Supplementary Information

Effects of Diffusion and Mixing pattern on Microfluidic-Assisted Synthesis of Chitosan/ATP Nanoparticles

Amanda C. S. N. Pessoa,^a Caroline C. Sipoli,^{a,b} and Lucimara G. de la Torre*^a

^a University of Campinas, UNICAMP, School of Chemical Engineering, PO BOX 6066 13083-852, Campinas, SP, Brazil.

^b Federal University of Technology – Paraná, UTFPR, Chemical Engineering, Apucarana, PR, Brazil.

* Corresponding author. E-mail: latorre@feq.unicamp.br

Abbreviations	
ATP	Adenosine triphosphate
C_{CHI} , ATP	Inlet Streams Concentrations
CAS	Central Aqueous Stream
CHI	Chitosan
D-simple	Hydrodynamic flow focusing device in Simple Design
D-long	Hydrodynamic flow focusing device in Long Design
D-bends	Hydrodynamic flow focusing device in Design of Bends
D-barriers	Hydrodynamic flow focusing device in Design of Barriers
FRR	Flow Rate Ratio
PDI	Polydispersity index
PDMS	Polydimethylsiloxane
Q _T , _{CHI} , _{ATP} , _{WATER}	Volumetric Flow Rate (µL/min)
R _{CHI/ATP}	CHI/ATP Mass Ratio
V _f	Total Fluid Flow Velocity (mm/s)
W ₀	Width of the microchannel
W _f	Width of the focused stream

Fig. S2. Transmission electron micrographs of CHI/ATP nanoparticles produced by Central Aqueous Stream (CAS) configuration using microfluidic device in Simple Design (D-simple). Production conditions: Q_{WATER} of 40 µL/min, $Q_{CHI} = Q_{ATP}$ of 25 µL/min, $R_{CHI/ATP}$ of 0.5 and C_{fCHI} of 0.14 mg/mL. The images are representative of three different independent experiments. The bar represents 200 nm.

Fig. S3. Intensity and number-weighted size distribution of CHI/ATP nanoparticles synthesized applying the Central Aqueous Stream (CAS) configuration using microfluidic devices in Simple Design (D-simple) (A-B) and Long Design (D-long) (C-D). The lines represent size distributions of CHI/ATP nanoparticles obtained from independent triplicates. Production conditions: FRR of 1.3, Q_{WATER} of 40 µL/min, Q_{CHI} and Q_{ATP} of 25 µL/min, $R_{CHI/ATP}$ of 0.5 and C_{fCHI} of 0.14 mg/mL.

Fig. S4 – Microstructures (indicated by red arrows) observed during the synthesis of CHI/ATP nanoparticles of $R_{CHI/ATP}$ of 1.5 investigated applying Central Aqueous Stream (CAS) process configuration using microfluidic devices in Design of Bends (D-bends) (A-B) and in Design of Barriers (D-barriers) (C-D). Microscopic images taken at different process time points: (A) and (C) t = 0; (B) and (D) t = 15 min. Production conditions: $R_{CHI/ATP}$ of 1.5, FRR of 1.3, Q_{WATER} of 40 µL/min, Q_{CHI} and Q_{ATP} of 25 µL/min, and C_{fCHI} of 0.14 mg/mL.