Electronic Supplement I

Assessment and correction of polyatomic interferences

Polyatomic interferences have detrimental effects on analytical accuracy in LA-ICP-MS, especially if the interfering element is present in much higher concentrations than the element of interest. Interference effects cannot be entirely avoided in LA-ICP-MS, but their significance and relative influence on the isotopes of interest can be evaluated. This was achieved by expanding the analytical menus to include isotopes that yield indirect information on the magnitude of interference effects affecting the isotopes of interest. For analysis of minerals, the following isotopes were added: ²⁷Al ([²⁷Al¹⁶O]⁺ interference on ⁴³Ca), ²⁹Si ([²⁹Si¹⁶O]⁺ interference on ⁴⁴Ca), ³⁹K ([³⁹K⁴⁰Ar]⁺ interference on ⁷⁹Br), ⁶³Cu and ⁶⁵Cu ([⁶³Cu ¹⁶O]⁺ and [⁶⁵Cu¹⁶O]⁺ interference on ⁷⁹Br and ⁸¹Br, respectively) and ¹¹¹Cd ([¹¹¹Cd¹⁶O]⁺ interference on ¹²⁷I). The ¹²⁷I mass may further be affected by argide interferences of [⁸⁷Rb⁴⁰Ar]⁺ and [⁸⁷Sr⁴⁰Ar]⁺, but their influence was considered negligible because neither Rb nor Sr are major elements in the samples and because argide interference effects are orders of magnitude weaker than oxygen based ones.⁴³ The ¹⁶³Dy isotope was included to assess the possible effects of doubly charged ¹⁶²Dy⁺⁺ on the ⁸¹Br mass. Mass 162 itself is affected by an isobaric interference between ¹⁶²Dy and ¹⁶²Er, precluding direct measurement of this mass, but it was assumed that the count rates of ¹⁶³Dy would provide an adequate estimate for ¹⁶²Dy count rates due to their similar isotopic abundances. Erbium was not included, because the isotopic abundance of ¹⁶²Er is so low that any potential doubly charged interference effect on ⁸¹Br will be outweighed by doubly charged ¹⁶²Dy⁺⁺. Similar interference effects by doubly charged ¹⁵⁸Gd⁺⁺ can affect ⁷⁹Br, but ⁸¹Br is the preferred Br isotope due to the generally more significant interference effects on ⁷⁹Br caused by $[^{39}K^{40}Ar]^+$. Therefore, we have not investigated the potential effect in order to keep the number of elements included as small as possible.

For analysis of synthetic fluid inclusions, interference effects were more straightforward to predict and monitor because the starting solutions did not contain any REE or Cu. However, since the starting solutions contained 200 µg/g of Rb, ¹²⁵Te was included to assess the possible effect of ⁸⁷Rb⁴⁰Ar⁺ interferences affecting the ¹²⁷I mass. A signal on ¹²⁵Te coinciding with a fluid inclusion signal would indicate the presence of argide interferences caused by ⁸⁵Rb⁴⁰Ar⁺ species. Since the intensity ratios of ⁸⁵Rb⁴⁰Ar⁺ and ⁸⁷Rb⁴⁰Ar⁺ should be linked through the relative isotopic abundances of ⁸⁵Rb and ⁸⁷Rb, any potential effect on ¹²⁷I count rates caused by ⁸⁷Rb⁴⁰Ar⁺ interference thus be evaluated semi-quantitatively using the ¹²⁵Te signals.

Doubly charged REE⁺⁺ interferences affecting Br quantification

Bromine concentrations in the scapolite samples Sca17, HAL-O and BL-Q were significantly underestimated when Durango apatite is used as external reference material (Table 6). The discrepancy between the measured and the reference values is caused by doubly charged ¹⁶²Dy⁺⁺ interferences which significantly affect the apparent signal intensities of ⁸¹Br⁺.

Figure 3 in the manuscript shows high-resolution mass spectra of Durango apatite and Sca17 for the mass over charge (m/z) range from 80 to 84.5. The peaks observed at m/z of 80.5, 81.5, 82.5 and 83.5 are caused by doubly charged ions of ¹⁶¹Dy, ¹⁶³Dy, ¹⁶⁵Ho, and ¹⁶⁷Er. The mid-mass lanthanides have very low second ionization potentials around 11 eV, which is even lower than the first ionization potential of Br (11.81 eV). This causes significant production of REE⁺⁺ ions in the plasma relative to the production rates of ⁸¹Br⁺. Consequently, we can expect that doubly charged ¹⁶²Dy⁺⁺ will significantly contribute to the count rates measured on m/z of 81, and thus increase the apparent ⁸¹Br count rates in Durango apatite.

Dysprosium and Br concentrations in Durango apatite are 68 and 0.8 μ g/g, respectively (Table 5),^{33,48} whereas the scapolite samples contain little Dy (1 ± 0.1 μ g/g) but significantly more Br (398 μ g/g) (Table 5). Despite the relatively low concentrations of Dy in Durango apatite, the very high ionization efficiency of the REE still yields significant count rates in the m/z range occupied by doubly charged ions of ¹⁶¹Dy, ¹⁶³Dy, ¹⁶⁵Ho and ¹⁶⁷Er (m/z of 80.5, 81,5, 82,5 and 83.5, respectively, Fig. 3). Taken together, low Br concentrations and significant REE⁺⁺ interference effects then result in largely interference-dominated count rates on the ⁸¹Br isotopes in Durango apatite, yielding too high apparent sensitivities (cps/[μ g/g]) for the low reference concentration value of Br. By contrast, the REE concentrations in the three scapolite samples are so low that the signal intensities at non-integer m/z values are 3 – 4 orders of ⁸¹Br on Sca17 are therefore practically unaffected by contributions of doubly charged lanthanide ions.

The effect of selective interferences affecting sensitivities only on the external standard reference material but not the sample is best illustrated by recalling the fundamental equation used for calculation of element concentrations in LA-ICP-MS:⁵⁰

$$C_{i}^{SMP} = \frac{I_{i}^{SMP}}{I_{is}^{SMP}} \frac{C_{is}^{SMP}}{\left(\frac{I_{i}^{SRM}}{I_{is}^{SRM}} \frac{C_{is}^{SRM}}{C_{i}^{SRM}}\right)}$$
(1)

where C_{is}^{SMP} and C_i^{SMP} denote the concentrations of the internal standard (*is*) and an element (*i*) in the sample, respectively; I_{is}^{SMP} and I_i^{SMP} are the signal intensities (counts per second) of the internal standard and an element in the sample; and C_{is}^{SRM} , C_i^{SRM} , I_{is}^{SRM} and I_i^{SRM} are the concentrations and intensities of the internal standards and an element in the standard and an element in the standard standard and an element in the standard standard and an element in the standard st

instrumental drift. It follows that the significantly too high apparent Br sensitivities caused by the interference from doubly-charged REE species during ablation of Durango apatite results in a significant underestimation of the Br concentrations determined in scapolite. This is exactly what the data in Table 6 demonstrate.