Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2017

Supporting Information for A feasibility study of "range-extended" EXAFS measurement at Pt L3-edge of Pt/Al₂O₃ in the presence of Au₂O₃

Hiroyuki Asakura, ab Naomi Kawamura, Masaichiro Mizumaki, Kiyofumi Nitta, Kenji Ishii, Saburo Hosokawa, ab Kentaro Teramura, ab and Tsunehiro Tanaka b

Pt L₃-edge XAS spectra of 0.5 wt% Pt/Al₂O₃ in the transmission and TFY modes

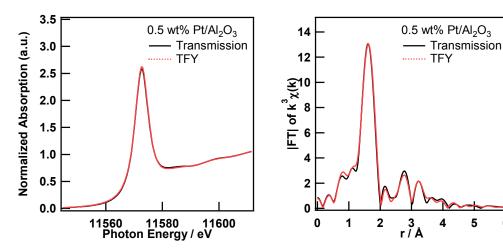
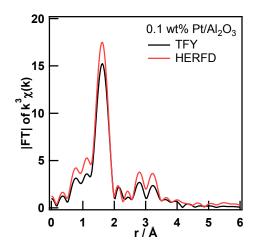


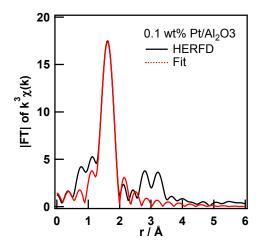
Fig. S1 Pt L3-edge XANES (left) and Fourier transform of EXAFS (right) spectra of 0.5 wt% Pt/Al2O3 measured in the transmission and TFY modes.

In general, XAS spectra measured in the fluorescence mode are believed to be valid when they are measured in the "thick and dilute" condition or "thin (and concentrated)" condition1. However, for the samples in the real world environment, to satisfy a suitable condition in the fluorescence mode is not so obvious. Therefore, we first evaluate the validity of the XAS spectrum measured in the TFY mode simply by comparing it with the XAS spectrum of the same sample measured in the transmission mode. The Pt L₃-edge X-ray absorption near-edge structure (XANES) spectra of 0.5 wt% Pt/Al₂O₃ measured in the transmission mode and TFY mode with a Pilatus detector is shown in Figure S1 (left). The XANES spectrum measured in the TFY mode was almost identical to that in the transmission mode. This is also verified in the EXAFS region (Figure S1 (right)). These results indicate that the present Pt/Al₂O₃ samples, whose Pt content is lower than 0.5 wt%, are suitable for the XAS measurement in the fluorescence mode.

5

6




Fig. S2 Fourier transform of Pt L₃-edge EXAFS spectra of 0.1 wt% Pt/Al₂O₃ measured in the TFY and HERFD modes.

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

b. Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

d. Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan

 $Fig.~S3~Fourier~transform~of~Pt~L_3-edge~EXAFS~spectra~of~0.1~wt\%~Pt/Al_2O_3~measured~in~the~HERFD~mode~and~its~curve~fitting~result.$

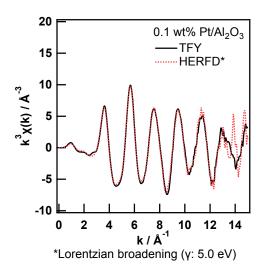


Fig. S4 Fourier transform of Pt L_3 -edge EXAFS spectra of 0.1 wt% Pt/ Al_2O_3 measured in the TFY mode and HERFD mode with Lorentzian broadening with $\gamma = 5.0$ eV.

References

1. J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown and P. Eisenberger, *Solid State Commun.*, 1977, 23, 679-682.