La-Ce isotope measurements by Multicollector-ICPMS

Electronic Supplementary Information

Christiane Schnabel^{*1,2,3}, Carsten Münker^{1,2}, Erik Strub^{3,4}

¹Institut für Geologie und Mineralogie, Universität zu Köln, Zülpicherstr. 49b, 50674 Cologne, Germany

²Steinmann Institut, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany

³Abteilung Nuklearchemie, Universität zu Köln, Zülpicherstr. 45, 50674 Cologne, Germany ⁴Forschungszentrum Jülich GmbH, INM-5, 52425 Jülich, Germany

*corresponding author: cschnab2@uni-koeln.de

ESI Figure 1 Cerium isotope ratios obtained for rock standard BCR-2. The results are expressed in ε^{138} Ce relative to CHUR (Bellot et al³). The mean value for the 5 BCR-2 samples using a standard Ni sample cone and a H-type skimmer cone is analytically indistinguishable from the mean value for the 4 BCR-2 samples using a standard Ni sample cone and a X-type skimmer cone.

ESI Table 1 Typical MC-ICPMS instrument operating conditions during Ce isotope ratio measurements

Operation power [W]	1200
Sample gas flow rate [L/min]	0.9
Auxiliary gas flow rate [L/min]	0.7
Cooling gas flow rate [L/min]	15
Nebulizer	100µL/min MicroFlow PFA
ARIDUS II [™] sweep gas flow rate [L/min]	5.6
ARIDUS II [™] nitrogen gas flow rate [L/min]	0.06

ESI Table 2 Effects of interfering Ba, Ce and Nd on the accuracy of measured ε^{138} Ce and ε^{142} Ce values. Analyses were performed using a 600 ppb JMC-304 solution doped with variable amounts of the interfering elements Ba, La and Nd.

ratio	ε ¹³⁸ Ce	ε ¹⁴² Ce
¹³⁷ Ba/ ¹⁴⁰ Ce		
4.22E-06	0.17±0.23	
2.45E-05	0.78±0.31	
1.18E-04	4.20±0.38	
2.33E-04	8.42±0.35	
1.17E-03	41.05±1.11	
¹³⁹ La/ ¹⁴⁰ Ce		
2.37E-04	-0.25±0.35	
1.72E-03	-0.28±0.38	
1.91E-02	-0.08±0.39	
9.50E-02	1.22±0.44	
1.96E-01	4.02±0.27	
¹⁴⁴ Nd/ ¹⁴⁰ Ce		
5.00E-06		-0.19±0.17
2.48E-05		-0.12±0.14
2.54E-04		-0.23±0.17
6.18E-03		-1.37±0.19
1.34E-02		-2.57±0.19
2.60E-02		-4.93±0.25
5.18E-02		-9.65±0.20

ESI Table 3 Results for long term Ce isotope measurements of (i) Cologne-AMES and (ii) Mainz-AMES. The weighted means of ε^{138} Ce are +0.83±11ppm for Cologne-AMES and +2.61±9ppm for Mainz-AMES (all 2 r.s.d). *measurement session, where data were collected using an X-skimmer cone instead of an H-type skimmer cone.

Standard	number of	Session	ε ¹³⁸ Ce	2 r.s.e
	measurements		(JMC-304)	[ppm]
Cologne-AMES	3	Session 1	0.67	0.16
	3	Session 2	0.89	0.04
	3	Session 3	0.98*	0.04
	2	Session 4	0.76	0.03
	2	Session 5	1.11	0.13
	4	Session 6	0.99	0.28
	11	Session 7	0.76	0.11
	15	Session 8	0.54	0.09
	15	Session 9	0.67	0.07
	15	Session 10	0.77	0.08
Mainz-AMES	3	Session 1	2.66	0.12
	3	Session 2	2.57	0.04
	3	Session 3	2.67*	0.15
	2	Session 4	2.54	0.07
	3	Session 5	2.83	0.29
	3	Session 6	2.61	0.18
	11	Session 7	2.46	0.14

ESI Table 4 Results of repeated measurements of the absolute $^{138}Ce/^{136}Ce$ *ratio of the Mainz-AMES standard.* In our study, the $^{138}Ce/^{136}Ce$ ratios were measured using $^{136}Ce/^{140}Ce$ 0.002124072 21,36 or $^{136}Ce/^{142}Ce=0.01688^{36}$ as normalization ratio.

number of	¹³⁸ Ce/ ¹³⁶ Ce rel ¹³⁶ Ce/ ¹⁴⁰ Ce	2 rsd [abs]	¹³⁸ Ce/ ¹³⁶ Ce rel ¹³⁶ Ce/ ¹⁴² Ce	2 rsd [abs]
2	1.33732	0.00001	1.33731	0.00001
3	1.33741	0.00001	1.33759	0.00009
18	1.33736	0.00002	1.33726	0.00004
3	1.33755	0.00001	1.33767	0.00009
3	1.33759	0.00001	1.33761	0.00005
3	1.33746	0.00003	1.33746	0.00006
2	1.33759	0.00001	1.33761	0.00005
3	1.33755	0.00004	1.33736	0.00005
3	1.33749	0.00002	1.33730	0.00005
11	1.33747	0.00002	1.33730	0.00001
mean±2rse	1.33748±0.0003		1.33745±0.0004	

ESI Table 5: Cerium isotope results for different interface cone combinations used during MC-ICPMS measurements. *The sample BCR-2 Batch 1 was measured 4 times in one analytical session to investigate the reproducibility of X cone combinations. Reported uncertainties correspond to 2 s.e.

JG-1 Batch 1 0.06 0.21 0.19 0.22	
JA-2 Batch 1 -0.24 0.21 -0.40	0.22
BCR-2 Batch 1 -0.07 0.26 0.09 0.20 -0.26*	0.20
BCR-2 Batch 2 -0.22 0.22 -0.11	0.24 -0.29 0.19
BCR-1 Batch 1 -0.17 0.24 -0.41 0.30 -0.34	0.20
BCR-1 Batch 2 -0.16 0.26	-0.54 0.20
JB-1b Batch 1 -0.78 0.21 -0.93	0.23
AGV-1 Batch 1 -0.76 0.20 -0.62 0.20 -1.00	0.18
AGV-1 Batch 2 -0.70 0.20	-0.86 0.19
LP-1 Batch 1 -1.32 0.24 -1.35 0.24 -1.38	0.17
LP-1 Batch 2 -1.29 0.19	-1.20 0.24
BHVO-2 Batch 1 -1.30 0.22 -1.12 0.30 -1.56	0.22
BHVO-2 Batch 2 -1.62 0.24	-1.71 0.19
JB-3 Batch 1 -1.57 0.22 -1.38 0.14 -1.57	0.21
JB-1b Batch 2 -0.50 0.30	-0.56 0.23