Hollow fiber supported TiO₂ monolithic microextraction combined with capillary HPLC-ICP-MS for sensitive absolute quantification of phosphopeptides

Shan Li, Beibei Chen*, Man He*, Bin Hu

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),

Department of Chemistry, Wuhan University, Wuhan 430072, China

* Corresponding author: bbchen@whu.edu.cn; heman@whu.edu.cn; Fax: +86-27-68754067; Tel:

+86-27-68752162;

Supplementary materials

Figure S1-S10

Fig. S1 Effect of the flow rate of added O_2 on the signal intensity of ${}^{31}P^{16}O$.

Fig. S2 ICP-CRC-MS response of Na₂HPO₄, MPA, EMPA and PMPA (c: 100 ng as P mL⁻¹).

Fig. S3 Signal profile of Na₂HPO₄ at different concentrations obtained by capHPLC-ICP-CRC-

MS (a) and the linear-fit curve (b).

Fig. S4 Signal ratio of Na_2HPO_4 in mixed solvent A and B to that in solvent A obtained by capHPLC-ICP-CRC-MS. (solvent A: 0.1% (v/v) formic acid in water, solvent A: 0.1% (v/v) formic acid in acetonitrile)

Fig. S5 Scanning electron micrographs (a)-(f) of TiO_2 monolith prepared by the method of No. 2,

3, 5, 6, 8 and 9, respectively.

Fig. S6 Adsorption efficiency of β -casein peptide standards on different TiO₂ monoliths.

Fig. S7 Scanning electron micrograph of TiO_2 monolith prepared in fused silica capillary (50 μ m

i.d.).

Fig. S8 XRD of HF-TiO₂ monolith. Blue line was the theoretical XRD pattern for anatase TiO₂.

Fig. S9 Lifespan of HF-TiO₂ monolith.

Fig. S10 Effect of eluent flow rate (a) and eluent volume (b) on the signal intensity of phosphopeptides by HF-TiO₂ monolithic microextraction-capHPLC-ICP-CRC-MS.