides from Thiophenols /

Thiols and Dimethyl Sulfoxide

Ke-Si Du, Jing-Mei Huang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China

Email: chehjm@scut.edu.cn

Supporting Information

Table of contents

General information	S2
Experimental procedures	S2
Procedure for scale-up experiments	S3
Cyclic Voltammograms	
Detection of the reaction intermediates	
Copies of NMR spectra of products	S6

General information

Unless otherwise noted, all the chemicals were purchased commercially, and used without further purification. Dimethyl sulfoxide (DMSO, $H_2O \le 0.2\%$) was purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd. Analytical thin layer chromatography (TLC) plates and the silica gel (300-400 mesh) for column chromatography were purchased from Qingdao Haiyang Chemical and Special Silica Gel Co., Ltd.

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on Bruker Advance III-400 spectrometers (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR). The chemical shifts (δ) were given in part per million relative to internal tetramethyl silane (TMS, 0 ppm for ¹H), CDCl₃ (δ 7.26 ppm for ¹H NMR and δ 77.1 ppm for ¹³C). Multiplicities were given as: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); m (multiplets), etc. The number of protons (n) for a given resonance was indicated by nH.

GC-MS analyses were obtained on a Thermo Scientific Trace GC Ultra Gas Chromatograph equipped with a TG-5MS 30 m \times 0.25 mm ID \times 0.25 μ m capillary column (Thermo Scientific). The GC was directly interfaced to a Thermo Scientific DSQ single quadrupole mass spectrometer (EI, 70 eV). The following GC oven temperature programs were used: 80 °C hold for 2 min, ramp 25 °C/min to a final temperature of 280 °C, and hold for 3 min. Helium was used as a carrier gas, with a constant column flow of 1.0 mL/min. The injector temperature was held constant at 260 °C.

Electrolysis reactions were conducted using a Model QJ3003T (32 V) power supply purchased from Qiujing Instruments (Shenzhen) Co., Ltd. The current was recorded with a Model UT33D digital multimeter purchased from Uni-Trend GroupCo., Ltd.

Cyclic voltammetry (CV) analysis was performed on CHI660D chenhua shanghai (http://www. Chinstr.com/) with a conventional three-electrode cell, using a platinum electrode (d = 2 mm) as working electrode, a Pt wire as counter electrode and saturated calomel electrode (SCE) as a reference electrode. Cyclic voltammograms were recorded at 100 mV/s scan rate.

Experimental Procedure

A round-bottomed flask (5 mL) was added thiophenols **1a** (0.3 mmol), FeCl₂ (0.06 mmol), DMSO **2a** (5 mL), 30% aqueous H₂O₂ (0.4 mL, 3.6mmol), and NH₄ClO₄ (0.2 M). The reaction flask was equipped with Pt foils as anode and cathode ($1.0 \times 1.5 \text{ cm}^2$). The solution was electrolyzed at a constant current (5 mA) for 7.5 h (4.7 F/mol) at ambient temperature. After electrolysis, the mixture was quenched by water and extracted with ethyl acetate (3×15 mL). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. Purified product **3a** was obtained after column chromatography on silica gel using a solvent mixture of petroleum ether and ethyl acetate.

Procedure for scale-up experiments

A round-bottomed flask (100 mL) was added **1a** (3 mmol), FeCl₂ (0.6 mmol), DMSO **2a** (50 mL), 30% aqueous H_2O_2 (4 mL) and NH_4ClO_4 (0.2 M). The reaction flask was equipped with Pt foils as anode and cathode (1.0 × 1.5 cm²). The solution was electrolyzed at a constant current (5 mA) at ambient temperature for 54 h (3.4 F/mol). After electrolysis, the mixture was quenched by water and extracted with ethyl acetate (3 × 50 mL). The combined organic layer was washed with brine (50 mL) and dried over MgSO₄. Purified product **3a** was obtained after column chromatography on silica gel using a solvent mixture of petroleum ether and ethyl acetate.

A round-bottomed flask (100 mL) was added 1d (6 mmol), FeCl₂ (1.2 mmol), DMSO 2a (100 mL), 30% aqueous H₂O₂ (8.0 mL) and NH₄ClO₄ (0.2 M). The reaction flask was equipped with Pt foils as anode and cathode ($1.0 \times 1.5 \text{ cm}^2$). The solution was electrolyzed at a constant current (5 mA) at ambient temperature for 98 h (3.0 F/mol). After electrolysis, the mixture was quenched by water and extracted with ethyl acetate ($3 \times 100 \text{ mL}$). The combined organic layer was washed with brine (50 mL) and dried over MgSO₄. Purified product 3d was obtained after column chromatography on silica gel using a solvent mixture of petroleum ether and ethyl acetate.

Cyclic Voltammograms

a

b

Figure S1. Cyclic voltammograms of the relevant compounds in DMSO (0.2 M NH_4CIO_4 as electrolyte), using platinum electrode as working electrode (d = 2 mm), a Pt wire as counter electrode

and a saturated calomel electrode (SCE) as a reference electrode, at a scan rate of 0.1 V/s: (a) none. (b) **3a** (0.05 M). (c) **6a** (0.05 M). (d) **7a** (0.05 M). (e) FeCl₃ (0.020 M). (f) H_2O_2 (0.200 M). (g) FeCl₂ (0.005 M) + H_2O_2 (0.200 M). (h) a+e.

Detection of the reaction intermediates by GC-MS experiment

The reaction conditions were the same as the general procedure as shown in page S2. For the GC-MS analysis of the reaction mixture, sample was taken with a syringe and was then diluted with EtOAc.

Retention time for intermediates and product:

4-methyl thiophenol **1a** (t = 2.63 min), methyl *p*-tolyl sulphide **6a** (t = 3.56 min), methyl *p*-methylphenyl sulfoxide **3a** (t = 5.16 min), bis(*p*-tolyl)disulfide **7a** (t = 7.90 min), internal standard: *n*-dodecane (t = 3.66 min).

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

$\begin{array}{c} & 2.7157\\ & 2.6829\\ & 2.6829\\ & 2.6209\\ & 2.5207\\$

-7.2602

-7.2596

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0