Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

```
1 Supplementary Information
```

```
characterization
                                                                     biogenic
                                                                                     selenium
 3 Detection
                      and
                                                             of
   nanoparticles in selenium-rich yeast by single particle ICPMS
 4
 5
    Javier Jiménez-Lamana <sup>a,*</sup>, Isabel Abad-Álvaro <sup>b</sup>, Katarzyna Bierla <sup>a</sup>, Francisco Laborda <sup>b</sup>,
 6
    Joanna Szpunar<sup>a</sup>, Ryszard Lobinski<sup>a</sup>
 7
 8
 9 <sup>a</sup>Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), UMR 5254-
10 IPREM, CNRS-UPPA, Hélioparc, Pau, France
    <sup>b</sup>Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences,
11
    (IUCA) University of Zaragoza, Zaragoza, Spain
12
13
    Corresponding author
14
    *Telephone: +33540175037. E-mail: j.jimenez-lamana@univ-pau.fr
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
```

	Isotope	Abundance (%)	Interference
	⁷⁴ Se	0.89	${}^{37}\text{Cl}_2^+, {}^{38}\text{Ar}{}^{36}\text{Ar}{}^+, {}^{38}\text{Ar}{}^{36}\text{S}{}^+, {}^{40}\text{Ar}{}^{34}\text{S}{}^+, {}^{74}\text{Ge}{}^+$
	⁷⁶ Se	9.36	⁴⁰ Ar ³⁶ Ar ⁺ , ³⁸ Ar ³⁸ Ar ⁺ , ⁴⁰ Ar ³⁶ S ⁺ , ⁷⁶ Ge ⁺ , ³⁹ K ³⁷ Cl ⁺
	⁷⁷ Se	7.63	${}^{40}Ar^{36}ArH^+, {}^{40}Ar^{37}Cl^+, {}^{38}Ar_2H^+, {}^{41}K^{36}Ar^+, {}^{42}Ca^{35}Cl^+$
	⁷⁸ Se	23.78	${}^{40}Ar^{38}Ar^{+},{}^{78}Kr^{+},{}^{38}Ar^{40}Ca^{+},{}^{64}Zn^{14}N^{+},{}^{44}Ca^{34}S^{+}$
	⁸⁰ Se	49.61	${}^{40}\mathrm{Ar_2}^+,{}^{79}\mathrm{BrH^+},{}^{80}\mathrm{Kr^+},{}^{40}\mathrm{Ar^{40}Ca^+}$
	⁸² Se	8.73	${}^{81}BrH^{+},{}^{40}Ar^{42}Ca^{+},{}^{40}Ar_{2}H_{2}^{+},{}^{82}Kr^{+},{}^{12}C^{35}Cl_{2}^{+}$
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			

34 Table S1 Isotopic abundance and spectral interferences for Se isotopes

Fig. S1 Time scans of ultrapure water monitoring (a) ⁷⁸Se and (b) ⁸⁰Se without reaction cell; (c) ⁷⁸Se 55 and (d) ⁸⁰Se with reaction cell. Dwell time: 100 μ s.

58 Fig. S2 Size distributions obtained by TEM for a) 50-nm Se nanoparticle suspension; b) 100-nm Se.

62 Fig. S3 Signal distribution histograms corresponding to a) Sample A; b) Sample A post column.

64

65

66 Fig. S4 Transmission electron microscope image and EDS spectrum obtained for Sample A.67