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Note S1. How to design and understand the results of ddCFU assay

This instruction details how to analyze the readout from an optimized rational droplet digital assay 

described in this manuscripts. In digital methods, the positive signal yielded by a compartment or 

partition  is interpreted to mean, that in the said partition the number of molecules of the analyte is 𝑑𝑖𝑣𝑖

at least one. In order to translate this information into a useful form of the probability distribution of 

initial concentration having caused the recorded result, we start with the probability of obtaining the 

positive signal. This probability is a function of initial concentration  and the properties of the 𝐶

compartment (i.e. ):𝑑𝑖𝑣𝑖

𝑝𝑖(𝑠𝑖 = 1│𝐶) = 1 ‒ 𝑒
‒ 𝐶𝑑𝑖𝑣𝑖

A negative signal yielded by a compartment or partition  states, that in the said partition there were 𝑑𝑖𝑣𝑖

no particles of the analyte, which can be interpreted with another probability function of :𝐶

𝑝𝑖(𝑠𝑖 = 0|𝐶) = 𝑒
‒ 𝐶𝑑𝑖𝑣𝑖

To analyze the results of the assay, first, the binary values (digital readouts) of { } for the partitions 𝑠𝑖

belonging to all the libraries  must be collected.{𝑑𝑖𝑣𝑖}

The basis of the design rational droplet digital assays is setting the sub-assays of compartments in a 

geometric sequence of volumes  and/or dilutions  of compartments belonging to consecutive-sub-𝑣 𝑑

assays The change of the product  effectively changes (for a fixed concentration) the expected 𝑑𝑣

number of CFUs per one compartment: .𝑚𝐶𝐹𝑈 = 𝐶𝑑𝑣

Therefore, in order to prepare a rational droplet digital assays a series sub-assays is produced so that 

the corresponding series of expected numbers of CFUs per single compartment is a geometric series 

with quotient . The said series can be obtained as follows: 𝑥

1. By changing the volumes  of compartments belonging to consecutive sub-assays so that they 𝑣𝑖

form a geometric series with quotient : . 𝑥 𝑣𝑖 = 𝑣𝑜𝑧𝑖 = 𝑣𝑜𝑥𝑖 ‒ 1

2. By changing the dilutions  of compartments belonging to consecutive sub-assays so that they 𝑑𝑖

form a geometric series with quotient : . 𝑥 𝑑𝑖 = 𝑑𝑜𝑧𝑖 = 𝑑𝑜𝑥𝑖 ‒ 1

3. More generally, one can use a combination of methods 1) and 2), in this case the products of 

consecutive dilutions and volumes  are adjusted so as to form a geometric series with 𝑑𝑖𝑣𝑖

quotient :  𝑥 𝑑𝑖𝑣𝑖 = 𝑑𝑜𝑣𝑜𝑧𝑖 = 𝑑𝑜𝑣𝑜𝑥𝑖 ‒ 1.
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Then, knowing the design of a rational droplet digital assay, the analysis is done as follows:

1. From every positive partition (i.e. ) with modification factor  we construct the 𝑠𝑖 = 1 𝑑𝑖𝑣𝑖

probability function :𝑝𝑖

𝑝𝑖(𝑠𝑖 = 1│𝐶) = 1 ‒ 𝑒
‒ 𝐶𝑑𝑖𝑣𝑖

2. We also construct probabilities of obtaining negative signals for all negative compartments:
𝑝𝑖(𝑠𝑖 = 0|𝐶) = 𝑒

‒ 𝐶𝑑𝑖𝑣𝑖

3. Then, we calculate the probability  of obtaining the recorded state of the rational 𝑃({𝑠𝑖}|𝐶)

design digital assay, which is a product of the probability functions for all the compartments:

Ρ({𝑠𝑖}│𝐶) =
𝑁 ‒ 1

∏
𝑖 = 0

𝑝𝑖(𝑠𝑖│𝐶)

4. This can be also written as:

Ρ({𝑠𝑖}│𝐶) =
𝑁 ‒ 1

∏
𝑖 = 0

{(1 ‒ 𝑒
‒ 𝐶𝑑𝑖𝑣𝑖)𝑠𝑖 ∙ (𝑒

‒ 𝐶𝑑𝑖𝑣𝑖)1 ‒ 𝑠𝑖}
Where  count all the compartments of the assay𝑖 = 0,…,𝑁 ‒ 1

5. Then, we use Bayesian formalism to invert the product probability to the probability distribution 
 of the initial concentration  (under the condition that no a priori information about 𝑃(𝐶|{𝑠𝑖}) 𝐶

the distribution of  is available):𝐶

𝑃(𝐶│{𝑠𝑖}) = Ρ({𝑠𝑖}│𝐶)/
∞

∫
0

Ρ({𝑠𝑖}│𝐶)𝑑𝐶

for practical reasons (numerical calculation of the integral), the upper limit of integration can be 
finite, but should be at least one order of magnitude larger than the upper limit of the dynamic 
range of the assay

6. Knowing the distribution , one can estimate the initial concentration of the sample as 𝑃(𝐶│{𝑠𝑖})
the expected value of this distribution:

𝐸(𝐶) =
∞

∫
0

𝐶 ∙ Ρ(𝐶|{𝑠𝑖})𝑑𝐶

again, the upper limit of integration can be finite, but should be at least one order of magnitude 
larger than the upper limit of the dynamic range of the assay

7. The precision of the estimate can be calculated as the spread (relative standard deviation) of the 
distribution :𝑃(𝐶│{𝑠𝑖})

𝜎(𝐶) = 𝐸(𝐶2) ‒ (𝐸(𝐶))2/𝐸(𝐶)
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where 

𝐸(𝐶2) =
∞

∫
0

𝐶2 ∙ Ρ(𝐶|{𝑠𝑖})𝑑𝐶

Additionally, it is useful to check the performance of the designed assay numerically. For example, one 
can run Monte Carlo simulations that take as an input the initial concentration of the analyte (chosen 
randomly from the dynamic range of the assay), then using random number generators determine the 
number of molecules of the analyte in every single partition (which has a Poisson distribution with 

), marking positive and negative ones, and then calculate the estimate of the initial 𝜆 = 𝐶𝑑𝑖𝑣𝑖

concentration using the instructions given in 1-6. As a result, one gets the dependence between the 
initial concentrations and calculated estimated concentration, which is usually 1:1. In some cases, 
however (especially for small assays), it is slightly tilted. Knowing this dependence from multiple MC 
simulations, one can use it as a correction function for the estimate of initial concentration from real 
experiments.

Detailed analysis of the precision of RDD assays

The comparison between the precision provided by different RDD assays (b-f) and the precision 
provided by a single-volume digital assay (a). The blue lines describe the performance of a single-volume 
digital assay which comprises of 10,000 identical compartments. The black lines describe the 
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performance of various RDD assays, each comprising of 10 sub assays having 1,000 compartments 
(10,000 compartments in total). The grey dashed line describe the behaviour of every sub-assay 
comprising the RDD assay. The ratio of dilutions between the compartments belonging to consecutive 
compartments equals 2-fold (b), 4-fold (c), 5-fold (d), 10-fold (e), and finally 20-fold (f). It is worth 
noticing, that if the ratio of dilutions between of compartments belonging to consecutive sub-assays is 
small, the functions describing precision overlap, which results in the flattening of the distribution of the 
final precision. If the ratio is increased (in order to cover wider dynamic range of the estimate), the 
functions overlap less, which results in the wavy behaviour of the observed precision. Still, amplitude of 
so-called waves is relatively small, and therefore do affect significantly the results.
Here we discuss in detail the behaviour of the precision of assessment provided by the RDD assay. The 
design of the RDD assay is based on arranging a set of classic, single-volume sub-assays that differ in 
dilution and/or volume of compartments (the ratio of dilutions and/or volumes of compartments 
belonging to consecutive sub-assays is fixed, which results in a geometric sequence of 
volumes/dilutions.
All the sub-assays are used simultaneously for the assessment of the number of targets. The variance of 
the estimate of the initial number of targets equals the sum of variances provided by all the sub-assays. 
The precision of the assessment used in this paper equals the relative standard deviation of the 
estimate, i.e. the square root of the total variance divided by the estimated number of targets.
As a result, the relative precision of the estimate is uniform in the whole dynamic range of assessment 
because it comes from uniformly distributed digital assays. If the difference between the consecutive 
sub-assays is small, i.e. the dilution ratio is close to unity, we obtain an almost flat precision. However, if 
the dilution ratio is higher, i.e. the sub-assays differ significantly, the functions describing precision 
provided by consecutive sub-assays do not overlap, and therefore the final function shares some of the 
characteristics of component precisions, which results in its wavy behavior.

Details of the Monte Carlo simulations

The Monte Carlo simulations were used to establish the ‘design’ formulas for droplet digital assays. They 
are based on the methods described in detail in the paper: Debski, P.R., and Garstecki, P., Designing and 
interpretation of digital assays: concentration of target in the sample and in the source of sample, 
Biomolecular Detection and Quantification, 2016, 10, 24-30. There were run by means of the random 
number generators provided by the ROOT framework (https://root.cern.ch/). We used the terms canonical 
and grand canonical Monte Carlo simulations analogically to canonical and grad canonical ensembles to 
differentiate between two situations:

i) The grand canonical Monte Carlo simulations used as an input the initial concentration  of 𝐶
the analyte (in this case, the concentration of CFUs) in the assay. Then, each compartment 
with dilution  and volume  was treated individually, i.e. the each compartment gained 𝑑 𝑣

randomly a positive signal with probability  or negative signal with 𝑝(𝑠 = 1) = 1 ‒ 𝑒 ‒ 𝐶𝑑𝑣

probability . Therefore, there was a randomness of the distribution of the 𝑝(𝑠 = 0) = 𝑒 ‒ 𝐶𝑑𝑣

number of CFUs  in the assay (i.e. Poisson distribution with expected value ) and 𝑀𝐴 𝐶𝑉𝑎𝑠𝑠𝑎𝑦

the distribution of these molecules among the compartments. These simulations were used to 
produce probability distributions  that were later used for Bayes’ method. This method 𝑝(𝐾|𝐶)
was used for the analysis of the results of droplet digital CFU assay presented in this work.

https://root.cern.ch/
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ii) The canonical Monte Carlo simulations used as an input the hard-fixed initial number  of 𝑀𝐴

CFUs in the assay. Then, each CFU was randomly distributed among the compartments with 
uniform probability. At the end, the compartments containing at least one molecule of the 
analyte were given positive signal or negative signal otherwise. Therefore, there was a 
randomness only in the distribution of the CFUs among the compartments. These simulations 
were used to produce probability distributions  that were later used for Bayes’ 𝑝(𝐾|𝑀𝐴)
method. They provide the assessment of the initial number of CFUs in the sample, however, 
they underestimate the error of the initial concentration in the source, and therefore they were 
not used in this work.
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Note S2. Schematics of i) droplet generation chip and ii) droplet counting chip

Red scale bar on figures is 1cm. Schematics on right are representative and do not show exact size or 
proportions.

i. Droplet generation chip

  

Channels have following dimensions (width x height):

 Main inlet channel:  start w:800 x h:800 μm, end at vertical bar 
position 100x120 μm

 Outlet channel: 800x800 μm
 Oil delivering channel: 200x200 μm
 Flow-focusing junction: 100x120 μm 

ii. Droplet counting chip

Channels have following dimensions (width x height):

 Droplet inlet channel: 1200x1200 μm at inlet, 1200x100 at FF-junction 
(linear depth change until vertical dashed line)

 Flow-focusing junction: 124x100 μm
 Secondary oil delivering channel: 114x100 μm
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Note S3. Droplet size and dispersity calculations

In order to measure the size dispersion of the droplets generated from 3µL plugs, we recorded the 
droplet formation using Photron Fast-Cam 1000K (Japan) camera that was mounted on Nikon SMZ1000 
stereoscope (Japan). We measured the whole droplet formation process of a 3µL plug. We picked 
randomly five different plugs from three different dilution series.

Average of 5 plugs Plug 1 Plug 2 Plug 3 Plug 4 Plug 5
Average droplet volume [nL] 1.00 1.05 1.07 0.92 1.00 0.97
Number of droplets generated 3001.4 2850 2792 3273 3011 3081
Coefficient of variation 5.63% 3.08% 3.37% 1.98% 2.86% 2.21%

We measured the area of each generated droplet in Image J software and used this data to calculate the 
volume of each droplet according to the model described previously (1-3). Briefly, the volume can be 
calculated by the following formula: V=(π/12)[2D3-(D-h)2(2D+h)], where D is the diameter of a droplet 
and h is the height of the channel.

(1) Nie et al., Microfluid. Nanofluidics 2008, 5, 585–594.
(2) Li et al., Soft Matter 2008, 4 (2), 258.
(3) Kaminski et al., Lab Chip 2012, 12 (20), 3995.
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Note S4. Library mixing efficiency of pooled droplet libraries in ddCFU assay

In our ddCFU assay experiments we collected droplet libraries together in 1.5 mL test-tube for 
incubation. After the incubation we did not analyze all of the ~33000 droplets as some fraction was 
always lost during transfer and handling. Thus we investigated if the pooled droplet libraries are mixed 
enough for precise analysis.

In order to do that we prepared 11 3µL plugs and split them into 1nL droplets as in ddCFU assay. One of 
the libraries was labelled with 25 µg/mL Dextran Cascade Blue (Molecular Probes, Life Technologies, 
USA). We then tested if that labelled population of droplets is present in the whole droplet population 
as 1/11 fraction. In our experiments we called this ideal situation with value “1”. In all cases there are 
five replicate experiments.

Firstly, we tested if the order of dilution has an effect on single library presence in analysis. We 
compared two samples where labelled droplets were generated either first or as sixth library in 
sequence. We mixed the droplets by turning test-tube 90 degrees once both clock- and anticlockwise. 
We did not observe any significant difference as the labelled fraction was near perfect value 1 in both 
cases (Fig S4a).

a)  b)

1st library 6th library Total No Mix 1x Mix 3x Mix Long mix
droplets analyzed (AVG) 24263.6 26523.4 27381 27950 28158 27522 25895

labelled fraction (1= ideal) 1.04 0.96 0.98 0.94 1.04 1.01 0.94
coefficient of variation (CV) 5.07% 2.91% 7.74% 9.31% 0.88% 11.24% 9.51%

Secondly, we investigated if the mixing regime has an effect on single library presence in analysis. We 
compared samples where first library was labelled. Different mixing regimes were: i) no mixing, ii) 
turning test-tube 90 degrees once both clock- and anticlockwise, iii) turning test-tube 90 degrees three 
times both clock- and anticlockwise and iv) long mixing where test-tube was positioned horizontally on a 
slow-regime rocker for one minute. We did not observe any significant difference as the labelled 
fraction was near perfect value 1 in all cases. We did however observed occasionally the slight decrease 
in droplet stability with libraries that were either rocked or turned (Fig S4b).
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Note S5. Data for experiments shown in main text

Here we show the data that was used in i) Comparison with conventional plate counting and ii) 
Antibiotic time-kill test. At least three replicates were done for each experiment. CV stands for 
Coefficient of variation (CV).

i) Comparison with conventional plate counting

ddCFU Assay Plate count ddCFU assay/Plate count
Average CV Average CV

Sample I 1.63E+09 2% 2.92E+09 11% 55.93%
Sample II 1.68E+08 14% 3.02E+08 22% 55.68%
Sample III 2.49E+07 18% 2.14E+07 7% 116.26%
Sample IV 2.05E+06 11% 2.71E+06 16% 75.70%
Sample V 2.01E+05 35% 3.04E+05 14% 66.21%
Sample VI 2.13E+04 23% 2.65E+04 10% 80.35%

ii) Antibiotic time-kill test. In here the value “1” at the 0h stands for ~2x106 CFU/mL of viable 
E. coli bacteria that was used in experiment.

Incubation time Average CV
0h 1.00 3.49%

0.5h 0.37 1.14%
1h 0.22 0.78%
2h 0.04 1.10%
4h 0.00 0.00%
8h 0.00 0.00%

25h 0.00 0.00%
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Note S6. ddCFU assay with 2-fold dilution libraries

In our experiments we also tested ddCFU assay with 2-fold dilution libraries. In that case we had a 
sequence of dilutions that consisted of undiluted sample and 20 2-fold dilutions (21 in total). We 
compared this ddCFU approach with traditional plate counting (i) and time-kill test with antimicrobial 
peptide p4 from chemerin. Chemerin is a peptide molecule that antimicrobial properties (4-7) and is 
currently being investigated as potential drug. In our experiments we used 100 µM of p4 chemerin 
(ThinkPeptides ProImmune, UK).

i) Comparison with conventional plate counting (2-fold dilutions). 

 

ddCFU assay (2-fold) Plate count ddCFU assay/Plate count
Average CV Average CV

Sample I 2.52E+05 67.47% 1.23E+06 34.96% 20.51%
Sample II 8.93E+04 55.04% 8.20E+04 8.66% 108.86%
Sample III 7.26E+03 34.23% 7.96E+03 75.38% 91.21%
Sample IV 9.25E+02 7.51% 8.10E+02 8.77% 114.23%
Sample V 1.06E+02 24.98% 8.33E+01 27.85% 126.78%
Sample VI 5.67E+00 58.23% 9.43E+00 48.78% 60.09%

ii) Antimicrobial kill-test with chemerin peptide. In here the value “1” at the 0h stands for 
~1.6x106 CFU/mL of viable E. coli bacteria that was used in experiment. Final concentration 
of p4 chemerin was 100 µm in PBS with 1% of LB media. After p4 treatment the cells were 
washed twice with fresh media (LB media with 100 μg/mL ampicillin and 1 mM IPTG) before 
transferring to fresh media for ddCFU assay.

Incubation Average CV
0h 1.0000 26.09%
1h 0.1289 17.15%
2h 0.0174 22.55%
4h 0.0064 13.81%
7h 0.0016 83.77%
17h 0.0002 141.42%

(4) Kulig et al., Journal of Immunology 2011, 187 (3), 1403-1410
(5) Banas et al., PloS One 2013, 8(3), e58709 
(6) Zabel et al., Am J Clin Exp Immunol 2014, 3(1), 1-19
(7) Banas et al., PloS One 2015, 10(2), e0117830


