Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2018

ESI Supporting Information

Quantification of silver nanoparticles up taken by single cells using Inductively Coupled Plasma Mass Spectrometry in the single cell mode

Ana Lopez-Serrano Oliver¹, Sabine Baumgart², Wolfram Bremser¹, Sabine Flemig¹, Doreen Wittke³, Andreas Grützkau², Andrea Haase³, Andreas Luch³, Norbert Jakubowski¹

¹ Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstatter-Str. 11, 12489, Berlin Germany

² DRFZ, German Rheumatism Research Centre Berlin, Charitéplatz 1, 10117 Berlin, An Institute of Leibniz Association

³ The Federal Institute for Risk Assessment Department of Product Safety (BfR), Max-Dohrn-Str. 8-10

D - 10589 Berlin.

Table S-1. Typical operating parameters for the ICP-MS (Element XR/2).

	1			
Detector voltage	1580-1650 V (for AgNPs and cell suspensions) 1900 V (for Ag standard solutions and digested samples			
Rf power/ W	1550			
Ar cooling gas flow rate/ L min ⁻¹	15			
Ar auxiliary gas flow rate/ L min ⁻¹	1.0			
Sample and skimmer cone	Ni			
Micro nebulizer	Micromist 200 μL			
Data acquisition mode	Time Resolved Analysis (TRA) in counting mode			
Isotopes	¹⁰⁷ Ag; ¹¹⁵ In			
Sample uptake rate (mL min ⁻¹)	0.25			
Dwell time (ms)	0.1, 1, 10 (parameter optimized)			
Total acquisition time (s)	52			
	I .			

Table S-2. Determination of nebulization efficiency by using AgNPs aqueous suspension. The transport efficiency, ϵ , was determined by using AgNPs aqueous suspensions with known concentrations of particles mL⁻¹ at a given flow rate

AgNPs ng mL ⁻¹	ng/particle	AgNPs particles mL ⁻¹	Events s ⁻¹	flow rate mL s ⁻¹	ε	ε _{mean}
3x10 ⁻²		3.64x10 ⁺⁴	3		0.02	
5x10 ⁻²	6.86x10 ⁻⁷	7.29x10 ⁺⁴	5.09	0.004	0.02	0.02
1x10 ⁻¹		1.46x10 ⁺⁵	9.72		0.02	

Table S-3. Quantitative analysis of AgNPs in single cells by SC-ICP-MS. The mode of the distribution and a 67% inter-quantile was selected in order to mimic the one-sigma of a normal distribution. An uncertainty u- and an uncertainty u+ are used due to the lower and upper bound of the heavily asymmetric quantile. Note that broken numbers (fractions) for the mode like 2.5 are a consequence of a distributed mode, and broken numbers for the uncertainties result from the very short left-tail with a zero zone as described above.

		THP-1 Monocytes			THP-1 partially differentiated macrophages				
Exposure time	Exposure dose	mode	u_down	u_up	67% inter- quantile	mode	u_down	u_up	67% inter- quantile
(h)	($\mu g \ Ag \ mL^{-1}$)	AgNP/cell			AgNP/cell				
4	_	0	0	0	0	0	0	0	0
24	-		U	U	U		U	U	O
4	0.1	1	0,5	1	1,5	1	0,2	7	7,2
24		1	0,5	1	1,5	3	1	3	4
4	1	2,5	0,3	1,5	1,8	2	0,2	40	40,2
24	1	4	1	4	5	4,5	2	54	56

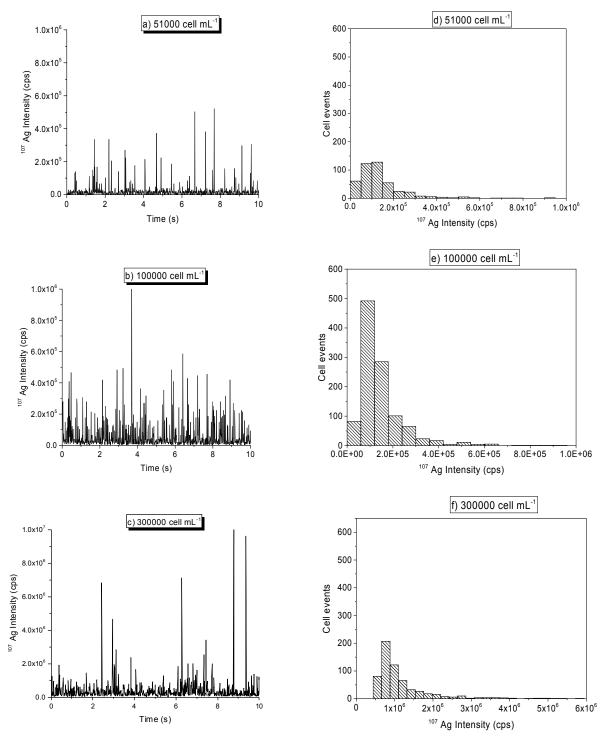


Figure S-1. Effects of different cell concentrations on the signal profile of single cells. 107 Ag chromatograms (a-c) and histograms (e-f) at different concentrations of cell suspensions THP-1 monocytes incubated with 1 μ g AgNPs mL⁻¹ for 24h.

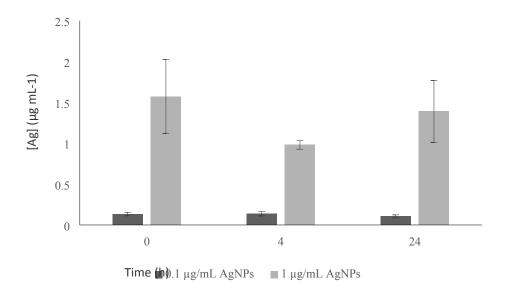
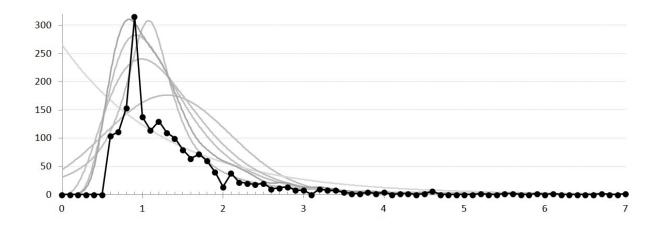



Figure S-2. Concentration of AgNPs , calculated as the absolute mass of Ag (μ g mL⁻¹) in the supernatant of the exposure/incubation medium after 4 and 24 h AgNPs exposure at 0.1 (black bars) and 1 μ g mL⁻¹ (gray bars) to THP-1 monocytes.

Figure S-3. Experimental event distribution (black dots) and fitted common distributions (grey lines): Normal, log-normal, exponential, Gamma, Lorentz distributions, and a Kernel smoothing.

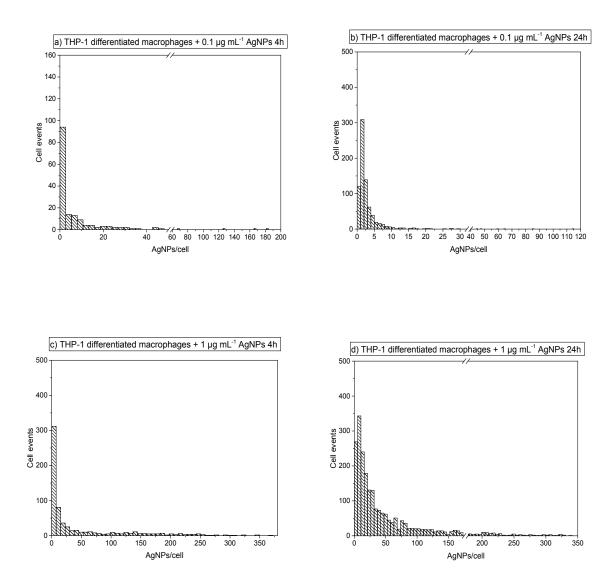


Figure S-4. SC-ICP-MS of THP-1 partially differentiated macrophages as single cell suspensions at a concentration of $5x10^4$ - $1x10^5$ cell mL⁻¹. Histograms obtained of THP-1 partially differentiated macrophages incubated with 50 nm AgNPs at 0.1 (a-b) and 1 μ g mL⁻¹ (c-d) for 4 and 24 hours. Results correspond to one biological experiment measured in two replicates.